AC. Si calcoli, con un opportuno cambio di variabile, l'integrale

$$\int_0^{2\pi} \frac{\sin(\vartheta)}{\sin(\vartheta) - i\cos(\vartheta)} d\vartheta$$

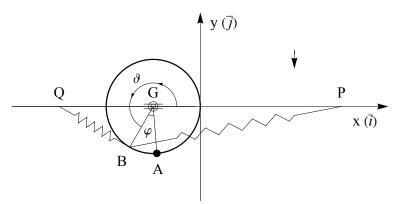
TL. Si calcoli la trasformata di Laplace della funzione f(t) e l'antitrasformata della funzione g(s).

$$f(t) = te^{-2t}\sin(3t),$$
 $g(s) = \frac{s^2 + 7s + 15}{s^2 + 4s + 13}$

Per quanto riguarda la prima funzione, si ricordi che l'esponenziale crea una traslazione, e che la moltiplicazione per t crea una derivata. Per quanto riguarda la seconda funzione, si ricordi che un primo passaggio richiede l'algoritmo della divisione.

MR. In un piano in cui si è scelto un sistema di riferimento inerziale (O, \vec{i}, \vec{j}) , con \vec{j} verticale ascendente, giace un sistema meccanico costituito da un disco omogeneo di raggio R e massa m. Il centro G del disco è vincolato tramite una cerniera ad un carrello che può scorrere sull'asse delle x.

Su di un punto A nel bordo del disco è fissato un punto materiale di massa m, su di un altro punto B nel bordo del disco sono fissate due molle di costante elastica k = mg/R. La prima molla collega il punto B con il punto Q di coordinate OQ = (-3R, 0), la seconda molla collega il punto B con il



Si scelga il sistema di riferimento in figura, in cui la coordinata lineare s è la coordinata x di G, mentre l'angolo ϑ è l'angolo orientato tra \vec{i} e GB. Per formalizzare le energie potenziali serve anche un ulteriore angolo φ , che è l'angolo orientato che si forma tra GB e GA. Si osservi che, siccome A è saldato al bordo del disco una volta per tutte ma non sappiamo ancora dove, φ non è una coordinata lagrangiana, ma un parametro non ancora definito, al quale cercheremo in seguito di assegnare un valore in base a certe richieste (si veda punto 3).

- 1. Determinare le coordinate dei punti rilevanti in funzione delle coordinate lagrangiane s e ϑ .
- 2. Calcolare il potenziale o l'energia potenziale del sistema.
- 3. Determinare i valori di φ affinché esista un equilibrio con $\vartheta = \pi/6$. Tra i due valori si scelga $\varphi = \pi$.
- 4. Per tale scelta di φ , si determinino tutte le altre configurazioni di equilibrio.
- 5. Si studi la stabilità di tali configurazioni di equilibrio.

Table of Laplace Transforms

Table of Laplace Transforms					
	$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}\$		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$\frac{F(s) = \mathfrak{L}\{f(t)\}}{1}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\overline{s-a}$
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\frac{\delta(t-c)}{\text{Dirac Delta Function}}$	\mathbf{e}^{-cs}
27.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$\mathbf{e}^{-cs} \mathfrak{L} \big\{ g \big(t + c \big) \big\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n = 1, 2, 3, \dots$	$\left(-1\right)^{n}F^{(n)}\left(s\right)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$			$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$ $s^2 F(s) - sf(0) - f'(0)$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
	$f^{(n)}(t)$	$s^n F(s) - s$	$\int_{0}^{\infty} f(x) dx$	$0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$(0)-f^{(n-1)}(0)$

AC Il denominatore è il prodotto di $(z+2)^2 + 1$, che porge due singolarità in -2 + I e -2 - I che sono poli semplici, ed una singolarità in 3, che è pure polo semplice.

Quindi si può scegliere il solito cammino ABCDA con un grande cerchio DA che porge un contributo chiaramente nullo, un piccolo cerchio BC che circonda il polo 3 e che porge il contributo di

$$\int_{BC} f(z) dz = -\pi i \frac{3*3+4}{(3^2+4*3+5)} = -\pi i \frac{13}{26} = -\frac{\pi}{2} i$$

ed un polo interno che porge il contributo di

$$\int_{ABCDA} f(z)dz = \frac{\pi}{2}(1-i).$$

Si ricava quindi che

$$\int_{AB+CD} f(z)dz = \frac{\pi}{2}(1-i) + \frac{\pi}{2}i = \frac{\pi}{2}$$

TL Si tratta di una rielaborazione dell'esercizio davvero proposto in classe, perché la trattazione formale si poteva fare e portava ad un risultato, ma avevamo ignorato un problema di convergenza, che in realtà è collegato alla ascissa di convergenza. Approciamo il problema.

Trasformando l'equazione si ha

$$s^{3}Y - s^{2} - 2s - 3 + Y = \frac{1}{s+1}$$

e si ricava che

$$Y = \frac{s^2 + 2s + 3}{s^3 + 1} + \frac{1}{(s+1)(s^3 + 1)} = \frac{s^3 + 3s^2 + 5s + 4}{(s+1)(s^3 + 1)}$$

A questo punto non dobbiamo antitrasformare, ma se lo facessimo otterremmo che

$$y(t) = \frac{e^{-t}t}{3} + e^{-t} + \frac{16e^{t/2}\sin\left(\frac{\sqrt{3}t}{2}\right)}{3\sqrt{3}}.$$

Una rapida ricognizione della funzione di partenza ci permette di capire che l'ascissa di convergenza della funzione $\sigma(y)=1/2$, infatti quel $e^{t/2}$ che moltiplica il seno impedisce la convergenza dell'integrale a meno che non si moltiplichi y per una esponenziale che decade almeno come $e^{-t/2}$.

A questo punto ci basta osservare che

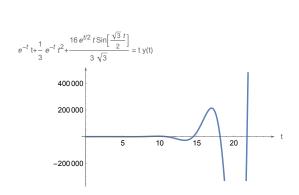
$$\mathcal{L}(ty) = -Y'(s) = (-1 - 5s + 11s^2 + 13s^3 + 5s^4 + s^5)/((1+s)^3(1-s+s^2)^2).$$

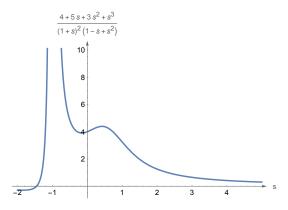
e che quindi

$$\mathcal{L}(ty)(1) = \frac{24}{9} = 3.$$

Se avessimo calcolato $\mathcal{L}(ty)(0)$ avremmo ottenuto -1, ma non sarebbe stato corretto dal momento che l'integrale (2) non converge.

Domanda (la cui risposta non conosco): conoscedo la trasformata Y(s), posso dedurre l'ascissa di convergenza della funzione y(t)? Io personalmente ad 1/2 vedo solo un innocente massimo locale. Il denominatore della funzione Y(s) ha poli in -1 ed in $1/2 \pm \sqrt{3}/2$, di sicuro questi sono i poli responsabili della ascissa di convergenza.





MR 1. Le posizioni dei punti sono

$$OC = (-R\vartheta, 0), \quad OG = (-R\vartheta, R), \quad OA = (-R\vartheta, R) + R(\cos\vartheta, \sin\vartheta), \quad OP = (r, r)$$

2. L'energia potenziale è

$$\begin{split} U &= U_g^P + U_k^{AP} = Mgr + \frac{1}{2}k|(-R\vartheta + R\cos\vartheta - r, R + R\sin\vartheta - r)|^2 = \\ &= Mgr + \frac{1}{2}k(R^2\vartheta^2 + R^2\cos^2\vartheta + r^2 - 2R^2\vartheta\cos\vartheta + 2Rr\vartheta - 2rR\cos\vartheta + R^2 + R^2\sin^2\vartheta + r^2 + 2R^2\sin\vartheta - 2rR - 2rR\sin\vartheta) \\ &\qquad Mgr + \frac{1}{2}k(R^2\vartheta^2 + 2r^2 - 2R^2\vartheta\cos\vartheta + 2Rr\vartheta - 2rR(\cos\vartheta + \sin\vartheta) + 2R^2\sin\vartheta - 2rR) \end{split}$$

3. Per determinare gli equilibri si deriva

$$\begin{cases} \partial_r U = Mg + \frac{1}{2}k(4r + 2R\vartheta - 2R(\cos\vartheta + \sin\vartheta) - 2R) = 0\\ \partial_\vartheta U = 2R^2\vartheta - 2R^2\cos\vartheta + 2R^2\vartheta\sin\vartheta + 2Rr - 2rR(-\sin\vartheta + \cos\vartheta) + 2R^2\cos\vartheta = 0 \end{cases}$$

non sono un sistema facile da risolvere, ma dobbiamo sostituire $\pi/2$ nelle equazioni, per cui si ottiene che

$$\begin{cases} \partial_r U = Mg + \frac{1}{2}k(4r + R\pi - 2R - 2R) = 0\\ \partial_{\theta} U = R^2\pi + R^2\pi + 2Rr + 2rR = 0 \end{cases}$$

da cui si ricava che

$$r = -\frac{R\pi}{2}, \qquad k = \frac{2Mg}{R(4+\pi)}$$

- 4. Si tratta di un disco spostato indietro nella ordinata $-R\pi/2$, con A in verticale sopra a G, e P in verticale appeso sotto a G. La molla è rigida quanto basta affinché P si trovi in equilibrio in quel punto.
- 5. Si potrebbe cercare di usare le equazioni dell'equilibrio, ed ottenere

$$\begin{cases} \partial_r U = Mg + \frac{1}{2}k(4r - 2R - 2R) = 0\\ \partial_{\vartheta} U = -2R^2 + 2Rr - 2rR + 2R^2 = 0 \end{cases}$$

La seconda è sempre vera, la prima dice che $r = \frac{2kR - Mg}{2k}$, che indica infinite posizioni per P, una per ogni scelta di k, che vanno da OP = (R, R) (quando k diventa infinita) a tutti gli OP sulla semiretta decrescente al decrescere del valore di k.

Pensando alle equazioni cardinali applicate al disco si ha che

$$\vec{\Phi}^C - mg\vec{j} + k(r-R)\vec{i} + k(r-R)\vec{i} = \vec{0}, \qquad CC \times \vec{\Phi}^C - CG \times (mg\vec{j}) + CA \times (k(r-R)\vec{i} + k(r-R)\vec{i}) = \vec{0}.$$

Entrambe queste equazioni sono soddisfatte con

$$\vec{\Phi}^C = (k(r-R), ma + k(r-R))$$

(la seconda equazione è sempre vera).

D'altro canto per quanto riguarda P si ha che

$$\varphi^{P}(1,-1) + (0,-Mg) + (k(r-R),k(r-R)) = (0,0) \quad \Rightarrow \varphi^{P}(1,-1) = (k(R-r),Mg+k(R-r))$$

Questa seconda equazione può essere soddisfatta solo se r < R, perché bisogna che k(r - R) + Mg = -k(r - R), ovvero 2k(R - r) = Mg e quindi R - r > 0. Ogni volta che questa condizione è soddisfatta, allora esiste un k che renda possibile quella configurazione di equilibrio.