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Existence of solutions of perturbed
O.D.E.’s in Banach spaces

GIOVANNI EMMANUELE

Abstract. We consider a perturbed Cauchy problem like the following

' = A(t,z) + B(t,x)

(PCP) { #(0) = 20

and we present two results showing that (PCP) has a solution. In some cases, our theorems
are more general than the previous ones obtained by other authors (see [4], [8], [9], [11],
[13], [17], [18]).
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1. Introduction.

Let I = [0,1] and X be a closed subset of a Banach space E. If xg € X and A, B
are two functions defined on I x X with values into E, we are interested in solving
the following perturbed Cauchy problem

/
(PCP) { ' = A(t,x) + B(t, x)
x(0) = zg

under several assumptions on A and B; essentially, A will satisfy dissipative condi-
tions and B compactness type ones, as it has been done by a lot of authors (see [4],
[11], [13], [17], [18]). We always assume that there is a subinterval J = [0,a] of T
and a sequence of equicontinuous and a.e. derivable functions z, : J — X such
that there is K > 0 such that ||z, (t') — zp(t")|| < K|t/ —t"| on J, n € N, and

lim |27, (1) — [A(t 2n (1) + Bt za ()] =0 ace. on J

and we look for conditions about A and B forcing a suitable subsequence of (zy,)
to converge (to a solution z of (PCP)).

In this paper, we use the following notions of semi-inner product and Kuratowski
measure of noncompactness (see [3]).
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Definition 1. Let z,y € E. We define Fx = {z* € E* : 2*(x) = ||z||? = ||=*?}
and (y, )4+ = max{z*(y) : 2* € Fz}, (y,2)— = min{z*(y) : «* € Fz}.
We have the following properties of semi-inner products:
(i) (z+y,2)x < (,2)x + (y,2)% and [(z,y)+| < [l [y,
(ii) if z : (a,b) — X is differentiable at ¢t and ¢(t) = ||z(t)]|, then ¢(t)D~ ¢(t) <
(@' (t), 2(t))~ -
Definition 2. Given a bounded subset X of ., we define the Kuratowski measure
of non compactness a(X) as follows:
a(X) = inf{e > 0 : there exist bounded subsets A; of X with X = Ji; 4; and
diam A; < €}
The measure « has the following properties:
(§) a(A+ B) < a(A) + aB),a(kA) = |k|a(A) VE R,
(ji) a(A) =0 < A is relatively compact,
(i) (4) < a(B) if AC B,a(AU B) = max{a(A4), «(B)},
(jv) a(co(A)) = a(A), where co(A) is the closed, convex hull of A,
(v) a(A) < diam A.

2. Existence results.

First of all, we consider the following groups of hypotheses used in [14] (see
also [3]) and in the recent paper [9] in order to get a sequence of approximate
solutions defined on J as described in the Introduction.

(H1) (see [14]). Let the function f = A+ B be continuous and bounded. Further,
if X, =XN{z:|x— x| <r}, r >0, assume that

(0) Jim, hld(x +hf(t,2),X,)=0 forall tel zeX.
—0

(H2) (see [9]). Let X be separable and convex. Let the function f = A+ B be
bounded, satisfying (0) and the following Carathéodory assumptions:

(C1) the functions t — f(t,x) are strongly measurable, for all x € X;

(C2) the functions x — f(t,x) are continuous, for almost all t € I.

(H3) (see [9]). Let X be convex. Let the function f = A + B be bounded
satisfying (0), (C1), (C2). Further assume that there are two functions L : I — E
and H : E — RT such that

L e L (I,E), H is bounded on bounded sets

(1) [f(t x) = f(t", )| <L x) — LE", 2) | H(z) (1 + [ f{, 2)]]),
', t"el, zeX.

Remark 1. Note that we do not assume X # ), as some authors did (see [18]).

Remark 2. (H3) requires the existence of L and H verifying (1); this is quite
a restrictive hypothesis, that, however, has been used successfully by a lot of authors
studying nonlinear evolution equations (see [2], [10], [12], [15]).

Now, we present our results about the existence of solutions for (PCP); in the
sequel, we shall consider the subset Z of X defined by Z = {zn(t) : t € I,n € N};
note that Z is bounded.
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Theorem 1. Assume that one hypothesis among (H1), (H2) and (H3) is verified.
Moreover, suppose that there exist two functions ¢4, pp € LY(I,R) such that
At 2)|| < walt),||B(t, x)|| < ¢p(t) for almost all t € I,z € Z and that the
following other facts are true:

(2) there is a function £, € L'(J,RT) such that
(A(t,z) — At y),x —y)— <L)z —yl* t ae in Ja,yc Z;
(3) there is a function {g € L'(J,RY) such that
a(B(t,Y)) <lp(t)a(Y) t ae in JY C Z,

(4) for each € > 0, there is a (closed) subset J. of J,m(J \ Jz) < € such that
By z is uniformly continuous.

Then (PCP) has a solution on J.
PrOOF: For each ¢ > 0, there is J. C J, closed, m(J \ Jz) < & such that the
following facts are true:

(5) Bj.xz is uniformly continuous,
(6) £47..¢p)J. are continuous,

(7) f]\]a ©va(s)ds + fJ\Je vp(s)ds <e.

Repeating the proof of the first part of Theorem 4 in [11], we can get a parti-
tion {Bg, . K, } of N in such a way that, for 7,5 € By, g, and with u(t) =
a({zn(t)}), we have

(8) |1B(t, xr(t)) — B(t, zs(t))|| < 5e +Lp(t)u(t) on Je.

Using (i) and (ii) of Definition 1 and observing that p,s(t) = ||z, (t) —xs(t)]] is a.e.
differentiable, because absolutely continuous, we get from (8) with ,s € By, . Kk,,

Prs (P} (t) < La(O)pis(t) + LB(E)prs(b)p(t) + Beprs(t)+
+ (Hhr(t)” + Hhs(t)”)prs(t)

for almost all ¢ € Jz, where h;., hs are suitable functions with [ ||k (s)[|4 || hs(s)| ds

—0asr,s— 0.
On the other hand, it is very easy to see that

Prs(t) < 2[pa(t) + B 0] + IR (O] + [Rs @)

Hence we have for a.a. ¢ € J, since pys(0) = 0 and p,(t9) = 0 whenever
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prs(to) = 0 and p.(to) exists, r,s € B, K.

t
pra(t) = / Po(s)ds = / Plo(s) ds + / Pho(s)ds <
0 [0,¢]NJe [0,¢]\Je

< [ Ao + (ol +5e)ds+ [ 2loals) + (o)) dst
[0,6)NJ. [0,61\Je

t
+ /J 20l ()] + o) ds < 8= + /0 (5 (s)u(s) ds-+
t
+/0 éA(S)prs(S) ds

for r, s sufficiently large.
It is very easy to see that (9) implies the following inequality, r, s € By, . k,.,

(10) plt) < [se+ [ Cp(s)n(s) is] oo | “a(s) is)

for r, s sufficiently large. By using (jjj) and (v) of Definition 2, we can easily prove
that (10) gives the following inequality

M*

t
(1) ult) < [8s+ | st as

M* being a positive number greater than exp(fot l4(s)ds) for all t € J. Hence,
by (11), u(t) = 0 on J, taking into account that e is arbitrary. The proof is
complete. O

Remark 3. The proof of Theorem 1 is very similar to that one of Theorem 4
of [11], that is, however, generalized by virtue of the hypothesis (4); indeed, in [11],
B is assumed to be uniformly continuous.

We shall see in a subsequent remark that our improvement is not only a techni-
cality.

The next result makes use of similar assumptions concerning A and B; this time
we shall assume the validity of (4) with respect to A; in this way, A and B are
allowed to satisfy more general assumptions than (2) and (3).

Theorem 2. Assume that one hypothesis among (H1), (H2) and (H3) is veri-
fied. Moreover, suppose there exist two functions pa,¢p € L'(I,R) such that
|A, z)|| < palt),||B(t,x)|| < ¢p(t) for almost allt € I,z € Z.
Let the following other facts be true:
(12) there exists a function w 4 : JxRT — R verifying Carathéodory hypotheses
like (C1) and (C2) such that

(A(t,z) — A(t,y),z —y)— <wast,|lz—y|Dllz -yl t ae in JzyeZ;
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(13) there exists a function wg : J x RT™ — R™T verifying Carathéodory hypothe-
ses like (C1) and (C2) such that for each subset Y of Z and almost allt € J
we have

Jim a(B([t = h.1],Y)) < wp(t, oY),

where h > 0 is such that t — h > 0;

(14) wy + wp is such that the only absolutely continuous function u : J — R™T
for which u(0) = 0,u/(t) < wa(t,u(t)) + wp(t,u(t)) is the identically null
function;

(15) for each € > 0 there is a closed subset Jz of J,m(J \ Jz) < €, such that
A|1.x z is uniformly continuous.

Then (PCP) has a solution on J.
PROOF: It was proved in the paper [11] that (12) implies that
(16) aY)—a{z+hAlt,z) 1z €Y}) <hwa(t,aY))

foreach h > 0,t € Jand Y C Z. Put u(t) = a({zn(t)}),t € J. It is well known
that p is an absolutely continuous real function defined on J. Consider the following
inequalities, with ¢t a.e. in J, h >0 and t — h > O:

p(t) =t = h) = a{zn(t)}) — alfan(t = h)}) =

= a({an(t)}) — a({zn(t) — RAE, 2 () )+

+ a(fan(t) — hA(L zn(1))}) — a({zn(t = h)}) <

< hwa(t al{zn()})) + al{lzn(t) —zn(t — k)] = hA( 20 (t))}) <

any < reataten@m) +ha ({n7 [ (4o - Ao} +

+ ha ({h—l/tihB(s,xn(s))dSD =

t
< a(talon) + o ({170 [ (AG2u(o) = Altan(e)] s} ) +
t—h
+ ha(B([t — h, t], {zp[t — W, t]})),
where we used Corollary 8 on page 48 of [5]. Dividing by h > 0, we get

pt) —pt —h) _
- <

t
< walt () + o ({h—l [ AGa(6)) = Al (0] d}) n
+ a(B([t — h,t], {zp[t — h,t]})).

(18)

Now, we need two remarks. Consider the function

A(t) =t — {A(t zn (1))}
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from J to £°°(E) (= the Banach space of all bounded sequences of FE endowed with
the sup norm). By virtue of [15] and the equicontinuity of (x), A verifies Lusin
Theorem (see [6]); hence A is strongly measurable; since [|A(t)[|ge(p) < ©a(t)
almost everywhere, A is also Bochner integrable. Hence we have ([17])

t
. -1 o
i /t A~ A ds =0

almost everywhere on J. This implies that the diameter of the set

{rt] " LA (1) — A(s,za()] ds € v}

—h

tends to zero as h — 07. Hence we can say that

t
lim « ({h_l/ [A(t, 20 (t)) — A(s, 2n(5))] ds}) =0.
h—0+ t—h

The other remark we shall use, is the following one: by a result due to Ambrosetti
([1]), we know that there is t* € [¢,t + h] such that a({zy[t,t + h]}) = a({zn(t)}).
Since a({zn(+)}) is continuous (in particular at t), for each o > 0 there is o > 0
such that |t — t| < dp implies |a({zn(t)})] < 0. On the other hand, u — wp(t,u)
is continuous; hence, given o > 0, it is possible to determine A* > 0 such that, for
h €]0, h*], we have

wp(t, a({zn(t7)})) < wp(t, a{za(1)})) + 0.

Taking h — 07 in (18), our hypotheses and the above couple of remarks show
that

(1) < wplt,al{zn(t)}) + 0+ walt, al{zn(t)}));
the arbitrarity of o gives that

(19) p (1) Swp(t p(t) +walt, w(t)
for t a.e. in J.
Since p(0) =0, (19) gives u(t) =0 on J. We are done. O

Remark 4. As observed by Martin ([13]), a typical situation in which (PCP) can
be applied, is the following integro-differential equation
ou(t, s)
ot

1
= st + [ gtsman)dr (1s) € 0.1,
0
where one can put, for instance, £ = C([0,1]),X C E,
At z)(s) = f(t,s,2(s)) (t,5,2) € [0,1]* x X,

1
B(t,x)(s)_/o oty s m (P dr (ts,2) € [0,1]2 x X.
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Observe, in particular, that if

t — f(t,s,u) is measurable, for all (s,u) € [0,1] x R,

(s,u) — f(t,s,u) is continuous, for almost all ¢ € [0,1],

then A verifies (C1) and (C2). Since Z is bounded, there is M > 0 such that
|zn(t)(s)] < M for all n € N, t,s € [0,1]. Hence if one considers the restriction
of f to [0,1]% x [-M, M], by using again the result from [16], given € > 0, there is
a (closed) subset Iz of I, m(I\ Iz) < ¢, for which fj7_[0,1]x[—a,p IS (uniformly)
continuous. It is very easy to show that this implies that A‘ I.xz is uniformly
continuous. In the same way, we can show that (4) of Theorem 1 is true, even if
B is not uniformly continuous on the whole of I x X. Hence Theorem 1 actually
extends Theorem 4 of [11].

This example also shows that assuming (2), (3), (4) (or (12), (13), (15), in the
present case), is some time useful; in the present setting A and B are just continuous
with respect to x € X, but however verify (4) and (15) when we restrict our interest
to I x Z; note that (4) and (15) imply that for almost all ¢ € J, the functions
x — A(t,z) and x — B(t, z) are uniformly continuous; but, thanks to (4) and (15),
we are not requiring this on whole of X, just on Z.

We observe that both Theorem 1 and Theorem 2 improve (at least partially) the
previous results due to Deimling ([4]), Emmanuele ([8], [9]), Martin ([13]), Hu Shou
Chuan ([11]), Schechter ([17]), Volkmann ([18]).
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