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Existence of solutions of perturbed

O.D.E.’s in Banach spaces

Giovanni Emmanuele

Abstract. We consider a perturbed Cauchy problem like the following

(PCP)

(
x′ = A(t, x) + B(t, x)

x(0) = x0

and we present two results showing that (PCP) has a solution. In some cases, our theorems
are more general than the previous ones obtained by other authors (see [4], [8], [9], [11],
[13], [17], [18]).
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1. Introduction.

Let I = [0, 1] and X be a closed subset of a Banach space E. If x0 ∈ X and A, B

are two functions defined on I ×X with values into E, we are interested in solving
the following perturbed Cauchy problem

(PCP)

{

x′ = A(t, x) +B(t, x)

x(0) = x0

under several assumptions on A and B; essentially, A will satisfy dissipative condi-
tions and B compactness type ones, as it has been done by a lot of authors (see [4],
[11], [13], [17], [18]). We always assume that there is a subinterval J = [0, a] of I

and a sequence of equicontinuous and a.e. derivable functions xn : J → X such
that there is K > 0 such that ‖xn(t

′)− xn(t
′′)‖ ≤ K|t′ − t′′| on J , n ∈ N , and

lim
n

‖x′n(t)− [A(t, xn(t)) +B(t, xn(t))]‖ = 0 a.e. on J

and we look for conditions about A and B forcing a suitable subsequence of (xn)
to converge (to a solution x of (PCP)).
In this paper, we use the following notions of semi-inner product and Kuratowski

measure of noncompactness (see [3]).

Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.P.I.
of Italy (60%).



464 G.Emmanuele

Definition 1. Let x, y ∈ E. We define Fx = {x∗ ∈ E∗ : x∗(x) = ‖x‖2 = ‖x∗‖2}
and (y, x)+ = max{x∗(y) : x∗ ∈ Fx}, (y, x)− = min{x∗(y) : x∗ ∈ Fx}.

We have the following properties of semi-inner products:

(i) (x+ y, z)± ≤ (x, z)± + (y, z)± and |(x, y)±| ≤ ‖x‖ ‖y‖,
(ii) if x : (a, b)→ X is differentiable at t and φ(t) = ‖x(t)‖, then φ(t)D−φ(t) ≤
(x′(t), x(t))− .

Definition 2. Given a bounded subset X of E, we define the Kuratowski measure
of non compactness α(X) as follows:
α(X) = inf{ε > 0 : there exist bounded subsets Ai of X with X =

⋃n
i=1Ai and

diamAi < ε}.

The measure α has the following properties:

(j) α(A +B) ≤ α(A) + α(B), α(kA) = |k|α(A) ∀ k ∈ R,
(jj) α(A) = 0⇔ A is relatively compact,
(jjj) α(A) ≤ α(B) if A ⊆ B, α(A ∪ B) = max{α(A), α(B)},
(jv) α(co(A)) = α(A), where co(A) is the closed, convex hull of A,
(v) α(A) ≤ diamA.

2. Existence results.

First of all, we consider the following groups of hypotheses used in [14] (see
also [3]) and in the recent paper [9] in order to get a sequence of approximate
solutions defined on J as described in the Introduction.

(H1) (see [14]). Let the function f = A+B be continuous and bounded. Further,
if Xr = X ∩ {x : ‖x − x0‖ ≤ r}, r > 0, assume that

(0) lim
h→0+

h−1d(x + hf(t, x), Xr) = 0 for all t ∈ I, x ∈ X.

(H2) (see [9]). Let X be separable and convex. Let the function f = A + B be
bounded, satisfying (0) and the following Carathéodory assumptions:
(C1) the functions t → f(t, x) are strongly measurable, for all x ∈ X ;
(C2) the functions x → f(t, x) are continuous, for almost all t ∈ I.

(H3) (see [9]). Let X be convex. Let the function f = A + B be bounded
satisfying (0), (C1), (C2). Further assume that there are two functions L : I → E

and H : E → R
+ such that

(1)











L ∈ L1(I, E), H is bounded on bounded sets

‖f(t′, x)− f(t′′, x)‖ ≤ ‖L(t′, x) − L(t′′, x)‖H(x)(1 + ‖f(t′, x)‖),

t′, t′′ ∈ I, x ∈ X.

Remark 1. Note that we do not assume X̊ 6= ∅, as some authors did (see [18]).

Remark 2. (H3) requires the existence of L and H verifying (1); this is quite
a restrictive hypothesis, that, however, has been used successfully by a lot of authors
studying nonlinear evolution equations (see [2], [10], [12], [15]).
Now, we present our results about the existence of solutions for (PCP); in the

sequel, we shall consider the subset Z of X defined by Z = {xn(t) : t ∈ I, n ∈ N};
note that Z is bounded.
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Theorem 1. Assume that one hypothesis among (H1), (H2) and (H3) is verified.
Moreover, suppose that there exist two functions ϕA, ϕB ∈ L1(I, R) such that
‖A(t, x)‖ ≤ ϕA(t), ‖B(t, x)‖ ≤ ϕB(t) for almost all t ∈ I, x ∈ Z and that the
following other facts are true:

(2) there is a function ℓA ∈ L1(J, R+) such that

(A(t, x) − A(t, y), x − y)− ≤ ℓA(t)‖x − y‖2 t a.e. in J, x, y ∈ Z;

(3) there is a function ℓB ∈ L1(J, R+) such that

α(B(t, Y )) ≤ ℓB(t)α(Y ) t a.e. in J, Y ⊆ Z;

(4) for each ε > 0, there is a (closed) subset Jε of J, m(J \ Jε) < ε such that
BJε×Z is uniformly continuous.

Then (PCP) has a solution on J .

Proof: For each ε > 0, there is Jε ⊂ J , closed, m(J \ Jε) < ε such that the
following facts are true:

(5) BJε×Z is uniformly continuous,
(6) ℓA|Jε

, ℓB|Jε
are continuous,

(7)
∫

J\Jε ϕA(s) ds+
∫

J\Jε ϕB(s) ds < ε.

Repeating the proof of the first part of Theorem 4 in [11], we can get a parti-
tion {BK1,...,Km

} of N in such a way that, for r, s ∈ BK1,...,Km
and with µ(t) =

α({xn(t)}), we have

(8) ‖B(t, xr(t))− B(t, xs(t))‖ ≤ 5ε+ ℓB(t)µ(t) on Jε .

Using (i) and (ii) of Definition 1 and observing that prs(t) = ‖xr(t)−xs(t)‖ is a.e.
differentiable, because absolutely continuous, we get from (8) with r, s ∈ BK1,...,Km

prs(t)p
′
rs(t) ≤ ℓA(t)p

2
rs(t) + ℓB(t)prs(t)µ(t) + 5εprs(t)+

+ (‖hr(t)‖ + ‖hs(t)‖)prs(t)

for almost all t ∈ Jε, where hr, hs are suitable functions with
∫

J ‖hr(s)‖+‖hs(s)‖ ds

→ 0 as r, s → ∞.
On the other hand, it is very easy to see that

p′rs(t) ≤ 2[ϕA(t) + ϕB(t)] + ‖hr(t)‖ + ‖hs(t)‖.

Hence we have for a.a. t ∈ J , since prs(0) = 0 and p′rs(t0) = 0 whenever
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prs(t0) = 0 and p′rs(t0) exists, r, s ∈ BK1,...,Km
,

(9)

prs(t) =

∫ t

0
p′rs(s) ds =

∫

[0,t]∩Jε

p′rs(s) ds+

∫

[0,t]\Jε

p′rs(s) ds ≤

≤

∫

[0,t]∩Jε

[ℓA(s)prs(s) + ℓB(s)µ(s) + 5ε] ds+

∫

[0,t]\Jε

2[ϕA(s) + ϕB(s)] ds+

+

∫

J
2[‖hr(s)‖+ ‖hs(s)‖] ds ≤ 8ε+

∫ t

0
ℓB(s)µ(s) ds+

+

∫ t

0
ℓA(s)prs(s) ds

for r, s sufficiently large.
It is very easy to see that (9) implies the following inequality, r, s ∈ BK1,...,Km

,

(10) prs(t) ≤

[

8ε+

∫ t

0
ℓB(s)µ(s) ds

]

exp

(
∫ t

0
ℓA(s) ds

)

for r, s sufficiently large. By using (jjj) and (v) of Definition 2, we can easily prove
that (10) gives the following inequality

(11) µ(t) ≤

[

8ε+

∫ t

0
ℓB(s)µ(s) ds

]

M∗,

M∗ being a positive number greater than exp(
∫ t
0 ℓA(s) ds) for all t ∈ J . Hence,

by (11), µ(t) ≡ 0 on J , taking into account that ε is arbitrary. The proof is
complete. �

Remark 3. The proof of Theorem 1 is very similar to that one of Theorem 4
of [11], that is, however, generalized by virtue of the hypothesis (4); indeed, in [11],
B is assumed to be uniformly continuous.

We shall see in a subsequent remark that our improvement is not only a techni-
cality.
The next result makes use of similar assumptions concerning A and B; this time

we shall assume the validity of (4) with respect to A; in this way, A and B are
allowed to satisfy more general assumptions than (2) and (3).

Theorem 2. Assume that one hypothesis among (H1), (H2) and (H3) is veri-
fied. Moreover, suppose there exist two functions ϕA, ϕB ∈ L1(I, R) such that
‖A(t, x)‖ ≤ ϕA(t), ‖B(t, x)‖ ≤ ϕB(t) for almost all t ∈ I, x ∈ Z.
Let the following other facts be true:

(12) there exists a function ωA : J×R
+ → R

+ verifying Carathéodory hypotheses
like (C1) and (C2) such that

(A(t, x) − A(t, y), x − y)− ≤ ωA(t, ‖x − y‖)‖x − y‖ t a.e. in J, x, y ∈ Z;
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(13) there exists a function ωB : J ×R
+ → R

+ verifying Carathéodory hypothe-
ses like (C1) and (C2) such that for each subset Y of Z and almost all t ∈ J

we have
lim

h→0+
α(B([t − h, t], Y )) ≤ ωB(t, α(Y )),

where h > 0 is such that t − h > 0;
(14) ωA + ωB is such that the only absolutely continuous function u : J → R

+

for which u(0) = 0, u′(t) ≤ ωA(t, u(t)) + ωB(t, u(t)) is the identically null
function;

(15) for each ε > 0 there is a closed subset Jε of J, m(J \ Jε) < ε, such that
A|Iε×Z is uniformly continuous.

Then (PCP) has a solution on J .

Proof: It was proved in the paper [11] that (12) implies that

(16) α(Y )− α({x+ hA(t, x) : x ∈ Y }) ≤ hωA(t, α(Y ))

for each h > 0, t ∈ J and Y ⊂ Z. Put µ(t) = α({xn(t)}), t ∈ J . It is well known
that µ is an absolutely continuous real function defined on J . Consider the following
inequalities, with t a.e. in J , h > 0 and t − h > 0:

(17)

µ(t)− µ(t − h) = α({xn(t)})− α({xn(t − h)}) =

= α({xn(t)})− α({xn(t)− hA(t, xn(t))})+

+ α({xn(t)− hA(t, xn(t))}) − α({xn(t − h)}) ≤

≤ hωA(t, α({xn(t)})) + α({[xn(t)− xn(t − h)]− hA(t, xn(t))}) ≤

≤ hωA(t, α({xn(t)})) + hα

({

h−1
∫ t

t−h
[A(s, xn(s)) − A(t, xn(t))] ds

})

+

+ hα

({

h−1
∫ t

t−h

B(s, xn(s)) ds

})

≤

≤ hωA(t, α(xn(t))) + hα

({

h−1
∫ t

t−h

[A(s, xn(s)) − A(t, xn(t))] ds

})

+

+ hα(B([t − h, t], {xn[t − h, t]})),

where we used Corollary 8 on page 48 of [5]. Dividing by h > 0, we get

(18)
µ(t)− µ(t − h)

h
≤

≤ ωA(t, µ(t)) + α

({

h−1
∫ t

t−h

[A(s, xn(s))− A(t, xn(t))] ds

})

+

+ α(B([t − h, t], {xn[t − h, t]})).

Now, we need two remarks. Consider the function

A(t) = t → {A(t, xn(t))}
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from J to ℓ∞(E) (= the Banach space of all bounded sequences of E endowed with
the sup norm). By virtue of [15] and the equicontinuity of (xn), A verifies Lusin
Theorem (see [6]); hence A is strongly measurable; since ‖A(t)‖ℓ∞(E) ≤ ϕA(t)

almost everywhere, A is also Bochner integrable. Hence we have ([17])

lim
h→0+

h−1
∫ t

t−h

‖A(t)−A(s)‖ ds = 0

almost everywhere on J . This implies that the diameter of the set

{

h−1
∫ t

t−h

[A(t, xn(t))− A(s, xn(s))] ds : n ∈ N ]

}

tends to zero as h → 0+. Hence we can say that

lim
h→0+

α

({

h−1
∫ t

t−h
[A(t, xn(t))− A(s, xn(s))] ds

})

= 0.

The other remark we shall use, is the following one: by a result due to Ambrosetti
([1]), we know that there is t∗ ∈ [t, t+ h] such that α({xn[t, t+ h]}) = α({xn(t

∗)}).
Since α({xn(�)}) is continuous (in particular at t), for each σ > 0 there is δ0 > 0
such that |t̃ − t| < δ0 implies |α({xn(t)})| < σ. On the other hand, u → ωB(t, u)
is continuous; hence, given σ > 0, it is possible to determine h∗ > 0 such that, for
h ∈ ]0, h∗], we have

ωB(t, α({xn(t
∗)})) ≤ ωB(t, α({xn(t)})) + σ.

Taking h → 0+ in (18), our hypotheses and the above couple of remarks show
that

µ′(t) ≤ ωB(t, α({xn(t)})) + σ + ωA(t, α({xn(t)}));

the arbitrarity of σ gives that

(19) µ′(t) ≤ ωB(t, µ(t)) + ωA(t, µ(t))

for t a.e. in J .
Since µ(0) = 0, (19) gives µ(t) = 0 on J . We are done. �

Remark 4. As observed by Martin ([13]), a typical situation in which (PCP) can
be applied, is the following integro-differential equation

∂u(t, s)

∂t
= f(t, s, u(t, s)) +

∫ 1

0
g(t, s, τ, u(t, τ)) dτ (t, s) ∈ [0, 1]2,

where one can put, for instance, E = C([0, 1]), X ⊂ E,

A(t, x)(s) = f(t, s, x(s)) (t, s, x) ∈ [0, 1]2 × X,

B(t, x)(s) =

∫ 1

0
g(t, s, τ, x(τ)) dτ (t, s, x) ∈ [0, 1]2 × X.
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Observe, in particular, that if

t → f(t, s, u) is measurable, for all (s, u) ∈ [0, 1]× R,

(s, u)→ f(t, s, u) is continuous, for almost all t ∈ [0, 1],

then A verifies (C1) and (C2). Since Z is bounded, there is M > 0 such that
|xn(t)(s)| ≤ M for all n ∈ N, t, s ∈ [0, 1]. Hence if one considers the restriction
of f to [0, 1]2 × [−M, M ], by using again the result from [16], given ε > 0, there is
a (closed) subset Iε of I, m(I \ Iε) < ε, for which f|Iε×[0,1]×[−M,M ] is (uniformly)

continuous. It is very easy to show that this implies that A|Iε×Z is uniformly

continuous. In the same way, we can show that (4) of Theorem 1 is true, even if
B is not uniformly continuous on the whole of I × X . Hence Theorem 1 actually
extends Theorem 4 of [11].
This example also shows that assuming (2), (3), (4) (or (12), (13), (15), in the

present case), is some time useful; in the present setting A and B are just continuous
with respect to x ∈ X , but however verify (4) and (15) when we restrict our interest
to I × Z; note that (4) and (15) imply that for almost all t ∈ J , the functions
x → A(t, x) and x → B(t, x) are uniformly continuous; but, thanks to (4) and (15),
we are not requiring this on whole of X , just on Z.
We observe that both Theorem 1 and Theorem 2 improve (at least partially) the

previous results due to Deimling ([4]), Emmanuele ([8], [9]), Martin ([13]), Hu Shou
Chuan ([11]), Schechter ([17]), Volkmann ([18]).
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