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REMARKS ON THE EXISTENCE OF COPIES OF
co AND [, IN THE SPACE cabv(A, E)

GIOVANNI EMMANUELE

We present some results essentially showing that cabv(A, E) lives inside
cabv(h, E) if and only if [« lives inside cabv(A, E). Some applications of
this result to other questions (existence of complemented copies of co and
lifting of the Gelfand-Phillips property ) are given.

Let S be an arbitrary set,X be a o -algebra of subsets of S and A a finite or
infinite measure, such that the space (S, X, A) is atomless. Let also E denote a
Banach space. Kwapien ([14]) and Mendoza ([15]) have, respectively, proved
that ¢g and I, embed into the Bochner function space L;(A, E) if and only if

~-they embed into E (for Kothe function spaces similar results were got in [3] and
[11D).

A natural question rising from the quoted results is the following: are si-
milar results true for the space cabv(X, E), i.e. the Banach space of countably
additive h-continuous measures [ with bounded variation ||| taking their va-
lues into E?

In this short note we shall study the question considered above of the exis-
tence of copies of ¢y and lo, in the larger space cabv(A, E). Some partial results
to the question put are already known; for instance, a result due to E. Saab and
P. Saab [17] can be used to show the following fact
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Proposition 1. If E = Y* is a dual Banach space, thus cq (resp. ls) embeds
into cabv(X, E) if and only if it does into E.

Proof. It is clear that just the “only if”’ part needs a proof. The Stone-Kakutani
Theorem (see [2]) allows a reduction of our study to the case of (S, X,A) a
regular Borel measure space on a compact space. It is well known that the dual
space of the space C(S,Y) of continuous Y-valued functions is the space of
all regular Borel measures with bounded variation and values inside E; hence
cabv(A, E) is a closed subspace of such a space (actually complemented thanks
to the Lebesgue decomposition Theorem, [6]). Hence ¢, (resp. loo) lives inside
(C(S, Y))*. Itis now enough to apply the main result from [17] to get our thesis.

So that we need to consider just the case of a not dual space E. In such a
case, an example due to Talagrand ([21]) shows that cabv (i, E) is so big that
co can embed into it even if it does not into E (in passing we remark that Tala-
grand constructed a copy of ¢y inside the larger space of all countably additive
vector measures with bounded variation, but, since the unit vector basis of ¢ is a
weakly compact set, there exists a control measure A for it, [6]; hence that copy
actually lives in some cabv (), E)). Precisely in that case we shall prove (The-
orem 2) that even /o, lives inside cabv (), E). The proof of this result will also
allow to perform our construction of a copy of Iy, in cabv (X, E) even when cg
embeds into E (Theorem 3), so that we have that ¢y embeds into cabv(r, E) if
and only if I, embeds into cabv(X, E); we can thus affirm that no analogue of
the Kwapien and Mendoza theorems holds true in general.

We also recall that in [10] it is shown that if ¢y embeds into E, thus it
embeds complementably into L;(A, E). What about the existence of comple-
mented copies of ¢y inside cabv(r, E)? The recalled results from [14] and [ 10]
imply that ¢ embeds complementably into L; (i, E) if and only if it embeds
into E, but because of the Talagrand example one could think that ¢, embeds
also complementably into cabv (A, E), without necessarily embedding into E.
An application of Theorem 2 will show that this is not the case; indeed, we get
that the presence of ¢y inside E is a necessary condition for the existence of com-
plemented copies of ¢y in cabv(X, E); such a result cannot be reversed in gen-
eral, as the proof of Proposition 1 proves. These facts show that the situation,
in the complementability case, is different from the one in the case of the mere
embeddability and not completely clear up to now, because we do not know the
complete answer to the following question: does cq embeds complementably into
cabv(A, E) if and only if it embeds complementably into E ?

From our results it will also follow that the so called Gelfand-Phillips pro-
perty (see below for the definition and [9], [12], [18] for examples, properties
and results on it) does not necessarily lift from E to cabv(X, E), contrarily to
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the case of the space Li(u, E) (see [4]).

Results.

We start by giving one of the main theorems of the note about the construc-
tion of copies of / inside cabv(A, E) starting from the existence of copies of

co inside cabv(), E).

Theorem 2. Let E be a Banach space not containing copies of ¢y such that there
is an isomorphic copy X of cq inside cabv(A, E). Then there are a subspace H
of cabv (X, E) isomorphic to ¢y and a subspace K of cabv(A, E) isomorphic to
loo such that X is a subspace of H and H is a subspace of K.

Proof. Let (u,) be a basis for X equivalent to the unit vector basis of cg.
For h = (h,) € l and A € ¥ we consider the series ) _ h,u,(A) that is
unconditionally converging ; indeed, the series ) u,(A) must be weakly un-
conditionally converging because image of the series ) 4, under the linear and
bounded mapping u — w(A); since cp does not embed into E, we get that
> wun(A) is unconditionally converging, a fact that it is well known to give our
claim. We may define uy : £ — E by up(A) = > h,u,(A) forall A € .
Clearly wy is finitely additive. Furthermore, if o0 = (Ay,...A)) is a finite

partition of § we get
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for all ¢ € N. Since o is finite and > h,u,(A) is unconditionally converging
for all A € T, for each € > 0 one can find a g. , € N such that
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so that for all € > 0 we have
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where the constant M exists and depends only upon (w,) since Y u, is weakly
unconditionally converging in cabv(A, E). Hence u; has bounded variation,
for all A = (h,) € lo,. We have so defined a linear and bounded map ¥ : loo —
abv(Z, E) (by abv(Z, E) we shall denote the Banach space of finitely additive
measures with bounded variation). Now we recall that there is a projection P
from abv(Z, E) onto cabv(X, E) (use aresult from [22] and again the Lebesgue
Decomposition Theorem, [6]), so that we have a linear and bounded map Poyr :
loo = cabv(X, E) such that P oy (e,) = u, where (e,) denotes the unit vector
basis of ¢g. To get H and K as required we have now to apply a famous result
due to Rosenthal ([16]). We are done.

So in the case of E the Talagrand space, not only cg, but also /o, lives
inside cabv (i, E); in passing we observe that if Z is a reflexive subspace of the
Talagrand space X ([21]), thus cabv (A, X/Z) contains a copy of ¢g even if X /Z
does not; that such a X/Z does not contain copies of cy has been proved in the
paper [13]. That cabv(X, X/Z) has a copy of ¢y may be proved by contradiction
as it follows: suppose that cabv (i, X/Z) does not have copy of ¢, inside; since
cabv(A, X/Z) is isometrically isomorphic to cabv(h, X) J/cabv (X, Z) as proved
in [13] and since ¢y does not live inside cabv(A, Z) since Z is reflexive, we
obtain that ¢ is not allowed to embed into cabv(i, X) (see [1]), a contradiction
that finishes our proof.

Remark 1. It is clear from the proof of Theorem 2 that in order to define wy,
for all & = (h,) €l,, we need only to know that > hnu,(A) is unconditionally
converging forall A€ X and all & = (h,,) €.

This remark allows us to present the following result for which we do not
give a proof, since it can be performed with the same techniques used in the proof
of Theorem 2.2 from [5]

Theorem 3. Let ¢y embed into E. Then there is a subspace K of cabv(A, E)
isomorphic to l.

Theorem 2 and Theorem 3 actually show that cabv(A, E) is so “big” that
the following equivalence always holds true .

Corollary 4. For any Banach space E the following facts are equivalent:

1) co embeds into cabv (X, E)
2) lo embeds into cabv(X, E).

The above results have some other interestin g consequences; the first one is
about the question of the existence of complemented copies of ¢g in cabv(A, E)
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Corollary 5. Let ¢y embed complementably into cabv(X, E). Then co embeds
into E.

Proof. Suppose that ¢y does not live into E or, at least, that > hapin(A) is
unconditionally converging for all h = (h,) € I and all A € I, according to
Remark 1. Let us consider H and K as in Theorem 2. Since H is complemented
in X (X denotes the complemented copy of cg living in cabv(A, E)), H is
complemented also in cabv(X, E); this gives that H is complemented in K,
which is well known to be false.

Proposition 1 and Corollary 5 suggest the following question: does ¢y em-
bed complementably into a (not dual Banach space E) if and only if it does the
same into cabv(A, E)?

Sometimes the answer to the above question is positive; indeed, it enough to
consider a Banach space with the so-called (BD) property (see [8]; we recall that
among them one can find Banach spaces with the Gelfand-Phillips property and
Banach spaces not containing copies of /1), because it is known that ¢y embeds
complementably into such a space as soon as it lives inside it ([18]), so the claim
follows from Corollary 5; but we do not have a complete answer to the above
question at the moment.

The next result is about the Gelfand-Phillips property in cabv(A, E) and it
also makes use of the previous theorems; first we recall that a Banach space E
is said to possess the Gelfand-Phillips property (see [7]) if any limited subset of
X (i.e a set M such that for any weak*-null sequence (x,) in the dual space one
has lign sup |x*(x)| = 0) in E is relatively compact. Many examples of spaces

M

possessing the Gelfand-Phillips property are known in the literature (we refer to
[7], [12] for lists of such spaces).

Corollary 6. The Gelfand-Phillips property does not necessarily lift from the
Banach space E to cabv(A, E).

Proof. Thanks to Corollary 4 in order to get our claim it is enough to find a
Banach space E possessing the Gelfand-Phillips property such that ¢o embeds
into cabv(X, E), because in such a case even [, embeds into cabv(A, E). Since
it is well known that the Gelfand-Phillips property is inherited by subspaces and
I, does not possess it, we shall be done. So any Banach space with the Gelfand-
Phillips property having a copy of ¢y inside, as well as the Talagrand space
([211), works well to reach our target.

However, sometimes the Gelfand-Phillips property lifts from E to cabv
(A, E); of course we necessarily have that ¢y does not embed into cabv(A, E)
and hence into E. So if, for instance, E has the Gelfand-Phillips property and
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the Radon-Nikodym property, then the Gelfand-Phillips property lifts from E to
cabv(A, E) (use results in [4]). Furthermore, let us suppose that E is a Banach
lattice not containing copies of co; thus cabv(i, E) is a Banach lattice ([ 19]).
Soif E is a dual Banach lattice or if E** is weakly sequentially complete, then
cabv (A, E) does not contain copies of ¢y ([20]) and so it has the Gelfand-Phillips
property , as any Banach lattice not containing copies of ¢y does. Using similar
reasonings,the quoted result from the paper [19], Proposition 1, Corollary 4 and
Corollary 5 we can also state the following

Proposition 7. If E is a Banach lattice , then the following facts are equzvalent

1) cg does not embed into cabv(X, E)
2) lx does not embed into cabv(), E)
3) cabv(A, E) has the Gelfand-Phillips property .
If E is a dual Banach lattice , then (1), (2) and (3) above are equivalent to

4) c¢g does not embed into E

5) loo does not embed into E

6) co does not embed complementably into cabv (X, E)
7) E has the Gelfand-Phillips property .
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