Dominated operators on C[0,1] and the (CRP)(*)

G. EMMANUELE

Department of Mathematics, University of Catania, 95125 Catania, Italy

Received 22/JAN/90

ABSTRACT

We show that a B-space E has the (CRP) if and only if any dominated operator T from C[0,1] into E is compact. Hence we apply this result to prove that c_0 embeds isomorphically into the B-space of all compact operators from C[0,1] into an arbitrary B-space E without the (CRP).

AMS Subject Classification: 47B05, 47B10, 46B25, 46A32

Let E be a B-space. We say that E has the Compact Range Property (in symbols (CRP)) if any E-valued countably additive measure with finite variation has relatively compact range [9]. In the paper [7], we showed that "E has the (CRP) if and only if, for any compact Hausdorff space K, any dominated operator $T: C(K) \to E$ is compact" (see [4] for the definition of dominated operator). The purpose of this note is to show that, in order to prove that a B-space has the (CRP), it is enough to check the compactness of dominated operators on C[0,1].

Once we have this result, we are able to construct a copy of c_0 inside of $\mathcal{K}(C[0,1],E)$, for any B-space E failing the (CRP) (here $\mathcal{K}(C[0,1],E)$ denotes the B-space of all compact operators from C[0,1] into E).

In the book [10] Talagrand stated, without any proof, the equivalence of the following two facts:

(i) E has the (CRP),

^(*) Work performed under the auspices of G. N. A. F. A. of C. N. R. and partially supported by M. P. I. of Italy.

(ii) any operator from $L^1[0,1]$ into E is a Dunford-Pettis operator.

We present a proof of the implication (ii) \Longrightarrow (i), because we need it in the proof of our main result. Let S be an arbitrary set, Σ a σ -field of subsets of S and $\nu:\Sigma\to E$ a countably additive measure with finite variation $|\nu|$. Consider a sequence $(A_n)\subset\Sigma$ and the characteristic functions χ_{A_n} . It is well known that there exist $S_1\in\Sigma$, a sub- σ -field Σ_1 of Σ and μ_1 (= $|\nu|_{|\Sigma_1}$) in such a way that $(\chi_{A_n})\subset L^1(S_1,\Sigma_1,\mu_1)$, that in turn is a separable B-space. Hence $L^1(S_1,\Sigma_1,\mu_1)$ is isometrically isomorphic to one of the following three spaces:

- (a) $\ell^1(\Gamma)$, for some set Γ with $\operatorname{card}(\Gamma) \leq \operatorname{card}(\mathbb{N})$,
- (b) $L^1[0,1]$,
- (c) $(\ell^1(\Gamma) \oplus L^1[0,1])_1$, for some set Γ with $\operatorname{card}(\Gamma) \leq \operatorname{card}(\mathbb{N})$. Now, we define an operator $T: L^1(S_1, \Sigma_1, \mu_1) \to E$ by

$$T(f) = \int_{s_1} f(s_1) d\nu, \qquad f \in L^1(S_1, \Sigma_1, \mu_1).$$

It is clear that $T(\chi_{A_n}) = \nu(A_n)$, for all $n \in N$. Since (χ_{A_n}) is a relatively weakly compact subset of $L^1(S_1, \Sigma_1, \mu_1)$, if (a) is true we get that $((\chi_{A_n}))$ and hence $(\nu(A_n))$ is relatively compact, because $\ell^1(\Gamma)$ enjoys the Schur property. If (b) is true, our assumption (ii) enters into play to prove that, still, $(\nu(A_n))$ is relatively compact. If we show that the same is true under (c), we are done, thanks to the arbitrariness of (A_n) . Let j be the existing isometric isomorphism from $L^1(S_1, \Sigma_1, \mu_1)$ onto $(\ell^1(\Gamma) \oplus L^1[0,1])_1$. Of course, $(j^{-1}(\chi_{A_n}))$ is relatively weakly compact in $(\ell^1(\Gamma) \oplus L^1[0,1])_1$. If

$$P_1: \left(\ell^1(\Gamma) \oplus L^1[0,1]\right)_1 \longrightarrow \ell^1(\Gamma) \qquad \text{and} \qquad P_2: \left(\ell^1(\Gamma) \oplus L^1[0,1]\right)_1 \to L^1[0,1]$$

are the existing projections we have

$$T(\chi_{A_n}) = (T \circ j) [P_1(j^{-1}(\chi_{A_n})) + P_2(j^{-1}(\chi_{A_n}))].$$

By virtue of the Schur property, $(P_1(j^{-1}(\chi_{A_n})))$ is relatively compact; hence $(T \circ j)[P_1(j^{-1}(\chi_{A_n}))]$ is. On the other hand, $(P_2(j^{-1}(\chi_{A_n})))$ is relatively weakly compact in $L^1[0,1]$, hence $(T \circ j)[P_2(j^{-1}(\chi_{A_n}))]$ is relatively compact in E, because of our hypothesis (ii). The proof is complete.

Now, we are ready to show the main result of the paper. We refer to [4] for the definition of dominated operators: an operator $T:C[0,1]\to E$ is a dominated operator if there exists an E-valued regular Borel measure μ on K with finite variation such that

$$||T(f)||_{E} \le \int_{K} |f(s)| d\mu = ||f||_{L^{1}(K, Bo(K), \mu)}, \qquad f \in C[0, 1].$$

Theorem 1

E has the (CRP) if and only if any dominated operator from C[0,1] into E is compact.

Proof. If E has the (CRP), the result follows from [7, Theorem 1]. Conversely, let us assume the compactness of any dominated operator from C[0,1] into E. We show that any operator $T: L^1[0,1] \to E$ is Dunford-Pettis. To do this, it is enough to prove that $T \circ I: L^{\infty}[0,1] \to E$ is compact (here I denotes the embedding of $L^{\infty}[0,1]$ into $L^1[0,1]$). If we consider

$$T_1 = T \circ I_{|C[0,1]} : C[0,1] \longrightarrow E,$$

it is very easy to see that T_1 is dominated and hence compact by our hypothesis. Now, let f be an element of the unit ball B_{∞} of $L^{\infty}[0,1]$. Using Lusin Theorem and Tiezte Extension Theorem it is quite easy to construct a sequence (f_n) in the unit ball B of C[0,1] such that $||f_n-f||_1 \longrightarrow 0$. Hence $(T \circ I)(B_{\infty}) \subseteq \overline{T_1(B)}$ thanks to the definition of dominated operator. So we obtain the compactness of $T \circ I$. The proof is over. \square

Now, we apply the above result to the construction of an isomorphic copy of c_0 inside of the B-space of all compact operators from C[0,1] into a B-space E without the (CRP). In the following result we need some properties of 1-absolutely summing and 2-absolutely summing operators (for the definitions the reader can look at [3]). We make use of the following facts: (α) any dominated operator on C[0,1] is 1-absolutely summing [2, pp. 183–184], (β) any 1-absolutely summing operator is 2-absolutely summing [3].

Theorem 2

Let E be a B-space without (CRP). Then c_0 embeds into $\mathcal{K}(C[0,1],E)$.

Proof. Since E doesn't possess the (CRP), there is a dominated operator T from C[0,1] into E that is not compact. From (α) and (β) it follows that T is a 2-absolutely summing operator. From the Grothendieck-Pietsch Domination Theorem [3, p. 60] there exists a regular Borel probability measure μ defined on $B_{C^*[0,1]}$ (in its w* topology) for which T factorizes through a closed subspace X of $L^2(\mu)$ in the following way

$$C[0,1] \xrightarrow{T} I$$

$$G \searrow \nearrow_R$$

$$X$$

where G and R are suitable (non compact) operators. We note that X is the closure in the L^2 -norm of C[0,1] and hence it is a separable Hilbert space. Hence X has an unconditional basis (e_n) . If $P_k: X \to \overline{\operatorname{span}}(e_k)$, $k \in N$, is the existing projection, then the series $\sum_{i=1}^{\infty} (P_i G)(x)$ converges unconditionally to G(x); further, any operator $P_i G$ is compact, because it admits a finite dimensional range. Similarly, the series $\sum_{i=1}^{\infty} (RP_i G)(x)$ converges unconditionally to T(x) and $RP_i G$ is compact, for each $i \in N$. However, $\sum_{i=1}^{\infty} RP_i G$ doesn't converge in norm to T, because T is not compact. Hence, we can proceed as in [8] to get the copy of c_0 inside of K(C[0,1],E); since the paper [8] is still unpublished we hint at the construction of the c_0 -copy. Since $\sum_{i=1}^{\infty} RP_i G$ doesn't converge to T, there is a $\eta > 0$ and two subsequences (n_k) and (m_k) of \mathbb{N} , with $m_k < n_k < m_{k+1}$ for all $k \in \mathbb{N}$, so that

$$\left\| \sum_{i=m_k}^{n_k} RP_i G \right\| > \eta \quad \text{for all } k \in N.$$

Let \mathcal{F} be the field of finite subsets of \mathbb{N} and their complements. Hence we can define a vector measure $\psi: \mathcal{F} \to \mathcal{K}(C[0,1],E)$ by putting

$$\psi(\Delta) = \sum_{k \in \Delta} \left[\sum_{i=m_k}^{n_k} RP_i G \right]$$

if Δ is finite, and

$$\psi(\Delta) = \sum_{k \in \Delta^c} \left[-\sum_{i=m_k}^{n_k} RP_i G \right]$$

if Δ^c is finite. It is quite easy to see that ψ is a well-defined vector measure, that is not strongly additive. Hence a theorem due to Diestel and Faires [1] allows us to conclude the proof. \square

Corollary

Assume that Y is a Banach space containing a copy of ℓ^1 . Then c_0 embeds into $\mathcal{K}(C[0,1],Y^*)$.

Proof. If Y contains a copy of ℓ^1 , Y^* fails to possess the weak Radon Nikodym property and hence the (CRP) (as remarked in [7]). \square

Remark 1. Since it is known that for K an uncountable compact metric space C(K) is isomorphic to C[0,1], then both Theorem 1 and Theorem 2 are true in this new setting.

Remark 2. If E is a Gelfand-Phillips space (see [5] for a definition), $\mathcal{K}(C[0,1],E)$ is [5], and so c_0 embeds complementably into it, by virtue of a result in [6].

Remark 3. In general we can say that if X and E are two Banach spaces such that there exists a noncompact 2-absolutely summing operator T from X into E, then c_0 embeds isomorphically into $\mathcal{K}(X,E)$. For instance, it is known that if X is an \mathcal{L}_{∞} -space and E is an \mathcal{L}_1 -space, then any operator from X into E is 2-absolutely summing. Hence, as soon as $\mathcal{L}(X,E) \neq \mathcal{K}(X,E)$, then c_0 embeds into $\mathcal{K}(X,E)$.

References

- 1. J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271.
- 2. J. Diestel and J. J. Uhl, jr., *Vector Measures*, Mathematical Surveys Vol. 15, American Mathematical Society, Providence, 1977.
- 3. J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mahtematics Vol. 92, Springer, New York, 1984.
- 4. N. Dinculeanu, Vector Measures, Pergamon Press, London, 1967.
- 5. L. Drewnowski and G. Emmanuele, On Banach spaces with the Gelfand-Phillips property, II, Rend. Circ. Mat. Palermo, 38 (1989), 377-391.
- 6. G. Emmanuele, On Banach spaces containing complemented copies of c_0 , Extracta Math. 3 (1988), 98–100.
- 7. G. Emmanuele, Banach spaces with the (CRP) and dominated operators on C(K), Ann. Acad. Sci. Fennicae, to appear.
- 8. G. Emmanuele, On the containment of c_0 by spaces of compact operators, *Bull. Sci. Math.*, to appear.
- 9. K. Musial, Martingales of Pettis integrable functions, in *Measure Theory*, pp. 324–329, Lecture Notes in Mathematics Vol. 794, Springer, Heidelberg, 1980.
- 10. M. Talagrand, *Pettis Integral and Measure Theory*, Memoirs of the American Mathematical Society Vol. 307, American Mathematical Society, Providence, 1984.

