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ABSTRACT
We show that a B-space F has the (CRP) if and only if any dominated operator
T from C[0,1] into E is compact. Hence we apply this result to prove that
¢o embeds isomorphically into the B-space of all compact operators from
C|0, 1] into an arbitrary B-space F without the (CRP).
AMS Subject Classification: 47B05, 47B10, 46B25, 46A32

Let E be a B-space. We say that E has the Compact Range Property (in symbols
(CRP)) if any E-valued countably additive measure with finite variation has rela-
tively compact range [9]. In the paper [7], we showed that “E has the (CRP) if and
only if, for any compact Hausdorff space K, any dominated operator T : C(K) — E
is compact” (see [4] for the definition of dominated operator). The purpose of this
note is to show that, in order to prove that a B-space has the (CRP), it is enough
to check the compactness of dominated operators on CJ[0,1].

Once we have this result, we are able to construct a copy of ¢y inside of
K(C[0,1], E), for any B-space E failing the (CRP) (here K(CJ[0,1], E) denotes the
B-space of all compact operators from C[0,1] into E).

In the book [10] Talagrand stated, without any proof, the equivalence of the
following two facts:

(i) E has the (CRP),

(*) Work performed under the auspices of G. N. A. F. A. of C. N. R. and partially supported by
M. P. L of Italy.
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(ii) any operator from L'[0,1] into E is a Dunford-Pettis operator.

We present a proof of the implication (ii) = (i), because we need it in the
proof of our main result. Let S be an arbitrary set, ¥ a o-field of subsets of S
and v : ¥ — E a countably additive measure with finite variation |v|. Consider
a sequence (A,) C ¥ and the characteristic functions x4,. It is well known that
there exist S1 € X, a sub-o-field ¥; of ¥ and p1 (= |v||z,) in such a way that
(xa,) C LY(S1,%1, p1), that in turn is a separable B-space. Hence L!(S1,Z1,u1) is
isometrically isomorphic to one of the following three spaces:

(a) £1(T), for some set T with card(T) < card(N),

(b) L'[0,1],

(c) (€/(T) @ L'[0,1]),, for some set T with card(T) < card(N).

Now, we define an operator T : L!(S1,%1,41) — E by

T(f) = / fs1)dv,  f€LMS1, %1, m).

It is clear that T'(x 4, ) = ¥(Ay),foralln € N. Since (x4, ) is a relatively weakly
compact subset of L(S1,X1,u1), if (a) is true we get that ((x4,) and hence) (v(4,))
is relatively compact, because £!(T') enjoys the Schur property. If (b) is true, our
assumption (ii) enters into play to prove that, still, (v(A,)) is relatively compact.
If we show that the same is true under (c), we are done, thanks to the arbitrari-
ness of (A,). Let j be the existing isometric isomorphism from L(S;,¥1, 1) onto
(¢4T) & Lo, 1])1. Of course, (j'(xa,)) is relatively weakly compact in
(¢1(T) @ Lo, 1])1. If

P : ()@ LY0,1]), — £4(T) and  Py: (¢4T) @ L'[0,1]), — L'[0,1]

are the existing projections we have

T(x4,) = (T o5)[Pi(G " (x4.)) + P2(57 " (xa.))]-

By virtue of the Schur property, (P1 (j ~1(x4,))) is relatively compact; hence
(T 0)[P1(57 (xa,))] is. On the other hand, (P,(57(x4,))) is relatively weakly
compact in L*[0,1], hence (T'05)[P;(57(xa4,))] is relatively compact in E, because
of our hypothesis (ii). The proof is complete.

Now, we are ready to show the main result of the paper. We refer to [4] for the
definition of dominated operators: an operator T' : C[0,1] — E is a dominated oper-
ator if there exists an F-valued regular Borel measure p on K with finite variation
such that

1Tl < /K 156 i = Wl g macrey £ € CIOLTL
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Theorem 1

E has the (CRP) if and only if any dominated operator from C[0,1] into E is
compact.

Proof. If E has the (CRP), the result follows from [7, Theorem 1]. Conversely,
let us assume the compactness of any dominated operator from C[0,1] into E. We
show that any operator T : L'[0,1] — E is Dunford-Pettis. To do this, it is enough
to prove that T o I : L*[0,1] — F is compact (here I denotes the embedding of
L°°[0,1] into L1[0,1]). If we consider

T1 = TOI|C[0,1] ZC[O, 1] — E,

it is very easy to see that 77 is dominated and hence compact by our hypothesis.
Now, let f be an element of the unit ball B, of L*°[0,1]. Using Lusin Theorem and
Tiezte Extension Theorem it is quite easy to construct a sequence ( f,) in the unit
ball B of C[0,1] such that ||f, — f|[1 — 0. Hence (T o I)(Bw) C T1(B) thanks to
the definition of dominated operator. So we obtain the compactness of T o I. The
proof is over. (J

Now, we apply the above result to the construction of an isomorphic copy of
co inside of the B-space of all compact operators from C[0,1] into a B-space E
without the (CRP). In the following result we need some properties of 1-absolutely
summing and 2-absolutely summing operators (for the definitions the reader can look
at [3]). We make use of the following facts: (o) any dominated operator on CJ0,1]
is 1-absolutely summing [2, pp. 183-184], () any 1-absolutely summing operator is
2-absolutely summing [3].

Theorem 2
Let E be a B-space without (CRP). Then ¢y embeds into K(C[0,1], E).

Proof. Since E doesn’t possess the (CRP), there is a dominated operator T' from
C[0,1] into E that is not compact. From (a) and (B) it follows that T is a
2-absolutely summing operator. From the Grothendieck-Pietsch Domination Theo-
rem [3, p. 60] there exists a regular Borel probability measure u defined on Bc-[o 1)
(in its w* topology) for which T factorizes through a closed subspace X of L%(u) in

the following way T
cj,1] — E

G\ /'R
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where G and R are suitable (non compact) operators. We note that X is the closure
in the L?-norm of C[0,1] and hence it is a separable Hilbert space. Hence X has an
unconditional basis (e,). If P, : X — span(ex), k € N, is the existing projection,
then the series Y 2, (P;G)(x) converges unconditionally to G(z); further, any op-
erator P;G is compact, because it admits a finite dimensional range. Similarly, the
series Yo (RP;G)(z) converges unconditionally to T'(z) and RP;G is compact, for
each 1 € N. However, Y 2, RP;G doesn’t converge in norm to T', because T is not
compact. Hence, we can proceed as in [8] to get the copy of ¢y inside of K£(C[0, 1], E);
since the paper [8] is still unpublished we hint at the construction of the co-copy.
Since Y ;2; RP;G doesn’t converge to T, there is a 7 > 0 and two subsequences
(nk) and (mg) of N, with my < ng < my4q for all k € N, so that

Nk
> RPG|>n forallkeN.

i=mp

Let F be the field of finite subsets of N and their complements.
Hence we can define a vector measure 9 : F — K(C[0,1], E') by putting

(A=) [Z RP,G

keA Li=my

if A is finite, and

P(A) =Y [— Z RP.G

kEAc i=myg

if A¢is finite. It is quite easy to see that 1 is a well-defined vector measure, that
is not strongly additive. Hence a theorem due to Diestel and Faires [1] allows us to
conclude the proof. [

Corollary

Assume that Y is a Banach space containing a copy of £*. Then ¢y, embeds into

K(C[0,1],Y*).

Proof. If Y contains a copy of £}, Y* fails to possess the weak Radon Nikodym
property and hence the (CRP) (as remarked in [7]). O

Remark 1. Since it is known that for K" an uncountable compact metric space C(K)
is isomorphic to C[0,1], then both Theorem 1 and Theorem 2 are true in this new
setting.
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Remark 2. If E is a Gelfand-Phillips space (see [5] for a definition), K(C[0,1], E) is
(5], and so ¢y embeds complementably into it, by virtue of a result in [6].

Remark 3. In general we can say that if X and F are two Banach spaces such that
there exists a noncompact 2-absolutely summing operator T from X into E, then
¢o embeds isomorphically into K(X, E). For instance, it is known that if X is an
Loo-space and F is an L;-space, then any operator from X into E is 2-absolutely
summing. Hence, as soon as £(X, E) # K(X, E), then ¢y embeds into K(X, E).
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