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The problem of complementability
for some spaces of vector measures of bounded variation
with values in Banach spaces containing copies of ¢

by

L. DREWNOWSKI (Poznaii) and G. EMMANUELE (Catania)

Abstract. Let (8, ¥, m) be any atomless finite measure space, and X any Banach
space containing a copy of ¢;. Then the Bochner space L' (m; X)) is uncomplermnented in
ceabu( X, m; X)), the Banach space of all m-continuous vector measures that are of bounded
variation and have a relatively compact range; and ccabu(X,m; X) is uncomplemented in
cabu(X, m; X). It is conjectured that this should generalize to all Banach spaces X without
the Radon-Nikodym property.

1. Introduction. We start by explaining some basic notation used in

this paper. (In general, our Banach space and vector measure terminology
and notation follow [3], [4] and [13].)

Throughout, (S, ¥, m) is an atomless probability measure space, and
X is a Banach space. Several Banach spaces of (countably additive) vec-
tor measures 1 : X' — X will be encountered below. For convenience, we
first mention the space ca(X, X) of all such measures i, equipped with the
supnorm |{uf| = sup g, 5. (E)]|, and its closed subspaces

cea(X, X) = {p € ca(%, X) : u(X) is relatively compact}
ca(E,m; X) = {u € ca(¥, X)p<m},
cca(X,m; X) = cca( S, X)nca(X,m; X)

M

However, our primary interest here is rather in cabv(X, X), the space of
all measures 11 : ¥ — X of bounded variation, considered with the variation
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norm [|pll; = |u|(S), and its closed subspaces ;

ccabv(X, X)) = cca( X, X) Ncabv(X, X),
cabv(X,m; X) = ca(X,m; X) Neabv(X, X)),
ccabv(X,m; X) = cca(X, m; X) N ecabv(X, X).

In addition, L*(m; X) = L'(S, &, m; X), the Banach space of all Bochner
m-integrable functions f : § — X under the norm ||f{|; = [ [|f(-)]| dm, can
(and will) be identified via the linear isometric embedding f — m¢(-) =
f(‘) fdm with a subspace of ccabv(X,m; X) (cf. [4; 11.3.9]). Using this con-
vention we can therefore write

(%) L'(m; X) C ccabv(X,m; X) C cabv(E,m; X).

The present paper originated from an attempt to prove the following
conjecture:

(C) Whenever a proper inclusion occurs between some two spaces in the
chain (), then the smaller space is an uncomplemented subspace of the
bigger.

At this point let us recall that, as follows from the results of Chat-
terji [2] and Bourgain [1], respectively, each of the equalities L'(m; X) =
cabv(Z,m; X) and L*(m; X) = ccabu(X, m; X) is necessary and sufficient
for the Banach space X to have the Radon-Nikodym property. (We thank
Z. Lipecki and K. Musial for calling our attention to the results of [1].) In
view of this, the most essential part of our conjecture seems to be that if X
does not have the Radon-Nikodym property, then L (m; X) is not comple-
mented in cabv(X, m; X) and ceabv(X, m; X) (1),

So far we have been able to verify (C) only for those Banach spaces X
which contain an isomorphic copy of ¢y (Theorems 3.1 and 3.3). (For such
spaces X it is relatively easy to see that both inclusions in (%) are proper.)
In achieving this goal, we heavily depend on some special isomorphic embed-
dings of [, into the spaces of measures involved in (C), which we construct
in Section 2.

We refer the reader to [5], [7], [10], [11] and [12] (a highly incomplete
list of references!), where problems analogous to (C) were treated for some
spaces of continuous functions, some other spaces of vector measures, and
some spaces of operators.

(}) This was disproved by F. Freniche and L. Rodriguez-Piazza {University of Sevilla,
Spain) in November 1991. They showed that, for Lebesgue measure m on [0,1] and
X=L'(m), L' (m; X) is complemented in cabv(Z, m; X). (Note added November 1992.)
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. 2. Special isomorphic embeddings of [._ into cabv(X,m; X) and
ccabv( X, m; X). In what follows, the sequence of unit vectors in ¢g and L, is
denoted by (e, ), and a basic sequence in a Banach space which is equivalent
to the basis (e,,) of cg is briefly called a co-sequence. Given a Banach space Z,
let us denote by ¢(Z, w) the Banach space of all weakly null sequences (z,)
in Z equipped with the supnorm ||(z,)]| = sup,, ||z, . In the lemma below
we collect some elementary (and fairly well known) facts about cg-valued
measures; most of these facts appear in some of the examples in [4].

2.1. LEMMA. There is an ésomerphigm between the spaces co(L(m), w)
and ca(X,m; co) under which the measure ¢: X — ¢y assigned to a weakly
null sequence (f,) in L*(m) is given by the formula

¢<E>:=Z J Fadm-e,.

n=1 g
Moreover, if ¢ is given in the above form, then

(a) ¢ € cea( X, m;cp) < “fn”l — 0.
(b) ¢ € cabv( X, m; co) & (fn) is order bounded in LY(m), ie., sup,, | fnl
€ L'Y(m); in this case

OI(E) = [ sup |fuldm forall Ee 5.
E n

(¢) ¢ € ccabv(Z,m;cq) & sup, |£,] € L'(m) and || f,|l; — 0.
(d) ¢ € L' (m;co) < sup,, | fo € LY(m) and f, — 0 m-a.e.

Proof If ¢ € ca(X, m; ¢p) then, using the Radon-Nikodym theorem co-
ordinatewise, ¢ can be uniquely represented in the above form with
/ plandm — 0 for all B ¢ ¥ or, equivalently, f, — 0 weakly in LY (m).
Conversely, if (f,) is weakly null in L1(m), then the formula for ¢ makes
sense and ¢ € ca(X,m;cy) by the Nikodym and Vitali-Hahn-Saks the-
orems. Finally, sitice the standard norm [£lli = [41fldm and the norm

1£] = lmsll = suppes | [ f dm| are equivalent in LY(m), so are the norms
(9]l = supge s sup, | [ Fndm| and o)) = sup,, fo|f]dm in ca(X,m;cq).
In other words, the mapping (fu)+> ¢ is an isomorphism.

(a) By a well known compactness criterion in Banach spaces with Schau-
der bases, (X)) is relatively compact in co if and only if

sup Supf ffndmll“'*O ’r),i-'S,I‘V——,xoo1
e |

Eel n>N

or equivalently, sup,, s v [|falli — 0, ie., (I falli — 0.

i
i
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(b) ¢ is m-continuous and of bounded variation if and only if there is a
finite positive measure v < m such that for every E-€ X, |¢(E)|| < v(E),
or | g fadm| < [ Fdm (n=1,2,...), where F = dv/dm. This in turn is
equivalent to the set of inequalities [fol < F meae. (n=1,2,... ). Clearly,
the smallest such v (i.e., |¢]) is obtained by taking F' = sup,, |f,|.

(c) follows from (a) and (b), and (d) is obvious. m

2.2. THEOREM. Suppose the Banach space X contains a subspace X,
isomorphic to co. Then there exists an isomorphic embedding

J oo = cabv(E,m; Xy) cabv(X,m; X)
such that
(i) J(eo) © L1 (m; Xo);
(ii) J(co) = J(ls) N ccabv(Z, m; X), and

(iii) J(co) is complemented in cecabv(X,m; X).

Note that assertions (i) and (iii) give an improvement of the result from
[9] that L'(m; X') contains a complemented copy of ¢y provided X > ¢q.

The above theorem follows immediately from the following more precise

result (see also Remark 2.4); some parts of its proof combine the arguments
already employed in [6], [7] and [9].

2.3. PROPOSITION. Let (z,) be a co-sequence in X, and let (f,) be a
sequence in L' (m) satisfying the following conditions:

(1) Ifulls = 1 for all n (or, more generally, inf,, || f,]l1 > 0);
(2) fn — 0 weakly in L'(m), and
(3) Supn ’fféi =1 F € LL(TR).

Then the formula

n=1

(Ja)(E) =Y an [ fodm -z,, a=(a,) el Eex,
E

defines an isomorphic embedding J : [, — cabv(X, m; X) satisfying condi-
tions (i) and (ii) of Theorem 2.2.
Moreover, if there exists a weak® null sequence (hn) in L>(m) with

[ hnfadm=1 forallnen,
J ‘

and of (&}, ) is a bounded sequence in X* obtained by applying the Hahn-
Banach theorem to the coefficient Junctionals of (z,,), then the formula

(pfu)(E) = Zan(ﬂ)( .f fn, dm) cTp,
Fo

n=1
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where
an(p) = fhnd(bc ( (xn, fhndu>)

gwes a bounded linear pmjectzon P from cab1(7 m; X) onto J(l..), and
Plecabv(Z,m; X) is a projection onto J(ep).

Proof. In view of Lemma 2.1 it is clear that J acts as a linear operator
from I into cabv(5, m; Xo) C cabv(X,m; X), where Xo = [(z,)] ~ ¢g. Let
c¢,C' >0 be constants such that

ell(tn)loe < ”ZW,LN SOt for all (£,) € cq,
Then, given any a € |, and £ € ¥ 2, we have
(Ja)(E)|| <C sup({an“ f fn dmi) < Cllaf| f Fdm
T E E
from which it follows that

|Jal < (c f Fdm) - Jlall.
g

On the other hand, for every n, since Jsfnldm =1, we can find E,in %
with

| A 1

| f [n clfnf > 5

£,
(> % in the complex case). Then

C
H(Ja)(E)| > c- sup(a,?;l f fa de > ;2—}@,“1,
l?n
hence
Il > o] > £all..

Thus J: 1 — cabv(5, m; X)) is an isomorphic embedding.
Obviously,
J(co) € L' (m; X).
Now take any o = (an) €l \ cq; s0O la,| > & for some £ > 0 and infinitely
many n. Then for every N,

}ﬁ I

H .
sup "f E a,?( [ fn a’m} fﬂ!{ > ¢ sup
Eexll — ! n>N

i i I
§ fl 3 § f :,:
(f'an.ifj frz, {zm’»f} 2v

so that the leftmost quantity does not tend to zero as N — oo, which means
(Ja)(X) is not relatively norm compact in X C X. This establishes (ii).
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Now we proceed to the part of the proposition inv{)lvi{;g P.Let L =
sup,, 1 s sup, flzil < oco. If 1 € cabv(X, m; X), then lan ()] < Lijyl <

I

Lijp|l1- Hence P is a bounded linear operator from cabv( X, m; X) into J(1.. ),
and it is easily verified that P is a projection onto J{(I.. ).

Next let u € cca( X, m: X ). Then, since K(2) is relatively norm compact,
an easy direct argument shows that

K={s'p:2" e X*, "] < 1}

is a compact subset of calX,m) = LY m). Let 9n = dz;p/dm. By the
preceding observation, the set {9n :n € N} C const- K is relatively compact
in L'(m). Hence, since the sequence (h,) C L>(m) = L'Y{m)* is weak*
null, we have a,(u) — 0 as n — so. It follows that the restriction of P to
ccabv( X, m; X) is a projection onto J (cp). m

24. Remark. Any Rademacherlike sequence (f,) over (S, 5 m) (that
is, an orthonormal sequence such that m(f, = 1) = m(f, = =)o %)
satisfies conditions (1) to (3) and admits a sequence (hy) as specified above.

In general, given a sequence (f») in LY(m) with properties (1) and (2),
there exists a subsequence (fk,.) for which it is possible to find a weak* null
sequence (h,,) in L>(m) satisfying [ h, fi. dm = 1 for all n. Indeed, since
L(m)isa Gelfand—Phillips space (see [3] or [8] for more information); such
a sequence (f,) cannot be limited, that is, there must exist a weak*® null
sequence (g,) C L°(m) for which supy, | [ fagn dm| - 0 as n — oo, From
this our assertion follows easily.

In consequence, for any isomorphic embedding J given by the above
proposition, we can always find an infinite subset M of N (independent of
(z,)) such that the subspace J(co(M)) ~ ¢y is complemented in
ceabv( X, m; X). Here co(M) = {a = (an) €co:a, =0 forn &M} =g,

Finally, let us note that from the estimates of ||.Ja|| given in the above
proof it follows that the operator J : loo = cabv(Z,m; X) is an isomorphic
embedding even when cabv( X, m; X) is considered with the (weaker) norm
Il - || induced from ca(X, X). In addition, it should also be clear that the
operator P can be considered as being defined on all of ca( X, m; X}, and
that in that case it is still a bounded projection onto J{I..).

2.5 THEOREM. Suppose the Banach space X contains g subspace X,
isomorphic to ¢y. Then there erists an 1somorphic embedding

I il = ceabvly, m; Xg) © ceabv( X, m; X)
sueh that

() Jleo) € L{m; Xo);
W) J(eo) = (o) N L' (m; X), and
(iii) J(co) is complemented in L'(m; Xy).
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This follows immediately from the following more precise result (see also
Remark 2.7 below).

2.6. PROPOSITION. Let (z,) be a cy-sequence in X, and let (f,) be a
sequence in L' (m) satisfying the following conditions:

(1) [l fulli — 0

(2) f, - 0 m-a.e., and

(3) sup, [ful =: F € L'(m),
Then there exists a strictly imcreasing sequence (N,) in N, depending only
on the sequence (f,), such that if

17\‘]71-?-1_1

()= > [ fudm-zy,

k=N, ()

then the formula

20
(Ja)(E) =) ann,(E)
n=1
defines an isomorphic embedding J [ — ceabv( X, m; Xy) satisfying con-
ditions () to (jjj) of Theorem 2.5. Moreover, there erists a bounded linear
projection P from cabu( X, m; X)) onto J(l.) such that PjL‘("m,;XO) s a
projection onto J{cg).

Proof Since f, - 0 a.e.. there exists r > 0 such that the set

N ULs: 1) 2 r)

n=1 k=n
is of strictly positive m measure. It is then easily seen that we can find a
sequence I = Ny < Ny < ... such that also the set

B= 1 U scifel) zry= (s sup fls) >},

ke d,,
n=1 ke A, n=1 kea,

where A, ={kcN: N, <L < Noy1}, s of strictly positive m reasure,

Let us now define the sequence of measures (nn), and next the operator
J, as specified in the proposition. Let the positive constants ¢, (' be as in
the proof of Proposition 2.3. That J is an isomorphic embedding follows

from the following inequalities:

allu = 17al($) < C [ sup(lay| sup |fi])dm < C [ Fdm-jaj
o oon ke A, e

)

and

1Jalli = ¢ j sup(|as| sup |fpl)dm > er - m(B) - la]|ao .
& AC\EAr,

B
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Evidently, J(cy) C LY (m; Xo) Ifa = (a,) € I, \ ¢o so that lan| > = for
infinitely many n and some & > 0, then for those n we have

fan Z fki>€T on B.

ke A,

Hence the sequence of L'(m) functions which represents Ja (in the sense of
Lemma 2.1) does not tend to 0 a.e. Thus the measure Ja is not representable
as the indefinite Bochner integral of an Xg-, nor even X -valued function.
This proves equality (Ji)-

Finally, we are going to construct a (bounded linear) projection from
L'(m; Xo) onto its subspace J(cg) = [(5,)]. To simplify the notation, we
may clearly assume here that Xo = ¢g and that the Co-sequence (x,,) is
simply the standard basis (en) of ¢q. For any fixed n consider the function

M= S i Doz,

ke,

where Z,, = e} - k e A,] € ¢g. Then

1l = [AH )z, dm(s) = [ sup |fu(s)] dm(s)
o REA,
S S

Zrm(B)=: K !~0(.
By the Hahn-Banach theorem, there exists a functional HYin L'(m; Z,)* =~
L>(m; Z¥), where Zr=le,: ke A,] C 1y, which we can represent in the
form

H: = Z hiey,  where by, € L>(m),

keA,

such that [[HY|| = (|| H,[;)"" and (Hy, H,) = 1. Thus

Ml = W e = ess sup [ H(s)2; = esssup S [hy(s)] < K
sy = keA .
and
(oo fln) = [ (H(s), Hu() dm(s) = [ 57 hu(s) fu(s) dim(s) = 1.

Now, let a measure v e L(m; cg) be represented by a sequence (gn) C
Ll{m); thus

oo

J

fy
)=
n

Sy

n=1 ¢

f gndm-e,, G :=sup l9n] € L' (m)
-}




Spaces of vector measures of bounded variation 119

and g, — 0 a.e. Define

an(M)= [ 3 higrdm (n=1,2,..).

S keA,
Since

| 3 W) < 3 Iha(o)] - sup lou(s)

ke, keA,

< K sup lgr(s)] a.e.
ked,

< KG(s)

and g, — 0 a.e. (so that also sup. 4 |gx] — 0 a.e.), we see that a,(7) — 0
as n — co. Moreover, for every n,

< [ |3 o] dm < K f Gdm =K |n])s

S ked,

s0 [[(an (7))o loc < K ||7]l1- Since an(Mm) = 8pm for all n, m € N, it follows
that the formula

Py=3 au.(y) M
n==l

defines a required projection from L'(m;cy) onto its subspace .J (co)-

It is now easy to extend P to a projection from cabv(X, m; X) onto J(1):
Let (z}) be a bounded sequence in X* which is biorthogonal to (xz,); define
b =sup, ||z} For every p € cabv(¥, m; X) and n € N set

an(/-b)*‘ Z j hkdafk#

kE A,
Then
(@) < 3 [ iheldlziul <6 S0 [ el dial <K uls,

kcd, S ked, S

hence || (an(,u)),, oo < BK |jpull1. It is now clear that the same formula as
above defines a bounded linear projection P from cabv(X,m; X) onto J(l)
which extends the previously constructed projection from L(m; Xp) onto
J(Cg). ]

2.7. Remark. The simplest example of a sequence (f,) C L'(m) satis-
fying conditions (1) to (3) from Proposition 2.6 can be obtained as follows:
Fori=1,2,...letd; =204 . 421 Let {4,;:0<j <2}, 1=12 ..
bea sequence of consecutive dyadic Y-partitionsof §. 1fn € Nand n = d; + j
for some i € N and 0 < j < 2¢, let f, be the characteristic function of the
set A; ;. Then the sequence (f,,) is as required. Moreover, the construction
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from the proof of the proposition works with A, ={di+7:0<j <2}
and h, = f,.

3. Uncomplementability of LYm; X) in cabv(X ., m; X) and in
ccabv(X, m; X ). Our first result here follows directly from Theorem 2.2 and
the well known fact that ¢g is not complemented in /...

3.1. THEOREM. If X D cqy, then neither LY(m; X) nor ceabv(X,m; X) is
complemented in cabv( X, m; X).

Similarly, from Theorem 2.5 it follows that if X D Xy =~ cg, then
L'(m; Xo) is not complemented in ceabu( X, m; X). In Theorem 3.3 below
we will see that also L'(m; X) is uncomplemented in ccabv(X,m; X), but
the proof of this will not be as quick as above. Among other things we will
need the following

3.2. LEMMA. Let, as everywhere above, (S, X, m) be an atomless probabil-
ity measure space, and let X be any Banach space. Furthermore,
let ([0,1],B,\) be the Borel-Lebesque measure space. If L'(m; X) is
complemented in ccabv(X,m; X), then LYX; X) is complemented in
ceabu(B,\; X).

Proof. Choose a countably generated sub-o-algebra Xy © ¥ so that
the measure mg = m|2 is atomless. Let the operator 71" : ca(Xg, mg; X) —
ca(X,m; X) be given by the formula

(Tho)(A) = [ B(xa | o) duo,
; 4
where E(-| X)) is the conditional expectation operator from L'(m) onto
L'Y(myp) (cf. [2] and, for more details, [7]). Then 7' is a linear isometric
embedding of ccabv( Xy, my; X) into ccabv( X, m; X)), (Tuo)| %6 = pg for all
#o € ca(Zo,mo; X), and if uo(E) = Jg Fdmo (B € 5) for f LY(mg; X),
then
(Tuo)(A)= [ fdm forall Ac s
A
Let P be a projection from ceabv( X, m; X ) onto LY (m; X), and consider
the operator ) on ccabv( Lo, my; X ) defined by the equality
Q=FE(|Z)oPoT.

It is then easily seen that Q is a projection onto L' (my; X ). Since, by a well
known result of Carathéodory, (5, X0, mp) is measure-algebra isomorphic to
([0,1], B, A), the proof is complete. m

3.3. THEOREM. If X O ¢y, then LY(m; X) is not complemented in
cecabv(X, m; X).

GRS R A R
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Proof. We split our argument in two parts.

Case 1: X has no subspace isomorphic to 1. Then, by a result of Men-
doza [14], also L' (m; X)) contains no copy of [ . Suppose there is a projection
Q from ccabv(X, m; X) onto L'(m; X). Now, if J : o — ccabv(X,m; X) is
an embedding provided by Theorem 2.5, then for the operator QJ : [ —
L'(m; X)) we have Q.Je, = Je, - 0. Hence, by Rosenthal’s [ .-theorem (see
[15] or [6]), L'(m; X) must contain an isomorphic copy of l..; a contradic-
tion.

Case 2: X has a subspace isomorphic to l... In view of Lemma 3.2 we
may and will assume that the o-algebra X is countably generated. Moreover,
as is easily seen, we may also assume that X = [. By Theorem 2.5 there
exists an isomorphic embedding

J il — ccabv (X, m;e) C ccabv(E,mil)
such that J(eg) C L'(m;cp) and
(%) J(eo) = J(loo) N L (m; 1) .
Suppose there exists an onto projection @ : ccabv(X,m;l.) — L'(m;ly).
Since the operators Q.J : I, — L'(m;l.) C ccabu(X,m;ly) and J coincide
on the sequence (e, ),

(**) (Q] - J)l(?() = 0.

Now observe that the space ccabv( X, m;[..) admits a countable total set
of continuous linear functionals. Indeed, if A is a countable algebra of sets
generating X and e, (n € N) are the coordinate functionals on [, then the
functionals

e {er u(A) (Ae A nel)
are as required.

It follows that there exists a continuous linear injection of
ceabv( X, m;l.) into . Hence, by a result of Kalton [12; Prop. 4], (xx)
implies the existence of an infinite subset A of N such that J = QJ on
loo(M). Hence J(l(M)) © L'(m;l.), which contradicts (). = '

The same argument as above establishes the following general fact. (It
can be shown that a Banach space E has the property assumed below pro-
vided it contains no isomorphic copy of the space [, x ¢o(2%0).)

3.4, PrOPOSITION. Let E be a Banach space such that whenever we have
an operator u : l, — E with ulcy = 0, then there is an infinite subset A
of N for which u|l.o(M) = 0. Furthermore, let F be a closed subspace of E
and suppose that it is possible to find an isomorphic embedding J : . — E
such that F'(V.J(l) contains no copy of l. Then F is not complemented

in E.
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We conclude the paper with a result involving quotients of the spaces
appearing in Theorems 3.1 and 3.3. The following lemma is certainly well
known; we sketch its proof for the sake of completeness.

3.5. LEMMA. Let Y and Z be closed subspaces of a Banach space X.
Suppose there is a projection P from X onto Z with P{Y)=YNZ (s0 that
also PIY : Y — Y N Z is a projection). Then Z/(Y N Z) 15 isomorphic to a
complemented subspace of X/Y . '

Proof Let @ : X — X/Y be the quotient map. We first verify that
Q(Z) ~ Z/(Y N Z). Consider the operator ’
T:2/(¥NZ)—Q(Z), 2+(YNZ)r—>z+Y.
It is obvious that 7' is bounded. Let V = ker P; then, clearly, Y = (YNnV) &
(YN Z). Since
le+ Yl =mf{|z+v+w]|:veYnV,w eYnZzj}
>inf{ |P| Yz +wl|:weyn Z}
=PI+ Y N 2],

T is an {onto) isomorphism.
Next, it is clear that the operator

P:X/Y - Q(Z), 2+Y—Pr+Y (=Q(Pz)),
is a projection onto Q(Z). It is also bounded:
[Pz + Y[ <inf{|[Pe+v+w)|:veVY NV, weYn Z}
sIPl-le+Y]. =

3.6. COROLLARY. If the Banach space X has a subspace Xy isomorphic
to co, then each of the quotient spaces

cabv(Z,m; X) /LY (m; X)), cabu(E, m; X)/[ecabv( 2, m; X),
ceabv(X, m; X) /L' (m; Xo)

contains a complemented subspace isomorphic to l/es.

Proof This follows immediately from the above lemma and Theo-
rems 2.2 and 2.5 »
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