S H gy ¥, V. F

N}

Czechoslovak Mathematicai Journal, 44 (118) 1994, Praha

EXISTENCE OF SOLUTIONS OF A FUNCTIONAL-INTEGRAL

EQUATION IN INFINITE DIMENSIONAL BANACH SPACES!

G. EMMANUELE, Catania

(Received September 9, 1992)

Let © be a bounded closed subset of R™. If f, k,g are functions defined, respec-

tively, in Q x E, O x 2, 2 x E (E a Banach space) with values into, respectively, £,

L(F\E), F (F a Banach space, L(F, E) the space of all linear continuous operators
from F into E), we consider the functional-integral equation

;(1) z(t) = f(t,r/Q k(t,s)g(s, z(s)) ds), t a.e. in 0

and look for solutions of (1) lying in L', E), the usual Bochner function space
on (R, £, m), the usual Lebesgue measure space. The equation (1) is quite general,
because for f(t,z) = z we get the Hammerstein integral equation, whereas if g(t, ) =
T we get an equation recently considered in [2] and in [4]. (In particular, we improve
‘the result in [4] because, in the case of E = F — R and Q = [0,1] ¢ R, we are able
;to dispense with one of the hypotheses used in that paper.) For several applications

<of the Hammerstein integral equation to partial differentja] equations we refer to [3]

,and [8].
The technique we use in the main theorem is the usual one: we construct an
‘operator A mapping continuously a suitable bounded, closed and convex subset Q of

:LI(Q, E) into itself, and prove that A(Q) is relatively compact. Hence the Schauder
- fixed point theorem can be applied. The choice of the set Q is such that it allows

us to avoid the use of certain monotonicity assumptions contained in [2] (see also
results and examples in (3] and in [8]) that are not always extendible to the case
of functions with values in infinite dimensional Banach spaces; the hypotheses we
consider are quite general and “natural” in the sense that they are necessary and
sufficient for certain operators to take L1(Q, E) continuously into itself (see (7).

' Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by
M.UR.S.T. of Italy (60%; 1990).
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One of the main tools we use is the following generalization of the Ascoli-Arzela
theorem to the case of vector-valued continuous functions.

Theorem 1 (see (1], for instance). Let T be a compact metric space and let
(fn) C C°(T, E) be a sequence of equicontinuous and equibounded functions. If for
each t € T, {fa(t)} is relatively compact in E, then (f,) is relatively compact in
CO(T, E). Moreover, the set {f,(t): t € T, n € N} is relatively compact in E, too.

We even need the following extension of a theorem of Scorza-Dragoni to be found
in [9]. :

Theorem 2 ([9]). Let T be a compact metric space with a Radon measure defined -
on it, E a separable metric space, F a Banach space. If f: T x E — F is a function’ |
verifying the Carathéodory hypotheses, i.e. f is measurable with respect tot € T for |
all z € E and continuous with respect toz € E for almost allt € T, givene > 0 there
is a measurable closed subset T, of T with m(T'\T.) < ¢ and f }’IL < p continuous. ;

We shall make use of the following result concerning compact subsets of separabl
Banach spaces (see [5]).

Theorem 3 ([5]). Let M be a bounded subset of a separable Banach space E
M is relatively compact if and only if for any w*-null sequence (z3) C E* one has |
lim sup |z (z)| = 0.

n ozeM

We are now ready to give the proof of our result for which we need an easy lemma:

Lemma 4. Let us assume
(k}) hy,hs € Ll(Q, R}, hl(t) 2 0, hg{t) 20 ae on; .
(ke) ¥: 2 x ¥ — Ry verifies the Carathéodory hypotheses and the linear operator:

(#2)(0) = [ wit.s)z(s)ds
maps L'(, R) into L' (9, R) (in this case ¥ is continuous ([10]) and 2]l denotes its
normj;

(k3} by, by, 7 > 0 are such that b by [|¥]] < 1.
Then there is a nonnegative g € L'(§2, R) such that

wolt) = hy () + rby f Uit s)(ha(s) + bapo(s)) ds, t a.e in ).
Q




Proof. Let us put p = % where a(t) = rby [, ¥(t,s)ha(s)ds €
L', R). It is easy to see that Mz € B, = {z:z € L*(,R), |lz]| < p} when-
ever x € B, where

Mz(t) = hy(t) + rby / W(t, s)(ha(s) + bax(s)) ds, ten.
Q

It is also clear that Mz(¢) > 0 a.e. on Q when z(t) > 0 a.e. on Q and so M(Bf) c
B with B} = B,n{z:z € L'(Q,R), z(t) > 0 a.e. on N}; furthermore, B} is
a complete metric space. It is also easy to prove that M is a contraction when
restricted to B;' . Then the Banach-Caccioppoli fixed point theorem applies to give
the result. We are done. O

Theorem 5. Let E be a separable Banach space, F an arbitrary Banach space
and 0 a bounded, closed subset of R®. Let us assume

(h1) f: 2 x E — E verifies the Carathéodory hypotheses and, moreover, there
exist hy € LY (2, R) and by > 0 such that

Hf(t 2)le < ha(t) + billzlle foraa. teQandallz € E;

(h2) k: @ x Q — C(F, E) (the Banach space of linear compact operators from F
into E with the usual operator norm) verifies the Carathéodory hypotheses and the
linear operator K defined by

(Kz)(t) = /{; W&(t, s)llcireyz(s)ds, tae infl

maps L'(Q, R) into itself (this last fact implies that K is continuous, see [10]; let
| K|| denote its norm);

{h3) g: & x E — F verifies the Carathéodory hypotheses and, moreover, there
exist hy € L}(Q, R) and by > 0 such that

lg(t, oMl < ha(t) + bollzlle foraa. t € andall z € E;

(he) rhi ]| K] < 1.
Then the equation (1) has a solution z in LY(Q, E).

Proof. Putting ¥(t,s) = [tk(t, s)llc(s,p) in Lemma 4, we get that there is a
nonnegative o € LY, R) such that

wolt) = hi(t) + b [ &Gt s) e,y (Ra(s) + bagols)) ds, tae. in (L
Ja
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First of all, assume g = fr1a,r)- In such a case we easily get that Ori,e) is a
solution of (1). Indeed, we have

”f(t,r/ﬂk(tﬁs)y{s,fﬁﬁmyg}{gn ds)

< hy(t) + by j}r/ﬂk(t,s}g(s, Or10,5)(s)) ds ”

< ha(t) +byr / Ikt )|,y 19 (5, 8110, 5 () || ds
S hl (t> + bIT/ ”k(t: s)ﬂc{g’p) (h’Q(S) + b2”6L1(Q,E) (3)“) ds

< hy(t) + 617‘/ Hk(t, S)”C(E,F) (hz(s) “+ 529[,1{9‘3}(8)) ds

=0r1a,r)(t), t a.e. in 2,

which means that
f(t,r/ k(t,s)g(s,@um,g)(s)) ds) =0r10,5)(t), t a.e. in Q.
Q

So let us assume g # 0 L'(a,r) and consider the following subset of L'(Q, E):
Q={z:2€ LY E), [lz(t)|z < po(t)  ae. on Q}.

Q is clearly bounded, closed and convex in L'(f, E); furthermore, @ is uniformly
integrable, i.e. (lg)n . Js llz(s)|| ds = 0 uniformly on . We consider the operator
{5}~

(Az)(t) = 1 (7 fg K(t,5)g(s,2(s)) ds ).

We shall prove that
() A(L'(@,B)) c L@, E),
(i) A(Q)CQ,
(iii) Al o 18 continuous,
(iv) A(Q) is relatively compact.
Hence an easy application of the Schauder fixed point theorem will give the exis-
tence of a solution of (1). That (i) is true is an easy consequence of our assumptions
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{(hy), (hg), (hz). Let us show (ii). If z € @ we have, for a.a. t € {,

(A=) 5 = ;;f(t}r/Qk(t,s)g(ssx(S)) ds )5
< ha(t) +bur /ﬂ k(t,s)g(s,z(s)) ds |l
<m0 +bir [ [kt s)los lo(s2(0) | o ds
< ha(t) +blr/Q (. 9)]| o ) (ha(s) + ba[lz(s) | ) ds

<hi(t) + bﬂ‘/ﬂ [ k(¢ S)HC(F’E) (ha(s) + bawo(s)) ds = o(t)

by virtue of Lemma 4. Let us prove (iii). Let (z,),(z¢) C Q with z, — z5. This
means that z,(s) — xo(s) almost everywhere on Q (by passing to a subsequence if
necessary). Fix £ € €; we have k(£,5)g(s, za(s)) = k(,5)g(s,20(s)) for a.a. s € Q
because of (h3) and (hg). Thanks to (hsz) we also have that, for a.a. s € Q,

|k s)[g(s,2a(s)) = g(s,20(5))]]l
<R 3|,z [2R2(5) + b (lza ()] + flzo(s)]])]

< Hk(as}uc(g’p)z(hl’(s} + b?@ﬁ{s})7
this easily yields
/k(f,s}g(s,a:n(s)) ds - / k(£ s)g(s,zo(s)) ds.
Q Q
Hence
f(f,r/ﬂk(f,s)g(s,xn(s)) ds) ~+ f(f,rLk(f,s)g(s,xo(s)) ds),

ie. Az, (f) = Axzo(f), thanks to (hy). But |[Az,.(t) — Aze(t)lle < 2¢0(t) and so
Az, — AzollL1(0, gy — 0. It remains to show the most difficult (iv). It is clear that
we can assume () countable; so we do it. First of all, we observe that thanks to
Theorem 2, given ¢ > 0 there is 0, C , closed, with m(2\ Q,) < o, such that
f % QX B ké Q, xo are continuous. First we shall prove that
() B={Hz|, :z e Q}cC%Q,), where (Hz)(t) = [, k(t,s)g(s,z(s)) ds,
teQ,

(ji) B is relatively compact in C%(£2,).

o
[
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Let ¢/t € 2. We have

ICH2)E) = H)E) < [0 5) = 5 gy 5 205)) | ds

<

S~ 5~

k@, s) — k", s){}cm’g) (ha(s) + bawo(s)) ds.

Since k{Qo o 1s uniformly continuous, we get that B is an equicontinuous subset of |
C%(9,); it is also clear that B is an equibounded subset of C%Q,). It remains to
show that for all t € Q,, B(t) = {Ax[ﬂd (t): z € Q} is relatively compact, so that we
can apply Theorem 1 to B. Now we use Theorem 3. Let (z}) be a w*-null sequence
in E*; for f € 0, we have

(2) x;/s; k(t.s)g(s,z(s)) ds ::/(;a:;k(ﬂs)g(s,x(s)) ds, neN.

For almost all s € Q, the set {9(s,z(s)): z € Q} is bounded by virtue of (hz) and
because of the very definition of Q; hence {k(%, s)g (s,z(s)): z € Q} is compact in
E for aa. s € Q and so z2k(3, s)g(s,z(s)) = 0 uniformly on z € Q; furthermore, |
|z k(E, s)g(s,2(s))| < sup 2L & E )l eor, gy (Ra(s) + bao(s)), which implies

sup/ zhk(t,5)g(s,z(s)) ds — 0.
€@ Jo
Thanks to (2) we are done: B(t) is relatively compact for all ¢ € 2. Hence B
is relatively compact in ¢ (£2,). Once we have (j) and (jj) for any o > 0, we can
conclude our proof as follows. Given a sequence (z,) C Q, it is easy to get a sequence
(2,.) of closed subsets of ) with m(Q\Q,) - 0and a subsequence (y,,) of (zp) such
that (Hyy) is a Cauchy sequence in any C°%(Q,). Again thanks to Theorem 1 we

have that
C, = {Hyh(t): te, he N}

is a relatively compact subset of E and so f [Q <& 18 uniformly continuous. It is
then very easy to see (use again Theorem 1} that

{f(Hya(")): 0 - E, he N}

is a Cauchy sequence in Co,) foralln ¢ N, by passing to a suitable subsequence
if necessary. Hence, if & > 0, let o > 0 be such that

»

sup [ fldz(s)lds < foral Sc o, m(S) < o.
zEQJS 4
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Choose 71 € N with m(Q\ z) < 0. We have

[ e €)= w0l e = [ Mune® v 0

+ / llAyne(6) — Ay (D)1 dt
O\

£

< L 1 (&, Hyw (1)) = £ (. Hun (9) | p e + 3

< m@n)7 (Hw 0) = £ Hye O) ooy * 5
h;’, hll G N.

Since (f(-, Hyn())) ,en 18 @ Cauchy sequence in C%(Q;) we are done. a

Remark. If one of the two spaces E and F' is finite dimensional, then any
continuous and linear operator from F into E is compact, but this even happens for
suitable infinite dimensional Banach spaces; we refer to [6] for a list of such pairs of

Banach spaces.
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