EXISTENCE OF SOLUTIONS OF A FUNCTIONAL-INTEGRAL EQUATION IN INFINITE DIMENSIONAL BANACH SPACES¹

G. EMMANUELE, Catania

(Received September 9, 1992)

Let Ω be a bounded closed subset of \mathbb{R}^n . If f, k, g are functions defined, respectively, in $\Omega \times E$, $\Omega \times \Omega$, $\Omega \times E$ (E a Banach space) with values into, respectively, E, L(F, E), F (F a Banach space, L(F, E) the space of all linear continuous operators from F into E), we consider the functional-integral equation

(1)
$$x(t) = f\left(t, r \int_{\Omega} k(t, s) g\left(s, x(s)\right) ds\right), \quad t \text{ a.e. in } \Omega$$

and look for solutions of (1) lying in $L^1(\Omega, E)$, the usual Bochner function space on (Ω, \mathcal{L}, m) , the usual Lebesgue measure space. The equation (1) is quite general, because for f(t, x) = x we get the Hammerstein integral equation, whereas if g(t, x) = x we get an equation recently considered in [2] and in [4]. (In particular, we improve the result in [4] because, in the case of $E = F = \mathbb{R}$ and $\Omega = [0, 1] \subset \mathbb{R}$, we are able to dispense with one of the hypotheses used in that paper.) For several applications of the Hammerstein integral equation to partial differential equations we refer to [3] and [8].

The technique we use in the main theorem is the usual one: we construct an operator A mapping continuously a suitable bounded, closed and convex subset Q of $L^1(\Omega, E)$ into itself, and prove that A(Q) is relatively compact. Hence the Schauder fixed point theorem can be applied. The choice of the set Q is such that it allows us to avoid the use of certain monotonicity assumptions contained in [2] (see also results and examples in [3] and in [8]) that are not always extendible to the case of functions with values in infinite dimensional Banach spaces; the hypotheses we consider are quite general and "natural" in the sense that they are necessary and sufficient for certain operators to take $L^1(\Omega, E)$ continuously into itself (see [7]).

¹ Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy (60%; 1990).

One of the main tools we use is the following generalization of the Ascoli-Arzelà theorem to the case of vector-valued continuous functions.

Theorem 1 (see [1], for instance). Let T be a compact metric space and let $(f_n) \subset C^0(T, E)$ be a sequence of equicontinuous and equibounded functions. If for each $t \in T$, $\{f_n(t)\}$ is relatively compact in E, then (f_n) is relatively compact in $C^0(T, E)$. Moreover, the set $\{f_n(t): t \in T, n \in \mathbb{N}\}$ is relatively compact in E, too.

We even need the following extension of a theorem of Scorza-Dragoni to be found in [9].

Theorem 2 ([9]). Let T be a compact metric space with a Radon measure defined on it, E a separable metric space, F a Banach space. If $f: T \times E \to F$ is a function verifying the Carathéodory hypotheses, i.e. f is measurable with respect to $t \in T$ for all $x \in E$ and continuous with respect to $x \in E$ for almost all $t \in T$, given $\varepsilon > 0$ there is a measurable closed subset T_{ε} of T with $m(T \setminus T_{\varepsilon}) < \varepsilon$ and $f|_{T_{\varepsilon} \times E}$ continuous.

We shall make use of the following result concerning compact subsets of separable Banach spaces (see [5]).

Theorem 3 ([5]). Let M be a bounded subset of a separable Banach space E. M is relatively compact if and only if for any w^* -null sequence $(x_n^*) \subset E^*$ one has $\lim_n \sup_{x \in M} |x_n^*(x)| = 0$.

We are now ready to give the proof of our result for which we need an easy lemma:

Lemma 4. Let us assume

 $(k_1) h_1, h_2 \in L^1(\Omega, \mathbb{R}), h_1(t) \geqslant 0, h_2(t) \geqslant 0 \text{ a.e. on } \Omega;$

 $(k_2) \psi \colon \Omega \times \Omega \to \mathbb{R}_+$ verifies the Carathéodory hypotheses and the linear operator

$$(\Psi z)(t) = \int_{\Omega} \psi(t,s) z(s) \,\mathrm{d}s$$

maps $L^1(\Omega, \mathbb{R})$ into $L^1(\Omega, \mathbb{R})$ (in this case Ψ is continuous ([10]) and $\|\Psi\|$ denotes its norm);

(k₃) $b_1, b_2, r \ge 0$ are such that $rb_1b_2||\Psi|| < 1$.

Then there is a nonnegative $\varphi_0 \in L^1(\Omega, \mathbb{R})$ such that

$$\varphi_0(t) = h_1(t) + rb_1 \int_{\Omega} \psi(t,s) \big(h_2(s) + b_2 \varphi_0(s)\big) ds$$
, t a.e. in Ω .

Proof. Let us put $p = \frac{\|h_1\| + \|a\|}{1 - rb_1b_2\|\Psi\|}$ where $a(t) = rb_1 \int_{\Omega} \psi(t, s)h_2(s) ds \in L^1(\Omega, \mathbb{R})$. It is easy to see that $Mx \in B_p = \{x : x \in L^1(\Omega, \mathbb{R}), \|x\| \leq p\}$ whenever $x \in B_p$, where

$$Mx(t) = h_1(t) + rb_1 \int_{\Omega} \psi(t,s) (h_2(s) + b_2 x(s)) ds, \qquad t \in \Omega.$$

It is also clear that $Mx(t) \ge 0$ a.e. on Ω when $x(t) \ge 0$ a.e. on Ω and so $M(B_p^+) \subset B_p^+$ with $B_p^+ = B_p \cap \{x \colon x \in L^1(\Omega, \mathbb{R}), \ x(t) \ge 0$ a.e. on $\Omega\}$; furthermore, B_p^+ is a complete metric space. It is also easy to prove that M is a contraction when restricted to B_p^+ . Then the Banach-Caccioppoli fixed point theorem applies to give the result. We are done.

Theorem 5. Let E be a separable Banach space, F an arbitrary Banach space and Ω a bounded, closed subset of \mathbb{R}^n . Let us assume

(h₁) $f: \Omega \times E \to E$ verifies the Carathéodory hypotheses and, moreover, there exist $h_1 \in L^1(\Omega, \mathbb{R})$ and $b_1 \geqslant 0$ such that

$$||f(t,x)||_E \leqslant h_1(t) + b_1||x||_E$$
 for a.a. $t \in \Omega$ and all $x \in E$;

(h₂) $k: \Omega \times \Omega \to C(F, E)$ (the Banach space of linear compact operators from F into E with the usual operator norm) verifies the Carathéodory hypotheses and the linear operator K defined by

$$(Kz)(t) = \int_{\Omega} \|k(t,s)\|_{C(F,E)} z(s) \,\mathrm{d}s\,, \qquad t \text{ a.e. in } \Omega$$

maps $L^1(\Omega, \mathbb{R})$ into itself (this last fact implies that K is continuous, see [10]; let ||K|| denote its norm);

(h₃) $g: \Omega \times E \to F$ verifies the Carathéodory hypotheses and, moreover, there exist $h_2 \in L^1(\Omega, \mathbb{R})$ and $b_2 \ge 0$ such that

$$||g(t,x)||_F \le h_2(t) + b_2||x||_E$$
 for a.a. $t \in \Omega$ and all $x \in E$;

 $(h_4) rb_1b_2||K|| < 1.$

Then the equation (1) has a solution x in $L^1(\Omega, E)$.

Proof. Putting $\psi(t,s) = ||k(t,s)||_{C(E,F)}$ in Lemma 4, we get that there is a nonnegative $\varphi_0 \in L^1(\Omega,\mathbb{R})$ such that

$$\varphi_0(t) = h_1(t) + rb_1 \int_{\Omega} \|k(t,s)\|_{C(E,F)} (h_2(s) + b_2 \varphi_0(s)) ds$$
, t a.e. in Ω .

First of all, assume $\varphi_0 = \theta_{L^1(\Omega,\mathbb{R})}$. In such a case we easily get that $\theta_{L^1(\Omega,E)}$ is a solution of (1). Indeed, we have

$$\left\| f\left(t, r \int_{\Omega} k(t, s) g\left(s, \theta_{L^{1}(\Omega, E)}(s)\right) \, \mathrm{d}s \right) \right\|$$

$$\leq h_{1}(t) + b_{1} \left\| r \int_{\Omega} k(t, s) g\left(s, \theta_{L^{1}(\Omega, E)}(s)\right) \, \mathrm{d}s \right\|$$

$$\leq h_{1}(t) + b_{1} r \int \left\| k(t, s) \right\|_{C(E, F)} \left\| g\left(s, \theta_{L^{1}(\Omega, E)}(s)\right) \right\| \, \mathrm{d}s$$

$$\leq h_{1}(t) + b_{1} r \int \left\| k(t, s) \right\|_{C(E, F)} \left(h_{2}(s) + b_{2} \left\| \theta_{L^{1}(\Omega, E)}(s) \right\| \right) \, \mathrm{d}s$$

$$\leq h_{1}(t) + b_{1} r \int \left\| k(t, s) \right\|_{C(E, F)} \left(h_{2}(s) + b_{2} \theta_{L^{1}(\Omega, R)}(s) \right) \, \mathrm{d}s$$

$$= \theta_{L^{1}(\Omega, R)}(t), \qquad t \text{ a.e. in } \Omega,$$

which means that

$$f\Big(t,r\int_{\Omega}k(t,s)g\big(s,\theta_{L^1(\Omega,E)}(s)\big)\,\mathrm{d}s\,\Big)=\theta_{L^1(\Omega,E)}(t),\qquad t\text{ a.e. in }\Omega.$$

So let us assume $\varphi_0 \neq \theta_{L^1(\Omega,\mathbb{R})}$ and consider the following subset of $L^1(\Omega,E)$:

$$Q = \{x \colon x \in L^1(\Omega, E), \ \|x(t)\|_E \leqslant \varphi_0(t) \qquad \text{a.e. on } \Omega\}.$$

Q is clearly bounded, closed and convex in $L^1(\Omega, E)$; furthermore, Q is uniformly integrable, i.e. $\lim_{m(S)\to 0} \int_S \|x(s)\| ds = 0$ uniformly on Q. We consider the operator

$$(Ax)(t) = f\left(t, r \int_{\Omega} k(t, s) g\left(s, x(s)\right) ds\right).$$

We shall prove that

- (i) $A(L^1(\Omega, E)) \subset L^1(\Omega, E)$,
- (ii) $A(Q) \subset Q$,
- (iii) A_{O} is continuous,
- (iv) A(Q) is relatively compact.

Hence an easy application of the Schauder fixed point theorem will give the existence of a solution of (1). That (i) is true is an easy consequence of our assumptions

 $(h_1), (h_2), (h_3)$. Let us show (ii). If $x \in Q$ we have, for a.a. $t \in \Omega$,

$$\begin{aligned} \left\| (Ax)(t) \right\|_{E} &= \left\| f \left(t, r \int_{\Omega} k(t, s) g \left(s, x(s) \right) \, \mathrm{d}s \right) \right\|_{E} \\ &\leq h_{1}(t) + b_{1} r \left\| \int_{\Omega} k(t, s) g \left(s, x(s) \right) \, \mathrm{d}s \right\|_{E} \\ &\leq h_{1}(t) + b_{1} r \int_{\Omega} \left\| k(t, s) \right\|_{C(F, E)} \left\| g \left(s, x(s) \right) \right\|_{F} \, \mathrm{d}s \\ &\leq h_{1}(t) + b_{1} r \int_{\Omega} \left\| k(t, s) \right\|_{C(F, E)} \left(h_{2}(s) + b_{2} \left\| x(s) \right\|_{E} \right) \, \mathrm{d}s \\ &\leq h_{1}(t) + b_{1} r \int_{\Omega} \left\| k(t, s) \right\|_{C(F, E)} \left(h_{2}(s) + b_{2} \varphi_{0}(s) \right) \, \mathrm{d}s = \varphi_{0}(t) \end{aligned}$$

by virtue of Lemma 4. Let us prove (iii). Let $(x_n), (x_0) \subset Q$ with $x_n \to x_0$. This means that $x_n(s) \to x_0(s)$ almost everywhere on Ω (by passing to a subsequence if necessary). Fix $\bar{t} \in \Omega$; we have $k(\bar{t}, s)g(s, x_n(s)) \to k(\bar{t}, s)g(s, x_0(s))$ for a.a. $s \in \Omega$ because of (h_3) and (h_2) . Thanks to (h_3) we also have that, for a.a. $s \in \Omega$,

$$\begin{aligned} & \|k(\bar{t},s) [g(s,x_n(s)) - g(s,x_0(s))]\|_E \\ & \leq \|k(\bar{t},s)\|_{C(E,F)} [2h_2(s) + b_2(\|x_n(s)\| + \|x_0(s)\|)] \\ & \leq \|k(\bar{t},s)\|_{C(E,F)} 2(h_2(s) + b_2\varphi_0(s)); \end{aligned}$$

this easily yields

$$\int_{\Omega} k(\bar{t}, s) g(s, x_n(s)) ds \to \int_{\Omega} k(\bar{t}, s) g(s, x_0(s)) ds.$$

Hence

$$f(\bar{t}, r \int_{\Omega} k(\bar{t}, s) g(s, x_n(s)) ds) \to f(\bar{t}, r \int_{\Omega} k(\bar{t}, s) g(s, x_0(s)) ds),$$

i.e. $Ax_n(\bar{t}) \to Ax_0(\bar{t})$, thanks to (h₁). But $||Ax_n(t) - Ax_0(t)||_E \leqslant 2\varphi_0(t)$ and so $||Ax_n - Ax_0||_{L^1(\Omega, E)} \to 0$. It remains to show the most difficult (iv). It is clear that we can assume Q countable; so we do it. First of all, we observe that thanks to Theorem 2, given $\sigma > 0$ there is $\Omega_{\sigma} \subset \Omega$, closed, with $m(\Omega \setminus \Omega_{\sigma}) < \sigma$, such that $f|_{\Omega_{\sigma} \times E}, k|_{\Omega_{\sigma} \times \Omega}$ are continuous. First we shall prove that

(j)
$$B = \{Hx|_{\Omega_{\sigma}} : x \in Q\} \subset C^{0}(\Omega_{\sigma}), \text{ where } (Hx)(t) = \int_{\Omega} k(t,s)g(s,x(s)) ds,$$

 $t \in \Omega,$

(jj) B is relatively compact in $C^0(\Omega_{\sigma})$.

Let $t', t'' \in \Omega$. We have

$$\begin{split} \big\| (Hx)(t') - (Hx)(t'') \big\|_E &\leqslant \int_{\Omega} \big\| k(t',s) - k(t'',s) \big\|_{C(F,E)} \big\| g\big(s,x(s)\big) \big\| \, \mathrm{d}s \\ &\leqslant \int_{\Omega} \big\| k(t',s) - k(t'',s) \big\|_{C(F,E)} \big(h_2(s) + b_2 \varphi_0(s) \big) \, \, \mathrm{d}s \, . \end{split}$$

Since $k|_{\Omega_{\sigma}\times\Omega}$ is uniformly continuous, we get that B is an equicontinuous subset of $C^0(\Omega_{\sigma})$; it is also clear that B is an equibounded subset of $C^0(\Omega_{\sigma})$. It remains to show that for all $t\in\Omega_{\sigma}$, $B(t)=\{Ax|_{\Omega_{\sigma}}(t)\colon x\in Q\}$ is relatively compact, so that we can apply Theorem 1 to B. Now we use Theorem 3. Let (x_n^*) be a w^* -null sequence in E^* ; for $\bar{t}\in\Omega_{\sigma}$ we have

(2)
$$x_n^* \int_{\Omega} k(\bar{t}, s) g(s, x(s)) \, \mathrm{d}s = \int_{\Omega} x_n^* k(\bar{t}, s) g(s, x(s)) \, \mathrm{d}s, \qquad n \in \mathbb{N}$$

For almost all $s \in \Omega$, the set $\{g(s,x(s)): x \in Q\}$ is bounded by virtue of (h_3) and because of the very definition of Q; hence $\{k(\bar{t},s)g(s,x(s)): x \in Q\}$ is compact in E for a.a. $s \in \Omega$ and so $x_n^*k(\bar{t},s)g(s,x(s)) \to 0$ uniformly on $x \in Q$; furthermore, $|x_n^*k(\bar{t},s)g(s,x(s))| \leqslant \sup_n ||x_n^*|| ||k(\bar{t},s)||_{C(F,E)}(h_2(s)+b_2\varphi_0(s))$, which implies

$$\sup_{x \in Q} \int_{\Omega} x_n^* k(\bar{t}, s) g(s, x(s)) ds \to 0.$$

Thanks to (2) we are done: B(t) is relatively compact for all $t \in \Omega$. Hence B is relatively compact in $C^0(\Omega_{\sigma})$. Once we have (j) and (jj) for any $\sigma > 0$, we can conclude our proof as follows. Given a sequence $(x_h) \subset Q$, it is easy to get a sequence (Ω_n) of closed subsets of Ω with $m(\Omega \setminus \Omega_n) \to 0$ and a subsequence (y_h) of (x_h) such that (Hy_h) is a Cauchy sequence in any $C^0(\Omega_n)$. Again thanks to Theorem 1 we have that

$$C_n = \{ Hy_h(t) \colon t \in \Omega_n, \ h \in \mathbb{N} \}$$

is a relatively compact subset of E and so $f|_{\Omega_n \times \overline{C}_n}$ is uniformly continuous. It is then very easy to see (use again Theorem 1) that

$$\big\{f\big(\cdot,Hy_h(\cdot)\big)\colon\Omega_n\to E,\ h\in\mathbb{N}\big\}$$

is a Cauchy sequence in $C^0(\Omega_n)$ for all $n \in \mathbb{N}$, by passing to a suitable subsequence if necessary. Hence, if $\varepsilon > 0$, let $\sigma > 0$ be such that

$$\sup_{x \in Q} \int_{S} \|Ax(s)\| \, \mathrm{d}s < \frac{\varepsilon}{4} \qquad \text{for all } S \subset \Omega, \ m(S) < \sigma.$$

Choose $\bar{n} \in \mathbb{N}$ with $m(\Omega \setminus \Omega_{\bar{n}}) < \sigma$. We have

$$\begin{split} \int_{\Omega} \|Ay_{h'}(t) - Ay_{h''}(t)\|_{E} \, \mathrm{d}t &= \int_{\Omega_{\bar{n}}} \|Ay_{h'}(t) - Ay_{h''}(t)\|_{E} \, \mathrm{d}t \\ &+ \int_{\Omega \setminus \Omega_{\bar{n}}} \|Ay_{h'}(t) - Ay_{h''}(t)\|_{E} \, \mathrm{d}t \\ &\leqslant \int_{\Omega_{\bar{n}}} \|f(t, Hy_{h'}(t)) - f(t, Hy_{h''}(t))\|_{E} \, \mathrm{d}t + \frac{\varepsilon}{2} \\ &\leqslant m(\Omega_{\bar{n}}) \|f(\cdot, Hy_{h'}(\cdot)) - f(\cdot, Hy_{h''}(\cdot))\|_{C^{0}(\Omega_{\bar{n}})} + \frac{\varepsilon}{2} \\ &+ h', h'' \in \mathbb{N}. \end{split}$$

Since $(f(\cdot, Hy_h(\cdot)))_{h\in\mathbb{N}}$ is a Cauchy sequence in $C^0(\Omega_{\bar{n}})$ we are done.

Remark. If one of the two spaces E and F is finite dimensional, then any continuous and linear operator from F into E is compact, but this even happens for suitable infinite dimensional Banach spaces; we refer to [6] for a list of such pairs of Banach spaces.

References

- [1] A. Ambrosetti: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Padova 39 (1967), 349–360.
- [2] J. Banas, Z. Knap: Integrable solutions of a functional-integral equation. Revista Matematica de la Univ. Complutense de Madrid 2(1) (1989), 31-38.
- [3] K. Deimling: Nonlinear Functional Analysis. Springer Verlag, 1985.
- [4] G. Emmanuele: About the existence of integrable solutions of a functional integral equation. Revista Mat. Univ. Complutense Madrid 4 (1991), 65-69.
- [5] I. Gel'fand: Abstrakte Funktionen und lineare Operatoren. Mat. Sbornik 4 (1938), 235-284.
- [6] J. Johnson: Remarks on Banach spaces of compact operators. J. Funct. Analysis 32 (1979), 304-311.
- [7] M. A. Krasnosel'skii: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, 1964.
 [8] R. H. Martin, Nonlinear operators and differential equations in Banach spaces, Wiley et al. (2018).
- [8] R. H. Martin: Nonlinear operators and differential equations in Banach spaces. Wiley e Sons, 1976.
- [9] B. Ricceri, A. Villani: Separability and Scorza Dragoni's Property. Le Matematiche 37 (1982), 156-161.
- [10] P. P. Zabreiko, A. I. Koshelev, M. A. Krasnoselskii, S. G. Miklin, L. S. Rakovshchik, V. J. Stecenko: Integral Equations. Noordhoff, Leyden, 1975.

Author's address: Department of Mathematics, University of Catania, Catania 95125, Italy.