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GELFAND-PHILLIPS PROPERTY IN KOTHE SPACES
OF VECTOR VALUED FUNCTIONS*

GIOVANNI EMMANUELE

We prove that E(X) is a Gelfand-Phillips space if and only if E and
X are.

Let X be a Banach space. A subset M of X is called limited if for
any weak* null sequence z, C X' one has limsup |z;(z)] = 0. X is called
Y

a Gelfand-Phillips space if limited subsets of X are relatively compact.
We refer to the paper [1] (and its References) for these definitions,
examples and properties of limited sets and Gelfand-Phillips spaces. In
particular, L.Drewnowski and the author obtained in [1] the following
result

THEOREM 1. ([1], Th. 3.2). Let F be a Banach space whose elements
are (equivalence classes of) strongly measurable functions with respect
to a measure space (S,Z,u) with values in X. Assume that F satisfies
the following conditions:

(a) for each A € X, the operator f — fxa maps F into itself and is
continuous.

* Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially sup-
ported by M.U.R.S.T. of Italy (40%, 1987).
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(b) if f € F and (A,) is a sequence in £ such that A, | ¢ then
lim 1 x4, [l = 0

(c) for every A € £ with 0 < p(A) < oo there exists B € ¥ such that
B C A, 0< u(B) and

(c’) F(B)={fxp:f€F}C LYB,X) and the inclusion is continuous

(c”) on F(B)NL*®(B,X) the topology induced from L*(B, X) is stronger
than that induced from F.
Then if X is a Gelfand-Phillips space, so is F.

The purpose of this short note is to present an application of
Theorem 1 above to Kothe spaces of vector valued functions: the result
we prove actually is an extension of Theorem 3.1 in [1] (on which the
proof of Theorem 1 is based). Now, let us introduce some definitions
and theorems to be utilized in the proof of our result.

Let (S,T,u) be a o-finite (complete) measure space and M(S) the
space of £, p-measurable real valued functions with functions equal
p-almost everywhere identified. A Kothe space E is a Banach subspace
of M(S) consisting of locally integrable functions such that

(i) if |u} < |v| p-a.e., with u € M(S), v € E, then u € E and |fu|| < []v||
(ii) for each A € £, p(A4) < oo the characteristic function x4 is an

element of .

Kothe spaces are Banach lattices if we put u > 0 when u(s) > 0 p-a.e.
(we refer to [3] for these definitions); furthermore, they are s-complete
Banach lattices.

THEOREM 2. ([2], Th.1).Given a Koithe space E, there exists
an increasing sequence (Sp) in L,p(S,) < oo for all n € N and
/‘(S\UneIN S,,) = 0 for which the following chain of continuous
inclusions holds

L®(S,) C E(S,) C LY(S,).

We recall that a Banach lattice has an order continuous norm if, for
every downward directed net {z,} with infz, = 0, then lim||z,|| = 0.
a [+ 4
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THEOREM 3. ([3]). Let E be a o-complete Banach lattice. If E does
not contain I°°, then it has an order continuous norm.

In this paper we consider, for a real Banach space X, the family
of all strongly measurable functions f: S — X (identifying p-a.e. equal
functions) such that ||f(:)||x € E, E a Kothe space. Such a space, denoted
by E(X), is a Banach space under the norm

Nz = IS Olx e

We note that among Kothe spaces defined above one can find
Lebesgue-Bochner spaces as well as Orlicz or Musielak-Orlicz spaces of
vector valued function. We are now ready to prove our result.

THEOREM 4. E(X) is a Gelfand-Phillips space if and only if E and
X are.

Proof. 1t is enough to prove the “if” part only. As we remarked at
the beginning we want to show that E(X) verifies all of the assumptions
of Theorem 1. We start with (a). Let f € E(X) and A € I. It is clear that
fxa is strongly measurable; furthermore, ||f(S)xa(s)llx < [1f(s)|lx p-a e.
on S; since E is a Kothe space, fxa € E(X) and [|fxallecx) < Ifllecx)-
Now, let us prove (b) If f € E(X) and (A4,) is a sequence in £ with
A, | ¢, we observe that

If(8)xans: ()llx < [If(s)xa.(s)llx p-ae.onS,neN.

Now, recall that a Gelfand-Phillips space cannot contain {* and
therefore E also has this property; hence E is an order continuous
Banach lattice (Theorem 3). Since {||f(-)xa,(’)llx} is a downward
directed sequence with infimum equal to 0, we can conclude that
li'r‘n]i fxa.llgxy = 0. It remains only to show (c). To prove (c) let A€ £
with 0 < u(A) < co. Theorem 2 assures the existence of a n* € N such
that S,- NA € I, 0 < p(S,- N A) and the following chain of continuous
inclusions holds

(1) L=(Sp+ NA) C E(Spe N A) C L*(Sn+ N A).

Let us assume B = S,. N A. Thanks to (1) we have that (¢’) and (c”)
are true. Indeed, for f € E(B,X) we have that f is strongly measurable
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and that ||f(-)llx is in (E(B) and hence in) L'(B). This means that
f € LY(B, X). By virtue of (1) we also have the existence of a ¢ > O for
which

2 llullz ey < cllullecpy for all u € E(B);

Applying (2) to u(-) = [|f(:)]| we get (c’). To prove (c”) let us take
fin E(B,X)n L*(B,X). The function u(-) = ||f(-)||x is in L*(B) and,
thanks to (1), there is ¢ > O for which

3 llullec)y < cllullpeo(n)-
From (3) we easily have
(4) I/, x) < el fllze(B,x)-

The last inequality gives (c”).

Once (a), (b), (c) are proved, Theorem 1 applies to give the assertion.

The above result, already known for the case of Lebesgue-Bochner
spaces, is new for Orlicz or Musielak-Orlicz spaces of vector valued
functions.
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