Remarks on Hammerstein integral operators. 1

G.Emmanuele

Department of Mathematics, University of Catania Catania 95125, Italy

e-mail address:Emmanuele@Dipmat.Unict.It

Summary.We present a result showing that the usual Hammerstein integral operator maps suitable bounded subsets of L^1 onto relatively compact subsets; then we apply it to get an existence result for the Hammerstein integral equation.

In this note we consider the following Hammerstein Integral Operator

$$(\mathcal{K}x)(\cdot) = \int_0^1 k(\cdot, s) f(s, x(s)) ds \tag{HIO}$$

from $L^1([0,1],E)$, E a Banach space, into itself and we show that it acts as a compact operator on suitable bounded subsets under quite general assumptions on the kernel k and the space E involved; even if our result is not a compactness one, but just a weaker form, neverthless it may be utilized to derive an existence theorem for the Hammerstein integral equation

$$x = g + \mathcal{K}x \tag{HIE}$$

(where $g \in L^1([0,1],E)$) in the space $L^1([0,1],E)$, as we shall do in Theorem 2.

We refer the reader to [1], [2], [5], [6], [8], [9], [10], [11], [12], [13] and References therein for further results about (HIO) and (HIE).

¹ Work supported by MURST of Italy (1997)

In order to get our main result we need the following facts

Proposition 1 ([7]).Let M be a bounded subset of a separable Banach space E. M is relatively compact if and only if for any weak*-null sequence $(x_n^*) \subset E^*$ one has $\lim_n \sup\{|x_n^*(x)| : x \in M\} = 0$.

Proposition 2 ([3]).Let F be a reflexive Banach space. If $\phi \in L^1([0,1])$ the set

$$X = \{x \in L^1([0,1],F) : \|x(s)\|_F \le \phi(s), \, a.e. \quad in \quad [0,1]\}$$

is relatively weakly compact.

Proposition 3 ([3],[4]).Let $(g_n) \subset L^1([0,1],Y), Y$ a Banach space. Then there is a separable Banach space $Z \subset Y$ such that $(g_n) \subset L^1([0,1],Z)$.

Proposition 4 ([2]).Let (S,d) a complete metric space and $T: S \to S$ an application such that there are $L \in [0,1[,n_0 \in N, for which]]$

$$d(T^{n_0}(x), T^{n_0}(y)) \le Ld(x, y) \qquad \forall x, y \in S.$$

Then T has a (unique) fixed point.

We present now the announced compactness result on the (HIO)

Theorem 1.Let E, F be two Banach spaces, with F reflexive. Let $k : [0,1]^2 \to \mathbb{K}(F,E) = \{ compact operators from <math>F$ into $E \}$ be a measurable function; furthermore, for each $t \in [0,1]$, let the functions $s \to k(t,s)$ belong to $L^{\infty}([0,1],\mathbb{K}(F,E))$. Also suppose that the linear operator $\tilde{K}: z \to \int_0^1 \|k(\cdot,s)\|_{\mathbb{K}(F,E)} z(s) ds$ is continuous from $L^1([0,1],E)$ into itself. Let $f: [0,1] \times E \to F$ be a Caratheodory function for which there are $a \in L^1([0,1]), b \in \mathbb{R}^+$, such that

$$||f(s,x(s))||_F \le a(s) + b||x(s)||_E \quad \forall x \in L^1([0,1],E), s \quad a.e. \text{ in } [0,1].$$

If $\phi \in L^1([0,1])$, we consider the bounded, closed and convex set

$$Q = \{x: x \in L^1([0,1],E), \|x(s)\|_E \leq \phi(s), s \quad a.e. \ in \ [0,1]\} \subset L^1([0,1],E).$$

Then K(Q) is relatively compact in $L^1([0,1],E)$

Proof. First of all, observe that

$$||f(s, x(s))||_F \le a(s) + b\phi(s) \quad \forall x \in Q, s \text{ a.e. in } [0, 1]$$
 (1)

so that the set $f(\cdot, Q)$ is relatively weakly compact in $L^1([0, 1], F)$, by Proposition 2; hence, if $(x_h) \subset Q$ there is (x_{h_p}) such that

$$f(\cdot, x_{h_p}(\cdot)) \xrightarrow{w} \psi$$

for a suitable $\psi \in L^1([0,1],F)$. For any $\bar{t} \in [0,1]$, we have that $k(\bar{t},\cdot) \in L^{\infty}([0,1],K(F,E))$ and so

$$\int_0^1 k(\overline{t}, s) f(s, x_{h_p}(s)) ds \xrightarrow{w} \int_0^1 k(\overline{t}, s) \psi(s) ds \tag{2}$$

in E, since it is easily seen that, for each $x^* \in E^*$, one has $x^*k(\overline{t},\cdot) \in L^\infty([0,1],F) \subset (L^1([0,1],F))^*$. We wish to show that the sequence $\left(\int_0^1 k(t,s)f(s,x_{h_p}(s))ds\right)$ is relatively compact in E, for each $t \in [0,1]$; thanks to Proposition 3 we may assume that E is separable, so that Proposition 1 may be utilized, and so we shall do it. Let $(x_n^*) \subset E^*$ be a weak*-null sequence; (1) implies that $\{f(\overline{s},x_{h_p}(\overline{s})):k\in N\}$ is bounded in E, for almost all $\overline{s}\in [0,1]$, so that $\{k(\overline{t},\overline{s})f(\overline{s},x_{h_p}(\overline{s})):k\in N\}$ is relatively compact; hence

$$\sup_{n} |x_{n}^{*}k(\overline{t}, \overline{s})f(\overline{s}, x_{h_{p}}(\overline{s}))| \to 0 \quad \text{as} \quad n \to +\infty;$$

since

$$\sup_{p}|x_n^*k(\overline{t},\overline{s})f(\overline{s},x_{h_p}(\overline{s}))| \leq (\sup_{n}||x_n^*||)||k(\overline{t},\cdot)||_{L^{\infty}([0,1],K(F,E))}(a(s)+b\phi(s))$$

we easily get

$$\int_{0}^{1} \sup_{p} |x_{n}^{*}k(\bar{t}, s)f(s, x_{h_{p}}(s))| \to 0$$

from which it follows that

$$\sup x_n^* \int_0^1 k(\overline{t}, s) f(s, x_{h_p}(s)) ds \to 0$$

so that the set

$$\left\{\int_0^1 k(\overline{t},s)f(s,x_{h_p}(s))ds: p\in N\right\}\subset E$$

is relatively compact (see Proposition 1). Hence, from (2) we get

$$\lim_{p} \int_{0}^{1} k(\overline{t}, s) f(s, x_{h_p}(s)) ds = \int_{0}^{1} k(\overline{t}, s) \psi(s) ds.$$

What we have got can be obtained for all $t \in [0, 1]$; since, also,

$$\left\| \int_0^1 k(t,s) f(s,x_{h_p}(s)) ds \right\|_E \leq \int_0^1 \|k(t,s)\|_{\mathbb{K}(F,E)} (a(s) + b\phi(s)) ds \in L^1([0,1])$$

we may apply the Dominated Convergence Theorem to derive that $\left(\int_0^1 k(\cdot,s) f(s,x_{h_p}(s)) ds\right)$ is a sequence strongly converging in $L^1([0,1],E)$. The proof is over.

As announced in the introduction, Theorem 1 may be applied to prove the following existence result

Theorem 2. Suppose that all of the assumptions of Theorem 1 are verified. Also assume that g is an element of $L^1([0,1],E)$ and that there is $n_0 \in N$ such that $\|(b\tilde{K})^{n_0}\| < 1$. Then the following Hammerstein Integral Equation (HIE)

$$x = g + \mathcal{K}x$$

has a solution in $L^1([0,1], E)$.

Proof. Define $A: L^1([0,1]) \cap \{x \in L^1([0,1]), x(s) \geq 0 \ a.e.\} \rightarrow L^1([0,1]) \cap \{x \in L^1([0,1]), x(s) \geq 0 \ a.e.\}$ by putting

$$Ax(\cdot) = \|g(\cdot)\|_{L^1([0,1],E)} + [(b\tilde{K})x](\cdot) + \int_0^1 \|k(\cdot,s)\|_{K(F,E)} a(s) ds.$$

It is easily seen that

$$||A^{n_0}(x) - A^{n_0}(y)|| \le ||(b\tilde{K})^{n_0}|| ||x - y|| \qquad \forall x, y \in L^1([0, 1]) \cap \{x \in L^1([0, 1]), x(s) \ge 0 \quad a.e.\}$$

so that A has a fixed point $\phi_0 \in L^1([0,1]) \cap \{x \in L^1([0,1]), x(s) \geq 0 \quad a.e.\}$ (Proposition 4), since $L^1([0,1]) \cap \{x \in L^1([0,1]), x(s) \geq 0 \quad a.e.\}$ is a complete metric space. Now we consider the following bounded, closed and convex subset of $L^1([0,1], E)$

$$Q = \{x \in L^1([0,1], E), ||x(s)||_E \le \phi_0(s), \text{ s a.e. in } [0,1]\}$$

and we observe that the operator $x \to g + \mathcal{K}x$ maps Q into itself. If $\phi_0 = \theta_{L^1([0,1])}$ it is easy to show that

$$\theta_{L^1([0,1],E)} = g + \mathcal{K}\theta_{L^1([0,1],E)};$$

whereas if $\phi_0 \neq \theta_{L^1([0,1])}$, it is not difficult to show that $x \to g + \mathcal{K}x$ maps Q into a relatively compact set, thanks to Theorem 1; hence the Schauder Fixed Point Theorem applies to get our thesis. We are done.

Remark 1. The assumption of the existence of a $n_0 \in N$ such that $\|(b\tilde{K})^{n_0}\| < 1$ was used just to guarentee the existence of a solution of the equation x = Ax; hence any other assumption implying the existence of such a solution may be used to reach our target.

Remark 2. If one wants to avoid the reflexivity of F, he could, but, as far as we know, assuming that k is a Caratheodory function, too; in such a case, indeed, the same technique used in [6] works to reach our goal (we observe that in [6] an assumption of separability was made on F; but actually it can be avoided as in the present Theorem 1,

because we may work just with sequences). It would be interesting to see if the reflexivity of F may be dropped with k only measurable.

Remark 3. Similar compactness and then existence results may be obtained for the following functional-integral equation

$$x(\cdot) = f\left(t, r \int_0^1 k(\cdot, s)g(s, x(s))ds\right).$$

REFERENCES

- [1] J.Banas, Integrable solutions of Hammerstein and Uryshon integral equations, J. Austral. Math. Soc. 46(1989) 61-68
- [2] K.Deimling, Non Linear Functional Analysis, Springer Verlag 1985
- [3] J.Diestel, J.J.Uhl, jr., Vector Measures, AMS Surveys 15, 1977
- [4] N.Dunford, J.T.Schwartz, Linear Operators, part I, Interscience 1967
- [5] G.Emmanuele, Integrable solutions of a Functional-Integral Equation, J. Integral Equations and Appl. 4 (1) (1992) 89-94
- [6] G.Emmanuele, Existence of Solutions of a Functional-Integral Equation in Infinite Dimensional Banach Spaces, Czech. Math. J. 44 (119) (1994) 603-609
- [7] I.Gel'fand, Abstrakte Funktionen und lineare Operatoren, Math. Sbornik 4 (1938) 235-284
- [8] A.Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930) 117-176
- [9] M.A.Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press 1964
- [10] M.A. Krasnosel'skii, P.P. Zabreiko, J.I. Pustyl'nik, P.J. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff 1976

- [11] R.H.Martin, Non Linear Operators and Differential Equations in Banach Spaces, Wiley & Sons 1976
- [12] A.V. Sobolev, V.I. Sobolev, Differentiability of the Hammerstein Operator and Solubility of a Nonlinear Hammerstein Equation, Soviet Math. 34 (1990) 67-77
- [13] P.P.Zabreiko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Miklin, L.S. Rakovshchik, V.J. Stecenko, *Integral Equations*, Noordhoff 1975