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ABSTRACT

- A recent result by Holub states that if E is a separable Banach space then any
operator T:L'(m) —E is a stronély Dunford-Pettis operator if and only if for
any weak* null sequence (x}) C E*, the sequence (7 *(x})) converges in measure
to 6 in L”(/m). In this short note we improve this result by assuming that £ is a
Gel'fand-Phillips space.

In a recent paper [5] Holub introduced the notion of strongly Dunford—Pertis
operators on L' (m), with (S, F, m) a o-finite measure space, trying to extend some
well-known results about Dunford—Pettis operators on L'(m), with (S, F, m) a
finite measure space, to the case of infinite measure, because they are meaningless
or false when passing from a finite to an infinite measure. In particular he charac-
terised strongly Dunford-Pettis operators from L'(m) into separable Banach
spaces E by means of the behaviour of the conjugate operator T* on weak* null
sequences of E*. The purpose of this note is to improve this result by considering
Gel’fand~-Phillips spaces instead of merely separable ones; we also remark that
our proof is simpler than Holub’s.

Definition 1.  An operator 7 from L'(m) into E is a Dunford—Pettis ( resp. strongly
Dunford—Pettis) operator if it maps relatively weakly compact (resp. uniformly
integrable and bounded) subsets into relatively compact ones.

We refer to [1] and [5] for these definitions; we also recall that a subset X of
L'(m) is uniformly integrable if for every € > 0 there is 8 > 0 such that, if A€ F
with m(A4) < 8, then [, |f(s)|dm < e for all fE€ X [3].

It is clear from Definition 1 and a well-known characterisation of relative weak
compactness in L'(m) [3] that if the underlying measure space is finite, then
strongly Dunford—Pettis operators are exactly Dunford—Pettis operators.
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Definition 2 [2]. Let X be a bounded subset of E. X is called limited if for each
weak* null sequence (x#) in E* one has

lim sup [x#(x)| = 0.
” X

E'is a Gel'fand-Phillips space if its limited subsets are relatively compact.

It is known that separably complemented Banach spaces, Banach spaces with
weak* sequentially compact dual balls, Banach spaces with the Schur property
and dual Banach spaces with the weak Radon-Nikodym property are Gel'fand—
Phillips spaces. Hence the following theorem is strictly more general than Holub’s
result.

Theorem. Assume that E is a Gel'fand-Phillips space. Then any T from L'(m)
into E is strongly Dunford-Pettis if and only if for any weak* null sequence
(x}) C E*, the sequence (T *(x¥)) converges in measure to 0 in L*(m).

Proor. One implication is in theorem 3.4 of [5]. We have only to show the
sufficiency of the condition on 7*. Let X be a uniformly integrable, bounded
subset of L'(m). Since E is a Gel'fand—Phillips space it suffices to show that T(X)
is a limited subset of E. Assume this is false. Then there is a weak™* null sequence
(v%) in E*, a sequence (f,) C X, and H > 0 such that

H<[(TEDGH = (T (f)] ke,

By hypothesis the sequence (T *(y})) converges in measure to 6 in L™ (m); hence,
by passing to a further subsequence if necessary, it converges almost uniformly to
6 [3]. By the uniform integrability of X given HI3M (M = sup||T*(y¥)|)) there is
8> 0 such that for 4 € F, m(A) < 8, one has [, [fx(s)| dm < HI3M, for all k € N.
Now, consider an A; € F with m(As) < & and (T*(y})) converging uniformly to
0 outside of A;. For k sufficiently large we get

sup | T*(y¥)(s)| < H/3B
SiAg

where B = sup ||f,]. For the same values of k& we have
K
H<IT G0 = || 7T dm|
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a contradiction that finishes the proof.
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Corollary. Lert (S, F, m) be a finite measure space and E be q Gel’fand-Phillips
space. Then T:L'(m) > E is q Dunford-Pettis operator if and only if T* maps
weak* null sequences in E* into sequences in L™ (m) converging in the L' (m)-norm.

This last result improves partially the following well-known fact: an operator
from L'(m) into an arbitrary Banach space E is Dunford—Pettis if and only if T*
(unit ball of E¥) is relatively compact in L*(m) in the L'(m)-norm [4, p. 65].
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