A NEGATIVE ANSWER TO A QUESTION OF TECK-CHEONG LIM ABOUT PSEUDO CONVERGENCE

GIOVANNI EMMANUELE

A bounded sequence (x_n) in a Banach space X is said to *pseudo-converge* to a point x_0 , called a pseudo limit, if x_0 minimizes the function

$$f_s(x) = \limsup_{m} ||y_m - x||$$

for every subsequence $S=(y_n)$ of (x_n) . In the recent paper [2] the author put the following question: Is it true that in a general Banach space X, if (x_n) pseudo-converges to θ , then there exist a sequence (z_n) in X and a sequence (z_n^*) in X^* such that $z_n^* \in J(z_n)$ for all $n \in \mathbb{N}$, $z_n^* \stackrel{w^*}{\to} \theta$ and $\lim_n ||x_n - z_n|| = 0$? (here J denotes a duality map; see [2]).

In this short note we want to show that when $X=l_{\infty}$ the answer to the above question is negative. Let us choose $x'_n=e_n$, the unit vector basis of c_0 ; it is well known that it converges weakly to θ . Furthermore, it is simple to see that it pseudo-converges to more than one point of l_{∞} ([2]). Choose one of its nonzero pseudo-limits x'_0 and put $x_n=x'_n-x'_0$ for all $n\in \mathbb{N}$. Let us assume that there exist (z_n) and (z_n^*) as in the question above. It is clear that $z_n\stackrel{w}{\to} -x'_0$, too. Furthermore, $z_n^*\stackrel{w}{\to} \theta$ in $(l_{\infty})^*$ (see [1, p. 103, Theorem 15]). Hence $(z_n^*,z_n)=(z_n^*,z_n+x'_0)+(z_n^*,-x'_0)$; using well-known results about C(K) spaces $(l_{\infty}$ is isomorphic to $C(\beta N)$!) (see [1, p. 113, Exercise 1]) we obtain that $(z_n^*,z_n)\to 0$ and so $z_n\stackrel{s}{\to} \theta$; this easily implies that $x'_0=\theta$. This contradiction concludes the proof.

At the end we observe that each space X with the Dunford-Pettis property and the Grothendieck property, too, can be used to answer in the negative Lim's question as done above (for these definitions and

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on July 6, 1992.
Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy (40%–1990).

Key words. Pseudo-convergence, spaces of bounded sequences.

useful reformulations, we refer to [1]), provided there exists in X a w-null sequence that pseudo-converges to a nonzero pseudo-limit.

REFERENCES

- ${\bf 1.}$ J. Diestel, Sequences and series in Banach spaces, Grad. Texts Math. ${\bf 92},$ Springer Verlag, 1984.
- 2. Teck-Cheong Lim, Pseudo-convergence in normed linear spaces, Rocky Mountain J. Math. 21 (1991), 1057–1070.

Department of Mathematics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-MAIL ADDRESS: EMMANUELE @ MATHCT.CINECA.IT