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SECTION 1 

LET E be a Banach space and let X be a bounded, closed and convex subset of E. We consider 
a function f, f: X-, X, which is nonexpansive, i.e. 

]lfx - fy]i c 11x - y]( for eachx, y E X. 

In order to construct a fixed point off, Ishikawa (see [2]) considered the following iterative 
process, which is a particular case of an iterative procedure introduced by Mann ([4]): let 
x1 E X and let {tn} be a sequence of real numbers such that there is b E [w for which 

m 

Oct,cb<l, &= 03. 
n=l 

The Mann-Ishikawa sequence is defined by 

& + 1 = (1 - &t)X” + MXn for all n E N. 

In [2] there are proved two very important properties of the above defined sequence {x,}; 
indeed, Ishikawa showed that 

lim I/xn - fxn]l = 0 (1.1) n 

IIXn+l - Yll ss Ilxn - YII for all n E N (1.2) 

where, in (1.2), y is a fixed point off, if it exists. 
The purpose of this note (sections 2 and 3) is to show that under suitable assumptions on 

f, X, E we can guarantee that 

(i) f has a fixed point 
(ii) {x~} converges (either strongly or weakly) to a fixed point off. 

Moreover, in section 4, we prove briefly that certain conditions due to Petryshyn & 
Williamson (see [6]) can be extended to the Mann-Ishikawa sequences in order to show that 
(ii) is true; in this case, we suppose that S(f) # 0(%(f) the fixed point set off). Always in 
section 4, we prove that {xn} converges strongly to the unique fixed point off, if f satisfies a 
suitable condition of contractive type with 9(f) # 0. 
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At the end, in section 5, we prove that most of the Mann-Ishikawa iterative processes 
converge, in the sense that in aSuitable complete metric space M of nonexpansive functions, 
there exists a dense Ga-subset M of A4 for which (i) and (ii) are true. 

SECTION 2 

In this section, we consider only conditions on f in order to prove our thesis. 
(al) First of all, we consider a simple generalization of Theorem 1 of [2]. Indeed, we suppose 

that 

@(A)) < 44) A CX, a(A)>0 

where a(Y), Y C X, is the Kuratowski measure of noncompactness of Y (see [l]). 
It is easy to show that, by (1. l), it follows (u({x,}) = 0; and so, there are {.Q(~)} and y E X 

for which XQ) A y; by (1. l), y = fy and by (1.2) a d 2 0 exists for which liDm 1(x, - y]l = d; 

since linm JJx~(~) - yJJ = 0, we obtain d = 0. Then, x, A y. 

(a*) Now, we suppose that there is g, g: iw+ + R, with g(r) < r if r > 0, g continuous from 
the right and nondecreasing, for which, for each x, y E X, 

(fx -fY7.0+ = (fx -fY,X -Y)+ %(lGc -YII) IIX -Y II (2.1) 

( or 

(f- -fY,i)+ = (fx -fY,X -Y)+ sg(llx -Yl12)) (2.1)’ 

where (x, j)+ = (x, y>+ = sup{j(x): j E J(x)), J(x) = {i, i E E*, llill* = IlxlJ = i(x)) (see [II>. 
Then, we have 

/IX” - x,1]* = (X” - x,, -&I - x,) + = (%I - fxn +fxn - fxm +fxm - xm, X” - xm) f 

=G lb” - GIlI (II& - fxnll + II&n - fXmll) + (f&l - fxm, x0 - &?I> t; 

if E > 0, a v E N exists for which IZ, m 2 Y implies 

I/& - G?ll12 6 E + g(llxn - &II) II& - &II 
since, LY({x,}) =a({~,,},~~), we obtain 

a*({~,}) c g( a({x,}))cu({x,}) + e for all s > 0 

and so 

this fact implies cu({x,}) = 0 and the thesis is true like in (al). 
(a3) We suppose that there exists g, g: lR+ + R, continuous 

(2.1) (or (2.1)‘) is true:, ,, 

with g(r) < r if r > 0, for which 

Then, putting u,,,,, = ]Ix, - x,(1 and v, =,s,“c, u,,,, we have like in (a$: 

&n=+g(~“,)u”, foralln,m 2 Y, V= Y(E). 

Since there exists a sequence of u,,‘s which converges to u,, r 2 V(E), we obtain 

uf c E + g(u,)v, for all r > Y(E) 
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On the other hand, u,+i c u,, r E N, and so there is u 2 0 for which lim U, = u. By using 

continuity of g, we have 

u* S g(u)u + & for each E > 0; 

then as in (a2), we have u = 0. This fact implies that (i) and (ii) are true. 
Now, we show that there exist f’s which are nonexpansive and satisfy conditions like in 

(a*) or (as), with an example. 
We suppose E = 11, X = B(0, 1). We consider a function h, h: X-,X, defined by 

h: (x1, x2, . . . , x,, . . .) + (-xi, -x2, . . . , -x,, . . .); we have 

]lhx]l = ]]x]i for each x E X 

llhx - hyll= I/x - ~11 for each x, y E X 

(hx-hy,x-y)+GO for each x, y E X 

(for a definition of (. , . )+ and its calculation in Ii, see [l]). 
Then, let k, k: X+X, be the following function 

k: (x1,x2,. . . ,xn,. . .> +1(<1 - IblD,~~(1),~~(2), . . . ‘XP(4, 

where p is an arbitrary bijection from N onto N. 
We have 

llkxll c i for each x E X 

jlkx - kyll s IIx - yll for eachx, y E X 

now, we define f, f: X-, X, by 

fx = (l/2) (hx + kx) for all x E X; 

. . 

(2.2) 

(2.3) 

(2.4) 

.I 

(2.5) 
(24 

by (2.2) and (2.5) it follows fx E X, for each x E X; by (2.3) and (2.6) it follows that f is 
nonexpansive in X, moreover, if x = 0 and y = (1, 0, . . . , 0, . . .), we have Ilf 0 - fyi1 = 
IJO - yll; furthermore, (2.4) and (2.6) imply that, for any j E J(x - y), for each x, y E X 

(fx -fY,d+ = (fx -fv,x -Y)+ W/2)Ilx -Yl12i 

then, we have to consider g(r) = (1/2)r in (a*) and (a3). 

SECTION 3 

Now, we consider conditions on X, E which guarantee the weak convergence of the 
Mann-Ishikawa sequence to a fixed point off. 

More precisely, we suppose that E satisfies the so-called Opial’s condition, i.e. (see [5]) for 
all x0 

lim inf (Ix, - x0]/ < lim inf IJx, - y/l for each y # x0 
n n 

for each sequence {xn} which converges weakly to x0. If X is convex and weakly compact, we 
shall prove that (i) and (ii) are true. 

By weak compactness of X, there exists {x+)} which converges weakly to a y E X. With 
standard proof we show that y = fy. We suppose that {xn} doesn’t converge weakly to y; then, 
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there are {oh} and z +y such that x,+,) -ri z; then, z =fz. By (1.2) there are d(y), d(z) > 0 
for which 

d(v) = lim Ilx, - Y II, d(z) = lim /lx, - z(/. 
n n 

If d(y) C d(z), i.e. 

lim 11x, 
n 

- Y II s lip 11~ - zll 

we have an absurdum, since by (3.1) it follows 

lip Il~h(~) - YII 6 “,” IIqn) - 4 

which isn’t true; in a similar way, we show that cannot be d(y) 2 d(z). 
Then, {xn} have to converge weakly to y. 

(3.1) 

SECTION4 

With similar proof like in [6] we can prove the two following theorems which extend some 
results due to Petryshyn & Williamson to the case of Mann-Ishikawa sequences for nonex- 
pansive mappings (we observe that in [6] quasi-nonexpansive functions are considered). 

THEOREM 4.1. Let f, X, E and {xn} be as in section 1. We suppose that S(f) # 0. Then, 
{x,} converges strongly to a fixed point off if and only if 

lim d(x,, S(f)) = 0. 
n 

THEOREM 4.2. Let f, X, E and {xn} be as in section 1. Then, {x,,} converges strongly to a fixed 
point off if and only if there is a compact subset K of X for which 

lim d(x,, K) = 0. 
n 

We observe that it is possible to show a result similar to Theorem 1.2 of [6]. 
Now, we consider nonexpansive f’s satisfying a condition like 

“given E > 0 and y E X there exists 6 > 0 such that for each x E X for which 
E < IIx - y]J c E + S we have II fx - fyll s E - 6”. 

If we suppose S(f) # 0 for such a f we can prove that the Mann-Ishikawa sequence 
converges strongly to the (unique) fixed point of f. Indeed, if 0 <E = lim 11~~ - zll, z = fz, 

there is 6 > 0 for which E < (Ixn - zll < E + 6, for sufficiently large IZ, usi:g (1.2). Then, we 

have lifxn - 211 s E - 6. Since (1.1) is true, there exists rl E N sufficiently large such that 

II&i - fxlill + llfxli - ZII ==I E; 
by (1.2) it follows that 

E = lim IIx, - z]l < ]lxn - zll < JIxA - fxlill + llfxli - zI/ < E 

which isn’t true. Then, E = 0 and our thesis is proved. 
A condition like the above one is satisfied if f is a G-contraction (see [3], p. 47). 
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SECTION 5 

In the last section, we consider the following set 

M = { f; f: X + X, f nonexpansive}, 

endowed with the metric 

4.L g) = SUP{llfX - g4: x E-u; 

it is known that (M, d) is a complete metric space. 
It is known that there exist nonexpansive functions which are fixed point free; for these 

mappings the Mann-Ishikawa iterative process doesn’t converge strongly. Nevertheless, we 
can prove the following result: 

THEOREM 5.1. If there is a E [w for which 

O<aCt, for each n E N, 

there exists a dense G&-subset R of A4 such that, for each g E 2, (i) and (ii) hold. 

Proof. First of all, we observe that, if M” = {f; f E M, f is a contraction with constant of 
contractivity kf E 10, l[}, A?’ = M and (i), (ii) are true for any f E MO. 

Now, we consider 

Ml = fNf,u,o B(f, V (f, l/n)), 

where B(h, r) ={g, g E M, d(h, g) < r} and V (f, l/n) is a real number such that 
b v (f, l/n)/(l -Z+) s l/n, where Hf = 1 - a + akf < 1. 

If f E Ml, for each IZ E N, there exists fn E MO such that d(f, f,J G V (fn, l/n). If we put, 
for each h E Ml, 

&+I = (1 - t,,Jx”, + t, hx: for all m E N 

fm _ we have, ifd=xl -xlEX, 
m-1 

llxfn+1- d-F+1 Ilsbv(f,,,l/n) [FoHi,, forallmEN; 

we observe that (5.1) can be showed easily by induction on m. 
By (5.1) it follows that 

lim sup IIxL+~ - xf+lll S l/n. 
m 

(5.1) 

Now, we observe that Vidossich (see [7]) has proved that there is a dense Ga-subset M2 of 
M such that M2 2 MO and 

(bl) each g E M2 has a unique fixed point xg. 
(bz) the function f + xf, xf = fxf, is continuous from M2 into X. 

Then, we put z = Ml n&4;; obviously, E is a nonempty dense Cd-subset of M (E > MU) 
and (i) is true for any g E M. We have only to show (ii). for this purpose, let g E %; there 

exists a sequence {fn} c MO for which (5.1) is true. 
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Then, we have 

/lx& - xgll c j/x% - x$/l + llxh - xfnjl + llxt - xgll for all m, 12 E N. 

Given E > 0, there exists ,U E N for which llxh -xgll c E, for each n 2 p; then, if n 2 ,M, 
A al/~, one has 

lim sup (Ix& + I - xgl( s lim sup I[_$+ 1 - xffiJI + lim sup Ilxh+ 1 - Xdll + lim SUP (lXf’ - Xgll s 2E 
m m m m 

for each E > 0. 
This fact implies that 

lim /xi + 1 - xgll = 0. 
m 

Then, the proof is complete. 
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NOTES 

We suppose that (2.1) is true for a g such that 

(i) g(r) < r if r > 0; 
(ii) there exists 

lim g(r) <g(T), for i E lQ+. 
r-i+ 

Then, using a proof as in “D. W. Boyd & J. S. W. Wong-On nonlinear contractions-Proc. Am. Math. Sot. 20, 
458-464 (1969)“, we can show that {x.} converges strongly to the unique fixed point of c 

We observe that in (az) and (a3) we can use (. , .)- (see [1]) instead of (. , .)+. 
Another result about weak convergence can be obtained if E is strictly convex, X is weakly compact and convex 

and f satisfies the following conditions 

(j) f is demiclosed, i.e. y. -fy, 1, ~9, ykcn) J y imply y = fy (then s(f) # 0). 
(jj) there is an increasing function rp, rp: [w’ + Iw’, which satisfies v(O) = 0, lim dr) =+ cc and such that 

T--t+= 

where i denotes the identity mapping on E. 

In this case, we have that S(f) is a singleton; and so, by demiclosedness, x,%x, {xx) =9(f). 
We observe that a function f satisfying (jj) is called q?-accretive (see “H. Brezis & M. Sibony-Methodes 

d’approximation et d’iteration pour les operateurs monotones-Arch. Rat. Mech. An. 28, 59-82 (1967168)“). 
Now, we suppose that E satisfies the following assumption 

Y.-llY> lIY”ll+ IIYII imply ym : y 
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(see “K. Fan, I. Glicksberg-Some geometric properties of the spheres in a normed linear space--Duke Mnrh. J. 
25, 553-568 (1958)“). 

Since x, -fx”: 8, we have /1x,/I -+ /xjl, {x} = s(f) (see L emme 2.1 by Brezis & Sibony, op. cit.). Moreover, as 

above, ~,~~x;so,~,~x. 
In this way, we extend a result by Gwinner (“J. Gwinner-On the convergence of some iteration processes in 

uniformly convex Banach spaces-Proc. Am. Math. Sm. 71, 29-35 (1978)“). 


