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LIFTING OF ROTUNDITY PROPERTIES FROM 
E TO LP{^E) 

GIOVANNI EMMANUELE AND ALFONSO VILLANI 

A B S T R A C T . We consider some rotundity properties which 
axe extensions of the uniform rotundity and show that these 
properties lift from the Banach space E (or from the conjugate 
Banach space E*) to the Lebesgue-Bochner function space 
L p( /x,£) (or to (LP(/x, £) )*) , 1 < p < oo. We make no 
assumption on E*\ in particular, we do not assume that E* 
has the Radon-Nikodym property. 

0. Introduction. In their paper [16] Smith and Turett give 
several interesting results about the geometry of the Lebesgue-Bochner 
function spaces Lp(/j,,E). In particular they show that the following 
statement holds. 

THEOREM 0. Let (S, X^A*)> a finite measure space, and E, a Banach 
space, be given. Assume that E*, the conjugate space of E, satisfies 
the Radon-Nikodym property. Then Lp(ß,E), 1 < p < oo, is weakly 
uniformly rotund if and only if E is. 

One of the purposes of this paper is to prove the above result 
without any assumption on E*. (By the way, it is unknown up to 
now whether the weak uniform rotundity of a Banach space E implies 
that E* has the Radon-Nikodym property). Moreover, we consider 
three other geometric properties, namely weak local uniform rotundity 
weak* uniform rotundity (in a conjugate space) and weak* local uniform 
rotundity, and we show that they lift from E (or E*) to Lp{ß,E) (or 
(Lp(/j,, E))*). Also for these properties we will make no assumption on 
E*. It is worth noting that assuming the Radon-Nikodym property for 
E* would be an effective restriction in this case (see Remark 4 at the 
end of the paper). 
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Th question of whether certain properties of a Banach space E are 
inherited by Lp(/i, E) has been studied extensively (see Day [3], Diestel 
[4], Leonard and Sundaresan [10] and [11], Mc Shane [13], Smith and 
Turett [16], Sundaresan [17], Turett and Uhi [18]). 

1. Definitions. To begin with, let us recall the cited geometric 
properties. Two of them ((WUR) and (W*UR)) are directionalizations 
of the uniform rotundity (a property introduced by Clarkson in the 
famous paper [1]), as underlined by Smith [14]. The remaining prop­
erties are localizations of the preceding ones, as it is easily realized. 
Throughout E will be Banach space with norm 11 • 11 and E* will be the 
conjugate space of E with norm || • ||*. 

DEFINITION 1. (see [2]). E (resp. E*) is said to be weakly uniformly 
rotund (WUR) (resp. weakly* uniformly rotund (W*UR)) provided 
that \\xn\\ = | |yn | | = 1 for every n e N and \\xn + yn\\-+2 imply 
that xn - T/n^0 (resp. | | /n | |* = Htfnll* = 1 for every n G N and 
| |/n + 9n\\* -> 2 imply that fn - gn^0). 

DEFINITION 2. (see [12] and [9]). E(resp.E*) is said to be 
weakly locally rotund (WLUR) (resp. weakly* locally uniformly ro­
tund (W*LUR)J provided that \\x\\ = \\yn\\ = 1 for every n G N and 

w 

Ik + Vn\\ -> 2 imply that y^x (resp. | | / | |* = ||^n||* = 1 for every 

ne N and \\f + gn\\* —• 2 imply that grr^f)-

The connections among the above rotundity properties (for a conju­
gate space) are contained in the chart below where an arrow denotes 
implication: 

(WUR) • (WUR) 

(WLUR) v (W*LUR). 

Obviously, for a general Banach space, this chart reduces to: (WUR) —• 
(WLUR). No implication can be reversed (see §4). 

Let (5, J3,/i) be a measure space. We will denote by Lp( /z ,E),\ < 
p < oo, the Lebesgue-Bochner function space of //-equivalence classes 
of strongly measurable functions / : S —• E with fs \\f(s)\\pdß < oo, 
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endowed with the norm 

MI/HI = (^n/(*)iip^)1/p. 

We will denote by 11| • 11|* the norm of the conjugate space (Lp(/i, E))*. 
For our purposes an integral representation theorem for the elements 
of (Lp(/i, E))* will be useful. Its most general form is due to A. and 
C. Ionescu Tulcea [8] (see also Dinculeanu [7, p. 119]); as far as it is 
known (see [5, p. 116]), it is used here, in the study of the structure of 
Lp(fi, E), for the first time. We state it as a lemma. 

LEMMA 0. Let (5, £), A*) be a a-finite measure space. Then for each 
linear continuous functional L on Lp(fi,E) there exists a function g, 
g: S -> E* such that: 

(a) the function s —+ (g(s),f(s)} is an element of L1 ([1,11) for every 
feLP(ß,E); 

(b) L(f) = fa(g(s), f(s))dß for every f € L"(p, E); 
(c) the function s —• ||ff(s)||* is an element ofLq(ß,R), l/p+l/q = 1; 

and 

(d) | | |L| |U = ( / s | | f f ( S ) | | 2 ^ ) 1 / 9 . 

2. Reformulation of the rotundity properties. In order 
to obtain useful reformulations of the above rotudity conditions, we 
consider a class G of real functions G(w, v, t) defined for u > 0, v > 
0, t > 0. We say that G G 9 provided that: 

i) G{u, v, t) > G{u, v, t') if t < t'; 
ii) G is continuous; 

iii) G(u, v,u + v)>0; and 
iv) G(u, v, u + v) = 0 if and only if u = v. 
The class Q contains, for example, the functions G r , 1 < r < oc, given 

by 

(*) Gr{u,v,t) = 2T-l{uT+vr)-tr. 

LEMMA 1. For every Banach space E the following are equivalent: 
j) E is (WUR); 

jj) any G € Q satisfies the condition: 
(1) for bounded sequences {xn},{yn} C E, G(||x„||, \\yn\\, \\xn + 

yn\\) —• 0 implies xn - yn-^0; and 
jjj) the condition (1) satisfied by some G e $. 
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PROOF, j) =̂  jj). Arguing by contradiction, we assume that the exist 
G€$,feE*,e>0 and two bounded sequences {xn},{yn} C E 
for which G(| |xn | | , \\yn\\, \\xn + yn\\) -> 0 and \f{xn - yn)\ > e. Since 
{xn},{yn} are bounded, we can suppose that d\,d<i,l G [0,oo[ exist 
such that | |xn | | - • di, | |yn | | -+ d2, \\xn+yn\\ - • /; obviously, / < d1-\-d2. 
On the other hand, i) and iii) imply 

0 < G(||*„||, | |yn | | , | |*„| | + ||y„||) < G(||*„||, | | j , n | | , \\xn + yn\\) 

and so, letting n —» oo and using ii), we have 

0<G(d1,d2,d1+d2) <G(dud2,l) = 0. 

Hence, by iv), d\ = d2 = d follows, whereas i) gives I = 2d. Clearly 
d > 0 . 

Now, we consider the norm one sequences {x n / | | i „ | | } , {yn/||2/n||} 
with n sufficiently large. We have 

\f( Xn _ Vn \\ 
I^Uxnll \\yn\\)\ 

> I t(^L _ yjL\\ _ I f( x " _ ElL^ _i_ f/'Fu _ Vn \ 
-V\d d)\ \J\\\xn\\ d)+J\d \\yn\\) 

- d KV||xn | | d)+1\d \\yn\\)V 

consequently, for n sufficiently large, 

, , \f( Xn Vn V 
1 J l7MI*n|| | |yn| | / 2d 

On the other hand, 

(ß) 
Xn , Vn 2 > r + i 

l»n| T T I NVllzJI J U ||t/J|/ 2. 

(a) and (/?) contradict j). 
jj)=> jjj). This is trivial. 
jjj) => j). Consider two arbitrary norm one sequences {xn}, {yn} C E 

such that | |xn + yn\\ —• 2. Then, for any G G £, we have 

G( | | x n | | , | | y n | | , | | x n +» f l G(l , l , 2 ) = 0. 
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Since we are assuming jjj), we get xn - yn^0. 
The proofs of the following Lemmas 2-4 are analogous to that of 

Lemma 1. They will be therefore omitted. 

LEMMA 2. For every conjugate Banach space E* the following are 
equivalent: 

j) E* is (W*UR); 
jj) any G € Q satisfies the condition: 
(2) for bounded sequences {/n}, {gn} C E*, G(| | /n | |*, ||^n||*, ll/n + 

9n\\*) - • 0 implies fn - gn^0; 
jjj) the condition (2) is satisfied by some G € Q. 

LEMMA 3. For every Banach space E the following are equivalent: 
j) E is (WLUR): 

jj) any G G Q satisfies the condition: 
(3) for x G E and bounded sequence {xn} C E, G(||:r||, ||a;n||, ||ar -f 

xn\\) —• 0 implies x^x; 
jjj) the condition (3) is satisfied by some G E §. 

LEMMA 4. For every conjugate Banach space E* the following are 
equivalent: 

j) Em is (WLUR); 
jj)any G E Q satisfies the condition: 
(4) forfè E* and a bounded sequence {fn} C £*,G(| | / | |*, | | /n | |*, ||/-h 

fn\U) —• 0 implies fn^+f; 
jjj) the condition (4) is satisfied by some G 6 $. 

3. Lifting of the rotundity conditions. In this section we 
prove our main results concerning the lifting of the considered rotundity 
conditions from E to Lp{ß,E) (or from E* to (UfaE))*). 

For the sake of brevity and clarity we prove them supposing that 
( S , £ , A O is a a-finite measure space. We shall show later on (see 
Remarks 1 and 2) how this assumption can be dropped. Also, to 
avoid triviality, we always suppose the existence of a set X E Yl w * t n 

0 < p{X) < oo. 

THEOREM 1. LP(^E) is (WUR) if and only if E is. 



622 G. EMMANUELE and A. VILLANI 

PROOF. The "only if" part is clear since E is isometrically embedded 
in Lp(ß,E). 

To prove the reverse implication, assume that E is (WUR). We show 
that jjj) of Lemma 1 is true for Lp(/i, E), by taking G = GV,GV 

given by (*). All we need to prove is that, for bounded sequences 
{/»}, {»»} C Ln»,E},Gp(\ | | | / „ | ||, | \\gn\ ||, | | | / n + gn\ ||) -* 0 implies 
L(fn - ?„) — 0 for each L e (Lp(//, £))*. 

Proceeding by contradiction, we assume the existence of bounded 
sequences {/„}, {</„} C Lp(ß, E), a > 0 and L € (Lp(ß, E))* for which 
GP(\ | | /n| II, I llSnl II, I | |/n + <?«| ||) - 0 and L(fn - gn) > 2a. 

Now, according to Lemma 0, L has an integral representation L(f) = 
Js < h(s),f(s) > dfi, f e Lp(tx,E), where h, h : S -+ E*, is weak* 

measurable and such that f fs \\h(s)\\id/i] = \ \\L\ ||*, 1/p+l/q = 1. 

Hence 

/ (h(s), fn{s) — gn(s))d/j, > 2<7, for each n G N. 
Js 

Since h satisfies condition c) of Lemma 0, for each rj > 0 there exists 

a set Syj G 53? 0 < A^r/) < °°, f° r which f /Sv s ||A(s)||Jd/iJ < rj; 

it follows that for some S E 53? 0 < /*(£) < °°? 

(M5)? /n(s) - gn{s))dfi > a, for each ne N. h IS 

The inequalities 

G p ( | | | / „ | | U | | ( r n | | | , | | | / n + ffn|||)> 

/ GP(\\fn(s)\\, \\9n(s)\\, \\fn(s) + < M ( S ) | | ) ^ , for each n G N, 
Js 

and the fact that the integrands are nonnegative (by properties i) and 
iii) of the class Q allow us to suppose (by taking a subsequence if 
necessary) that Gp(| | /„($)| | , | |^nWH, \\fn{s) + £n(s)||) - • 0 a.e. on 5 . 

Let 

Pn={seS: (h(s),fn(s)-gn(s)) > - ^ - } , neN. 
1 2/i(S) J 
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We have for every ne N, 

°< f(h(s)Jn(s)-gn(s))dfi 
Js 

= I (Hs),fn{s)-gn{s))d»+ f (h{s),fn{s)-gn{s))dß 
JPn JS\Pn 

XJPn ' KJPn y 2//(5) 

hence 

/ ||A(*)IIÎ > ( £ ) * , 
JPn "2lJ 

where 7 is any upper bound for the real sequence {| \\fn\ || + | \\gn\ | | } . 
This implies the existence of a positive lower bound n for the real 

sequence {/i(Pn)}. 
Let 

Qn = [s e Pn : (\\fn(s)\\ + |M*)| |)P < ^ } . 

Then, we have, for every n € TV, 

~1P> f (H/nW|| + ||faW||)P^ 
" JPn 

> I (H/nWI| + ||foWII)P^ 
JPn\Qn 

> I (||/n WH + \\9n(s)\\)Pdn > ßi(Pn\Qn)^f; 
JPn\Qn V 

hence p(Qn) > 2 for e v e r y n e N. 
Consequently, denoting Q = lim supn Qn, we have /J>(Q) > ^ /2 . 
Then it is possible to take t e Q for which Gp(| |/n(Oil. ll0n(OIUI/n(0+ 

^n(0ll)-0. 
Since £ G fì^Li Q/i(n), for a suitable subsequence {Q/i(n)} of {Qn}, 

then {//i(n)(O}>{0/i(n)W} a r e bounded sequences in E and so, by 
Lemma 1, /Ä(n)(*) - gh(n)(t)^0. This is absurd since (h(t),fh{n)(t) -
9h(n)(t)) > ^ y for each n e N. 

The proof is complete. 

The proof of Theorem 1 can be adapted to show the following 

THEOREM 2. {Lp{ß,E))*is (W*UR) if and only if E* is. 
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In a similar way, the proofs of the remaining results concerning 
(WLUR) and (W*LUR) are quite analogous, so it will be enough to 
display only one of them. To show that our techniques work in the 
case of a conjugate Banach space, we will prove Theorem 4 concerning 
(W*LUR). 

THEOREM 3. Lp{p,E) is (WLUR) if and only if E is. 

THEOREM 4. (Lp(/x,£))* is (W*LUR) if and only if E* is. 

PROOF. Clearly, if (Lp(/i,£))* is (W*LUR), then E* is. Vice-versa, 
suppose that E* is (W*LUR). We show that jjj) of Lemma 4 is 
true for Lp(/i ,£))*, by taking G = Gq, 1/p + l/q = 1, Gq given 
by (*). Proceeding by contradiction, we assume the existence of an 
L e (Lp(/i, E))*, a bounded sequence {Ln} C (LP(/J,, JE?))*, a a > 0 and 
a n / G L p ( / i ,£) , for which Gq(\ \\L\ H„ | \\Ln\ | | „ | \\L + Ln\ | | ,) ^ 0 
and {Ln-L){f) >a. 

According to Lemma 0, L , L i , L 2 , . . . have integral representations 
by means of weak* measurable g,gi,Q2, 

By (d) of Lemma 0, 

J G,(| |0(*)||., \\gn(s)\\„ \\g{8) + gn(s)\LW = 

Gq 

yj\9(s) + gn(s)\\Uß)J-+C 

and, by (b) of Lemma 0, 

/ (gn{s)-g{s),f(s))dti>a. 
Js 

As in Theorem 1 we can suppose that 

Gg( | |^ ) |M|^nWII* , | |gW + ^n(«)| |*)-^0 a.e. on 5; 

hence, by properties i) and iii) of the class £, we obtain 

G,(||ff(«)||.,||ff„(*)||.,||ff(*)||. + | | f t , ( * ) | | . ) - 0 a.e. onS. 
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Since lim^^oo Gg(u, v, u + v) — oo, we have that {gn(s)} is a bounded 
sequence in E*, a.e. on 5. Using Lemma 4, gn(s)^g{s) a.e. on S. It 
follows that (gn(s) - g(s), f(s)} —• 0 a.e. on 5 . On the other hand, for 
any X E X) and any n e N,we have 

^ I M * ) - 0(*),/(s)}|d/i < const ( | \\f(sWdßj] ii/wirW * 
/ x 

As a consequence of this, if we define, for s e S and neN, 
hn(s) = \(gn(s)-g(s),f(s))\, 

then we have that {hn} is a sequence in Lx(fiR) for which all the 
assumptions of Vitali Convergence Theorem [6, Theorem III.6.15] are 
satisfied. It follows that hn -+ 0 in L ^ R ) , whence 

f(9n(8)-g{8),f(s))dn->0, 
' S 

a contradiction. The proof is complete. 

REMARK 1. To extend Theorem 1 to the case of an arbitrary measure 
space (S,£>/*) it is enough to notic that, by Lemma III.8.5 of [6], 
for any two sequences {fn},{9n} C Lp{n,E) there exist a a-finite 
measure space ( S i , ^ , / ^ ) and a closed separable subspace Ex of E 
such that Lp(iiX,Ei) is isometrically isomorphic to a (closed) subspace 
M of&(p,E) and {/„},{?„} C M. Since L p ( / ü ,£ i ) is (WUR) if £1 
is (this has already been shown), it is clear that condition jjj) of Lemma 
1 is verified for Lp(ß, E) if E is (WUR). 

A similar argument shows that Theorem 3 holds for an arbitrary 
measure space. 

REMARK 2. Also the extension of Theorem 2 and Theorem 4 to the 
case of an arbitrary measure space (5, J ^ AO is achieved by means of a 
suitable application of Lemma III.8.5 of [6]. Indeed, according to that, 
for any sequence {Hn} c {Lp{ß,E))* and any / € LP(^E), there are 
a a-finite measure space (Si, ]Ci> A*i) anc* a closed separable subspace 
£1 of E such that: 

h) there exists an isometric isomorphism i from Lp(iii,E\) into 
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hh) fei(LP(iiUEi)); and 
hhh) for each nE N, the norm of the element Hnoi of (Lp(/ii, Ei))* 

is equal to | | | # n | | | * . 
From this remark it is clear that condition jjj) of Lemma 2 (resp. 

Lemma 4) is verified if E* is (WUR) (resp. if E* is W*LUR)). 

REMARK 3. The techniques used in this paper allow us to extend 
the lifting results concerning local uniform rotundity and uniform ro­
tundity in every direction due to Smith and Turett [16, Theorem 2 and 
Theorem 6] to the case of an arbitrary (not necessarily finite) measure 
space (5, X^,/i). Moreover they can be used to prove that the conju­
gate space (Lp(fi,E))* is strictly rotund or uniformly rotund in every 
direction whenever E* is. We leave the details to the reader. 

4. Addendum: two examples. To finish we would like to display 
some examples showing that no implication in the chart (C) can be 
reversed. 

EXAMPLE 1. (a ( W U R ) conjugate norm in l°° that is not (WLUR)). 
By [19; Theorem 5, p. 427]) it is possible to introduce in CQ an 
equivalent norm which is (WUR). The corresponding dual norm in 
I1 is uniformly Gateaux different iable and so it determines a dual norm 
in Z°° that is (WUR) (for these implications see Cudia [2; Corollary 
3.14, p. 295]). On the other hand l°° cannot be equivalently renormed 
(WLUR) (see [12, Theorem 5.3, p. 261]). 

EXAMPLE 2 (a (WLUR) conjugate norm in I1 x I2 that is not 
(WUR)) . In [15] Smith gives an example (Example 6) of a conjugate 
norm on I1 which is (LUR), denoting it by || • | |^, and an example 
(Example 1) of a conjugate norm on I2 which is (LUR) but not ( W U R ) , 
denoting it by || • | |L . Then, the norm | | ( x , y ) | | ß x L = (||x|||; + | |y| |£)* 
on I1 x I2 is an equivalent conjugate norm that is ((LUR) and hence) 
(WLUR) but not ( W U R ) . 

REMARK 4. We observe that Example 1 furnishes an example of con­
jugate norm in /°° that is (WUR) , whereas Z°° does not satisfy the 
Radon-Nikodym property; in the same way, Example 2 furnishes an ex­
ample of a norm in I1 x I2 that is (WLUR), whereas {I1 x / 2 ) * = / ° ° x I2 

does not satisfy the Radon-Nikodym property. 
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