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A Linear Hyperbolic System 
and an Optimal Control Problem 

G. E M M A N U E L E  1 A N D  A. V I L L A N I  2 

Communicated by R. Conti 

Abstract. We prove a theorem of existence, uniqueness, and con- 
tinuous dependence for a linear hyperbolic system with Darboux-type 
conditions under assumptions on the coefficients, which are in a sense 
the most general possible. Moreover, an application of this result to an 
optimal control problem is given. 

Key Words. Linear hyperbolic systems, Darboux-type conditions, 
existence and uniqueness theorems, continuous dependence theorems, 
minimization problems, existence theorems. 

1. Introduction 

In the present paper,  we consider the following linear hyperbolic system 
(state equation): 

(E) Zxy+A(x,y)zx+B(x,y)zy+C(x,y)z 

= F(x, y) U(x, y) + G(x, y), 

where 

A = ]0, a[×]O, b[, 

z(x, y) c R", 

F(x, y) c ~ " " ,  

and the control U belongs to a given set 

6~/C LP(A, ~m), p c ] l ,  +co[. 

a.e. in h, 

a, b > O ,  

a(x, y), B(x, y), C(x, y) 6 N,v,, 

G(x,y)eR", 
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Let the trace of z on the two sides of A which contain the origin be 
the initial state, and let a given subset Y of a suitable functional space (of 
Sobolev type) be the target to be achieved on the two sides of A which do 
not contain the origin. 

For a given set X of initial states, we denote by (X x°~) Y the set of 
admissible pairs, i.e., the elements of X x q / fo r  which the output z is such 
that ( z ( . ,  b), z(a, .  )) c Y. 

In this framework, some rather general optimal control problems have 
been studied using direct methods of the calculus of variations (see, for 
example, Refs. 1-2). In the above quoted works, the coefficients A, B, C 
are assumed to be continuous in A, and a representation formula for the 
solutions of (E) is largely used. Also, Suryanarayana (Ref. 3) studies similar 
optimization problems, using different techniques, under boundedness 
assumptions for A, B, C. 

In a recent paper (Ref. 4), the results of Ref. 2 are extended to the 
case of nonnecessarily bounded A, B, C. This is established by giving an 
existence, uniqueness, and continuous-dependence (on the control and the 
initial state) theorem for the solutions of (E) and using no representation 
formulas. More precisely, the assumptions on A, B, C, considered in Ref. 
4, are as follows. 

(a) A is measurable in A and there exists a ~ LP(]0, bD such that 
IA(x,y)l<-o~(y), a.e. in A. 

(b) B is measurable in A and there exists /3 ~ LP(]0, a[) such that 
JB(x,y)l<-fi(x),  a.e. in A. 

(c) c c L~(A). 

Following this line, in the present paper, we improve further the 
hypotheses on A, B, C. Indeed, our assumptions are in a certain sense (see 
Theorem 2.2) the most general possible. 

In particular, in section 2, we make some needed comments on the 
functional space of the solutions of the control process (E). In section 3, 
we prove an existence, uniqueness, and continuous-dependence theorem 
for the solutions of a boundary-value problem for a linear hyperbolic 
operator connected with (E). In section 4, we establish an existence theorem 
for the minimum in (X x o//)[ of a real functional J which depends on the 
initial state and the control, both in an explicit way and through the response 
z( .  ; (q~, ~), U) of (E) and the derivatives of such response. 

2. Some Properties of the Functional Space W*p(R, R n) 

Henceforth, we shall assume p c ] l ,  +0o[. Let ~ C R  2 be an open set. 
We denote by W*(O, R"), see Refs. 5-6, the Banach space (of Sobolev 
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type) of  functions w : ( x , y ) ~  w(x,y), from I~ to R", which belong to 
L p (f~, R"), together with their weak derivatives wx, Wy, wxy, endowed with 
the norm 

"~ tt Wy It 9<O,R") "~- I] Wxy tl PLP(f'~,Rn)) l/p" 

In the case where 0 is an open rectangle of ~2, 

f~ = R = ]xo, xl[X]yo, Yl[, 

one has the following characterization of  W*(R, R"); see Ref. 5. 

Theorem 2.1. A function w belongs to W*(R, N"), if it is of  the form 

w(x,y)  = h(~, rl) d~ drl + h~(~) d~ 
0 0 

f + h2(~?) dr1 + 3,, V(x ,y )~R,  (1) 
o 

with 

h ~ LP(R, R"), hi ~ LP(]Xo,X~[, N~), 

h2eLP(]yo, y,[,N"), yeN". 

Moreover, let 5ep(R, R") denote the product Banach space 

~l~p( R ' ~n )  = gp(  R ' ~n)  X LP(]XO, XI[ , ~n) X LP(]yo, Yl[, ~n) x~n.  

Then, the following fact also holds (see Ref. 5). 

Proposition 2.1. The transformation which maps each (h, h~, h2, 3') c 
5°p(R, R n) into the element w c W*(R, ~"), defined by (1), is an algebraic 
and topological isomorphism between 5~p(R, R n) and W*(R, R"). 

Using Theorem 2.1 and Proposition 2.1, the following properties of 
W*p(R, R n) can be easily established. 

Proposition 2.2. W*(R,N ") is embedded both algebraically and 
topologically in C°(R, R~). Furthermore, the embedding is compact. 

Proposition 2.3. Let w ~ W*(R, R"). Then, for each x c [xo, xl] [resp., 
y c [Yo, Yt]], one has 

w(x,. ) c Wl'V(]yo, y~[, R") [resp., w ( . ,  y) ~ Wl"V(]xo, xl[, N")1. 
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Moreover, for each x ~ [Xo, x~] [resp., y ~ [Yo, Yl]], the linear mapping (trace 
mapping) w-->w(x,.) [resp., w ~ w ( . , y ) ] ,  from W*(R,•") to 
WI'P(]Yo, Y1[, •") [resp., W~'V(]Xo, xl[, R")] is continuous, uniformly with 
respect to x 6 [Xo, xt] [resp., y ~ [Yo, Yl]]. 

Proposition 2.4. Let we W*(R, R"). Then, 

w~,(~,. )~ Wl"V(]yo, yl[,R") [resp., wy( . ,  ~)~  Wl"P(]Xo, Xl[,R")], 

for a.e. ( ~  ]Xo, x,[ [resp., F/~ ]Y0, Yl[]. Moreover, the real function 

a.e. in ]x0, xl[, 

[resp., r /~  Ilwy(', ~ a.e. in ]y0, yl[], 

is an element e(w) [resp., w(w)] of LV(]Xo, xl[) [resp., LP(]yo, Yl[)]. Also, 
the linear mapping w~e(w)  [resp., wow(w)], from W*(R,N") into 
LP(]xo, xl[) [resp., LV(]yo, Yl[)], is continuous. 

By Propositions 2.2 and 2.4, one is allowed to introduce in W*(R, ~") 
another norm I " I w ~ a " ) ,  putting 

The following fact is an immediate consequence of Propositions 2.2 
and 2.4. 

Proposition 2.5. The norms tt " tl w~,~R,R") and I " t w~;~r,n ") are equivalent. 

Next, let us consider the second-order linear hyperbolic differential 
operator P, 

Pw = w~y + a(x, y)w:, + B(x, y)Wy + C(x, y)w, 

where A, B, C are functions from R into R "". 
We have the following theorem. 

Theorem 2.2. For P(W*(R,R"))CLP(R,R"), it is a necessary and 
sufficient condition that A, B, C are measurable in R and satisfy 

fy'~ sup ess IA(x, r/)l v dr /<  +co, (2) 
x~]xo.x~[ o 

sup ess IB(~:, Y)I" d~: < +co, (3) 
YE]Yo,Yl[ 0 

CeLV(R,R'") .  (4) 
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Also, 

P( W*(R, R")) C LP(R, R") 

implies that  P is a l inear and cont inuous  opera tor  f rom W*(R, R") into 3 
LP(R,•"). 

Proof. Let 

P( W*(R, R")) C_ LP(R, R"). 

I f  we put  

then 

w(°e W*(R,N"), i= l , . . . , n .  

Hence,  it follows f rom the hypothesis  that  

Pw(°~LV(R,N"), i= l , . . . , n .  

Since 

C = ( e w ( l ) ,  . . . , e w ( n ) ) ,  

we obta in  

CeLP(R,R",n). 

Now,  let h be an arbitrary element o f  LP(]yo, ylD. Let 

and 

v(°(x, y)  = g(y)w(°(x, y), 

Then, one has 

Vy ~ ]Yo, Yl[, 

V(x ,y )  ~ R, i = t , . . . , n .  

v (0 ~ W*p(R, R"), i = 1,. . . ,  n, 

3 It will be proved later (see Theorem 3.1) that, if 

P( W*(R, R")) c_ LP(R, R"), 

then one actually has 

P( W*(R, n'~)) = LP(R, gU'). 

V(x, y) e R, 

g(y) = h(t) dt, 
o 
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and hence 

Pv°)ELP(R, Rn), i = l , . . . , n .  

Since 
hB :: ( Pv(~), . . . , Pv ~")) - gC, 

it follows that 

hB E:. LP(R, R"'"). 

Since h e LP(]yo, Y1[) is arbitrary, the function B is measurable. Furthermore, 

h[B[ e LP(R), for each h e LP(]yo, yl[). 

Consequently, if we put 

ff~ 
fl(y) = IB(~:, y)l p dE, y a.e. in ]Yo, Y~[, 

o 

then, by choosing h-= 1, we obtain 

el(y) < +oo, y a.e. in ]Yo, Yl[- 

Moreover, 

fy 'l dt < for each h LP(]yo, Yl[), Ih(t)lP~(t) +~,  E 
o 

and so (Ref. 7, Theorem 20.15, p. 348) 

sup ess/3(y) < +az, 
Ye]Yo,YI[ 

i.e., we have (3). In a similar way, we can show that (2) also holds. 
Conversely, let A, B, C be measurable functions from R to R ' "  which 

satisfy conditions (2), (3), (4). Then, for each w e W*(R, ~"), Aw~, BWy, 
Cw are measurable in R and 

f f gla(~, ~7)wx(~, ~)lP d'drl 

<~ (sxUcPoe,:,~ fyi' [a(x, "rl)IPdTIIH,(w)HPLp(] ..... I-,, (5) 

k Y~]Yo,YI[ 0 
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I IRIC(~, rl)w(~ , rt) f d~ d ,  <-11 cIl%,<~,~:~llwlt~o<~,~.). (7) 

Hence, 

P( W*(R,R"))C_LP(R,R"). 

Moreover, (5), (6), (7) imply 

llPwll :<n,:)-< constlw[ w~<R,~,,), Vw~ W*(R, R"). 

Consequently, the linear operator P, from W*(R,R ~) into LP(R,W'), is 
continuous, [] 

3. Boundary-Value Problem for the Operator P 

To simplify our presentation, we shall assume that 

R = A = ]0, a[×]0, b[. 

Let ~ ' )  and ~")  be the Banach spaces defined as follows: 

~( ')  = {(~, 0) ~ W"P(]0, a[, R ~) × W"P(]0, b[, ~ ) :  ~(0) = 0(0)), ~ p  

~ ' )  = {(X, 19) ~ Wl"V(]0, a[, R ") × WI"P(]0, b[, R"): x(a) = p(b)}, 

with the norm derived from the product Banach space 

W"P(]O, a[, R n) x W"P(]0, b[, R').  

The following is an immediate consequence of Proposition 2.3. 

Proposition 3.1. Let w~ W*(A, R'). Then, 

(w( ' ,0 ) ,w(0 , ' ) )c r~(p  ") and (w( . ,b ) ,w(a , , ) )~E~ "). 

Moreover, the linear mappings w ~ (w( . ,  0), w(0,. )), from W*(A, ~") into 
E~ "), and w-~ (w( . ,  b), w(a,. )), from W*(A, R") into 52(p "), are continuous. 

Now, let 

f c  LP(A, ~"), (~, tp) c 7~<p") 
be given. Consider the following boundary-value problem (BVP): 

w ~ w~*(a ,  ~"), 

Pw =f, (8) 

(w( . ,  o), w(0,- )) = (~, ~). 

The following theorem is the main result of the present section. 
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Theorem 3.1. Assume 

P( W~*(A, ~")) C L~( A, ~"). 

Then, fo:r any ((~, tp),f)~ E~")× LP(A, R"), the BVP (8) has a unique sol- 
ution 

w = w((q~, q)),f). 

Furthermore, the solution map 

((q~, 4t),f) -~ w((q~, ~0),f) 

is an algebraic and topological isomorphism between Ecp~ × LP(A, ~n) and 
W*(A, R"). 

Proof. For any open rectangle 

JC[~ 2, J=]xo, xl[×]yo, yl[, 

we denote by 7g'p (J, ~") the Banach space of the functions w in Wt'P(J, ~") fq 
C°(~ Rn), such that 

ix ~' sup ess twx(~, y)l p dE< + ~ ,  
o YE]Yo,YI[ 

fy ~ sup ess Iwy(x, ~7)1 p dr/< +~, 
o x~]Xo,Xl[ 

equipped with the norm 

[' w'l ~p(J,~"' = 'l W" c°(Y,R°) + [ f 2~ sup ess ' wx( ~' Y )'P d~] 

+ sup ess Iwy(x, n)l  ~ d n /  • 

Moreover, we denote by L the following first-order linear differential 
operator: 

Lw = A(x, y)w,: + B(x, y)Wy + C(x, y)w. 

By virtue of Theorem 2.2, A, B, C are measurable in A and verify (2), (3), 
(4). It follows that 

L(~p(J, R")) _C LP(J, ~" ) 

and 
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for each J C A, where 

Y( = sup ess IA(x, 77)1 p drt 
1_ x~]O,a[ 

Io ' +[sup ess IU(¢,y)l v d~]'/"+llCllL,<,,,~,,,°~ (9) 
L xc]0,b[ 

is a constant which does not depend upon J. 
Now, we notice that the BVP (8) is equivalent to the integrodifferential 

equation 

w ( x , y ) = ~ ( x , y ) -  (Lw)(~, rt) d~drt, V ( x , y ) ~ A ,  (10) 

in the unknown w~ 74/'p(A,~), where ff~ W*(A, R~), and hence f fc  
7g'p(A, R~), is given by 

f f ; (x ,y)=~(x)+tp(y)-q~(O)+ f(~,~7) d~drt, V(x,y)e  A. 

Then, the first assertion of our theorem will be proved if we show that (10) 
has a unique solution. We proceed as follows. 

Consider any sequence {Wk} C 7Kp (A, Rn) recursively defined as follows: 

Wo is any element of ~p(A, N~), 

;olo ' wk(x, y) = ff~(x, y) - (Lwk_~)(~, rl) d~ art, V(x, y) e A, V k e N .  

(11) 
We shall show that {Wk} converges to a w ~ °Wp(A, R ~) in the norm topology 
of 7Kp(A, En). Such w will be a solution of (10), since convergence in 
°ff'p(A, ~ )  implies uniform convergence and L is continuous. To this end, 
it is sufficient to show that 

where 

Zk = W k  --  W k -  1, k ~ N. 

To do this, we divide A in smaller rectangles 

A0=]ai- l ,  ai[x]bj 1, b~[, i = l , . . . , r , j = l , . . . , s ,  

with 

O =  a o <  a l < "  • • < a t  = a,  O =  b o <  b l < "  • " < b s  = b, 
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and we put 

for 

0, if / j=O, 

lwl°= Ilwtl~,(~,~,~o), if i j>O, 

i = 1 , . . . ,  r, j = 1 , . . . ,  s, w e 7g'p(A, N"). 

Since 

IiIo Zk+I(X, y ) = -  (LZk)(~, rl) d~drl, V ( x , y ) c A ,  V k ~ N ,  

it follows that 

Zk + l = 7,0,k + "rj, k + o'i,k + o)ij, k, (12) 

i = l , . . . , r ,  j = l , . . . , s ,  k e N ,  

where ZO, k, %k, ~r~,k, WO, k C °Wp(A, R ") are defined by 

zq, k(x, y ) = -  (Lzk)(¢, rl) d¢d~?, 
a i _  l b ) -  i 

%k(X, y)  = Zk(X, bj_t), cr~,k(X, y)  = Zk(a,-1, y) ,  

WO.k(X, y)  = --zk( a i -b  bj_,), 

for each 

( x , y ) ~ A ,  i = l , . . . , r ,  j = l , . . . , s ,  k e N .  

Moreover,  it can be easily shown that  

[o)~,klO -< [Zkli-lj-,, (13) 

i = l , . . . , r ,  j = l , . . . , s ,  k e N .  

Furthermore,  for 

i = l , . . . , r ,  j = l , . . . , s ,  k e N ,  

we have 

ISo, kla <- ~zp(au)II Zzk II L'(a,,,R~) <- t 'AAa)XlZkI0,  

with 

/~p(A U) = [ ( a l -  a,_,)(bj - bj_,)]'/P' + ( a , -  a , _ , ) ' / " +  (bj - bj__~)'/P', 

1 / p + l / p ' =  1, 
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and Yt" given by (9). Obviously, the decomposition of A can be made in 
such a way that there exists h e ]0, 1[ for which 

I~ij.kl0_< Alzd~j, i = l , . . . , r , j = l , . . . , s ,  keN.  (14) 

From (12), (13), (14), it follows that 

Iz~+,lu-< ~lzklo + Iz~+,l,-,j +lz~+,l,j-, +lz~+,l,-,i-,, 
i= l , . . . , r ,  j = l , . . . , s ,  keN.  

Hence, for 

i= l , . . . , r ,  j = l , . . . , s ,  

we have 

Iz~10 < +oo, 
k = l  

from which the result 

follows. This completes the proof of the existence of a solution of (10). 
Next, we prove the uniqueness of such a solution as follows. We 

suppose that Wl, w2e °We(A, •') are solutions of (10). Let 

Z = W l - - W  2. 

By dividing A as above, we obtain 

Izl~-< ~lzl,j +lzli-lj +lzl,j-, +lzli-,j-,, 
i = l , . . . , r ,  j = l , . . . , s .  

It follows that 

Izl,j--0, i = l , . . . , r ,  j= l , . . . , s ,  

and so 

W 1 = W 2. 

Therefore, the solution of (10) is unique. We shall denote the solution by 
w((~, O),f). 

Finally, we show that the linear mapping 

((¢, ¢s),f) ~ w((~, 0) , f )  

is an algebraic and topological isomorphism between "~(') × LP(A, R') and 
W*(A, ~ ' ) .  Indeed, the assumption 

P( W*(A, R')) C LP(A, R~), 
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Proposition 2.3, the existence and uniqueness of w((~, ~0),f) imply that 

((q~, ~b),f) ~ w((~o, ~O),f) 

is onto. Moreover, injectivity is trivial. So, we have only to prove the 
bicontinuity of our mapping. To this aim, it is sufficient to show that the 
inverse mapping, from W*(A, R") to ~")xLP(A,  R"), is continuous. But 
this is an immediate consequence of Proposition 2.3 and Theorem 2.2. This 
concludes the proof of our theorem. [] 

Remark 3.1. The argument used in the proof of Theorem 3.1 shows 
that the unique solution w of BVP (8) is the limit in the space ~Vp(A, tt~") 
of any sequence {Wk} given by (11). We observe that 

w~ E W*(A,  R"), k e S .  

Moreover, 

lim Wk = W 
k 

~so in the space W*(A, R~). Indeed, from 

lim wk = w, in ~Vp(A, R"), 
k 

it follows that 

lim LWk = Lw, in LP(A, R"). 
k 

Hence, by Proposition 2.1, 

lim Wk = w, in W*(A, ~"). 
k 

4. Existence Theorem for a Minimum Problem Related to the Control Process 

Now, we return to the control process (E). In what follows, we assume 
the following. 

(i) A, B, C are measurable functions from A to R "'~. 

f° (ii) sup ess IA(x, n)l ~ dn < +oo, sup ess IB(~, y)l ~ d~ < + o e  
xe]0,a[ y~JO, b[ ,10 

C c LP(A, R~'"). 

(iii) F ~ L ~ ( A , R " " ) ,  Gc LV(a, R-). 
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Remark 4.1. Conditions (i), (ii) on A, B, C are strictly more general 
than (a), (b), (c), mentioned in Section 1 and considered in Ref. 4. Indeed, 
(a), (b), (c) imply (i), (ii). On the other hand, if 

a = b = l ,  n = l ,  

~(1/y) ~/p, O < x < l , x / 2 < y < x ,  
A(x, y) = 1.0, elsewhere in ]0, l[x]O, 1[, 

then A verifies 

sup ess [A(x, ~7)f dr/< +~,  
xc]0,t[ 

whereas condition (a) does not hold. 

Next, we make some preliminary observations. We notice that, from 
Theorem 3.1, the proposition below follows. 

Proposition 4.1. 
Wp*(A, R ") a unique solution 

z(x, y) = z(x, y ; (~p, tp), U) 

of (E) satisfying the conditions 

(c) z ( x ,  o) = , ; ( x ) ,  x ~ ]0, a[, 

Furthermore, the mapping 

((9, q,), u )  -~ z ( .  ; (9, 0) ,  u ) ,  

For any U ~ LP(A, ~m), (~p, ~t) E ~'(") there exists in U p  , 

z(O, y) = O(y), y ~ 10, b[. 

from --.(p")x Le(A, R") into W*(A, R"), is affine and continuous. 

Moreover, we observe that Propositions 2.3 and 3.1 imply the following 
proposition. 

Proposition 4.2. The mapping 

((q~,tp), U)-~(z( . ,  b; (q~, ~), U),z(a, .  (~o, tp), U)) 

is affine and continuous from E(,~)×LP( A, t~ n) into ~(v ~)- 

Now, let 

XC'~(p "~, ~C_LP(a, am), vcE(p "), 

and let (X x ~/)v denote the set of ((q~, ~), U)E X x qJ, such that 
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( z ( . ,  b; (¢, ~b), U),z(a, .  ; (~0, q~), U ) ) e  Y. 

Consider the following optimal control problem. 

Problem (P). Let (X  x ~ ) Y  be nonempty. Minimize in (X  x 0//)Y the 
cost J defined in E(,")x LP(A, R 'n) by 

J((~, ~,), u )=  l" t" H(~, ~, ~(~:, ,7; (~,*), U),Zx(~, ,7; (~, ~), g), 
d d  A 

z~(¢ n; (~, ,/,), u);  u (¢  ~); ~(~:), ,¢'(~:), ~o(n), q,'(n), 
z(~, b; (~, 4,), U),zx(¢b;(~,~), U),z(a,~;(~,qJ), U), 

zy(a, '7; (~, ~), V)) a~dn, 

V((~o, ~0), U) e ~7~")x LP(A, Rm), (15) 

where 

(x, y; zl, z2, z3; u ; v l , . . . ,  v8) ~ H(x, y; zl, z2, z3; u, v l , . . . ,  Vs) 

is a suitable function from A xR 3n XR" XR 8" into R. 

More precisely, we shall assume the following hypotheses. 

Assumption 4.1. H is measurable with respect to (x, y) for each 
(zl, z2, z3; u; Vl , . . . ,  vs) and is continuous with respect to 
(z~,z2, z3; u; v~, . . . ,  v8) for a.e. (x,y). 

Assumption 4.2. There exist 

l e  LI(A), q e  C°(R" ×R'") ,  b e  L~(A), 

such that 

IH(x,y; zl, z2, z3; u; v~, . . . ,  Vs)t 

<--l(x,y)q(zl; v,, V3, vs, v7)+b(x,y) z~t"+Iz~t'+lut Iv:,l" , 
1 

a . e . (x ,y )eA,  V(z~,z2, z 3 ; u ; v l , . . . , v s ) e R S " x ~ ' x R  8". 

Assumptions 4.1 and 4.2 imply the finiteness of the integral in (15) for 
each ((~o, if), U) e ~(p") x LP(A, R").  

Through the following, we shall consider also the following hypotheses. 
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Assumption 4.3. For  a.e. (x, y)  ~ A, the funct ion 

(zl, z2, z3; u; V l , . . . ,  Vs)~ H(x ,y;  zl, z2, z3; u; v b . . . ,  v8) 

is convex.  

Assumption4.4.  Fora.e.(x ,y)~A,  forany(z,;  vl, v3, vs, VT) C ~  ~ x•  4", 
the funct ion  

(z2, z3; u; v2, v4, v6, vs)~ H(x ,y;  zl, z2, z3; u; Vl , . . . ,  v8) 

is convex.  Fur thermore ,  there exist v ~ •+, p ~ LI(A), such that  

IH(x, y; z], z2, z3; u;  v~, v2, v~, v4, v~, v6, v~, vs) 

vt tt t! ¢t - H ( x , y ;  z~, z2, z3; u; vl ,  v2, v3, v4, v~, v6, v-~, Vs)l 

<- ~,[p(x, y) +1~21 ' +lz3[ p + l u l '  

for  a.e. (x , y )eA ,  for  each ( Z ~ , Z 2 ,  Za '~U '~V~ ,~ )2 ,  V t 3 , / ) 4 , / ) t S , / 3 6 , / ) ~ , / 3 8 ) ,  

• . , , ,, V s ) ~  3" XR 8~. (Z~ t, Z2, Z3, U,  /3~', I)2, /)3, /)4, /)5, /')6, /37, X ~ r n  

Assumption 4.5. There  exist constants  o-, o- b a,  cr > 0, a 6 [0, p] ,  and 
a func t ion  o'2~ L~(2~), such that  

H(x, y; z,, z=, z3, u ; / ) , . . . ,  va) ~ ~lul ~ +~l lul  ~ + ~2(x, y),  

for  a.e. (x , y )eA ,  for  any  (zt, z2, z3; u;  v b . . . ,  v8)~R 3" x R "  x R  8". 

Assumption 4.6. There  exist constants  O, O1,/3, O > 0 , / 3  e [ 0 , p [ ,  and  
a funct ion O ~  LI(A),  such that  

4 4 
H(x, y;  zl, z2, z3; u ; / ) 1 , "  • • , /38) ~ 0 E IvY + ol  Z I v, I ~ + O=(x, y), 

i=1 i=l  

for  a.e. (x, y ) c A ,  for  any  (z,, z2, z3; u ; / ) b - - - ,  Vs)eR 3" x R "  x R  8". 

Now,  we are ready  to prove  the fol lowing existence theo rem for  the 
Prob lem (P). 

Theorem 4.1. Let X, ~ ,  Y be weakly  closed. Let H verify Assumpt ions  
4.1, 4.2, and  moreove r  ei ther  Assumpt ion  4.3 or  4.4. Let X be b o u n d e d  or 
otherwise  let Assumpt ion  4.6 hold. Let 0g be  b o u n d e d  or otherwise let 
Assumpt ion  4.5 hold.  Let  ( X  x ~//)v ~ Q. Then,  P rob lem (P) has a solution. 
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Proof. We start by showing that J is weakly sequentially lower semi- 
continuous in E(p ") x LP(A, ~ ' ) .  Indeed, if Assumption 4.3 is verified, then 

p m it can be shown that J is convex and continuous in E~ ") × L  (A, ~ ); see 
Ref. 4, Lemma 4.1. On the other hand, if Assumption 4.4 is verified, then 
the weak sequential lower semicontinuity of  J is obtained as in Ref. 4 
(Proposition 4.1) using a welt-known theorem of Browder (Ref. 8, Theorem 
2). Next, we consider a minimizing sequence 

{((~, ~,~), u~)}c_x. 

Any such a sequence must be bounded in any case (see Ref, 4, Proof of  
Theorem 4.t), Since ~,~')×LP(A, R m) is reflexive, then there exists a sub- 
sequence {((~o,~, ~0~k), U~k)} , weakly convergent to ((~, q~), U) in E(p~)x 
LP(A, ~" ) .  Since (X x q/ )v  is weakly closed (Proposition 4.2), then 

((~, ~), u ) c ( x  ×~)[. 

From the weak sequential lower semicontinuity of  J, it l'ollows that 
((q~, ~0), U) is a solution of  Problem (P). [] 

Remark 4.2. The cost J, considered here, is more general than the one 
studied in Refs. 1-4, since H depends upon zx, zy, too. This fact allows us, 
for instance, to cover the following minimal area problem: Given 

,,(l) (~, ~ ) e _ ~ ,  ~C_LP(Zx,~m), yc__=~ '), 
find, among the controls U e  ~ which steer (~, ~) into Y, a control U such 
that the corresponding surface 

z = z ( x , y ; ( ~ , t p ) ,  U),  ( x , y ) e A ,  

has minimal area. 

Remark 4.3- Finally, we notice that it is possible to use an intermediate 
hypothesis between Assumption 4.2 and Assumption 4.4, instead of  Assump- 
tion 4.3 or Assumption 4.4, as in Ref. 4, Remark 4.2. 
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