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ASYMPTOTIC BEHAVIOR OF ITERATES

OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

WITH OPIAL'S CONDITION

Abstract. We study the asymptotic behavior of the sequence of the iterates for a

nonexpansive mapping, defined on a suitable subset of a Banach space with Opial's

condition. Some results are stated also for semigroups of nonexpansive mappings

and for mappings of asymptotically nonexpansive type in uniformly convex Banach

spaces with Opial's condition.

1. Introduction. Let £ be a Banach space. We suppose that, if {xn} ç E, x° g E
w       n

are such that xn -* x , then

(1) limsup ||jc„ - jc°I| < limsup \\xn — x\\,       x # x°, x g E;
n

the above condition is known as Opial's condition (see [12]).

If A" is a boundedly weakly compact subset of E, i.e. a subset of E such that the

intersection with each closed ball is weakly compact, we consider a mapping /:

X —* X which is nonexpansive.

The purpose of this note is to generalize (§2) a result by Miyadera [10] about

asymptotic behavior of the sequence {f"(x)}. A similar result for uniformly convex

Banach spaces with a Frechet differentiable norm has been recently obtained by

Kobayashi (see [9]); it is known that there are Banach spaces which satisfy

Kobayashi's assumptions and not Opial's condition; for example the spaces Lp,

p ¥= 2, 1 < p < oo ; on the other hand, our Theorem 1 can be applied to spaces

which are not uniformly convex (see below).

In §3 we obtain some corollaries of our Theorem 1, whereas in §4 we extend some

of our results to the case of semigroups of nonexpansive mappings. In §5 we

consider mappings of asymptotically nonexpansive type.
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104 GIOVANNI EMMANUELE

2. Asymptotic behavior. Under the assumptions of the Introduction we show the

following

Theorem 1. Let E, X, fbe as above. Then the following conditions are equivalent:

(1) {/"(*)} converges weakly;

(ii) F(f), the fixed point set of f, is nonempty and ^(jc), the set of the weak

subsequential limits of {f(x)}, is a nonempty subset ofF(f);

(iii) E(x) =£ 0 and u>w(x) £ E(x), where E(x) = {y: y G A, lim„||xn — y\\ ex-

ists ).

Proof. The implications (i) =» (ii) and (ii) => (iii) can be obtained easily as in [10].

And so we have to show only (iii) => (i). For our purpose we observe that {f"(x)} is

bounded since E(x) # 0; thus oiw(x) # 0. Let yx, y2 be two weak subsequential

limits for the sequence {f(x)}; there are dx, d2 > 0 for which

dx = \im\\f"(x)-y1\\,       J2 = lim||r(x)-^2||.
n n

If {f"U)(x)} and [fMh)(x)} are such that/"0)(x) -^ yx anàfn(h\x) -^ y2, we

have that dx > d2 contradicts Opial's condition, since

lim \\f"U)(x)-yx\\ =dx>d2 = lim \\f"U)(x) ■yi\

in a similar way, dx < d2 is false. Thus, uw(x) is a singleton.

The proof is complete.

Our Theorem 1 extends the following result due to Miyadera [10].

Corollary 1. Let E be a smooth, uniformly convex Banach space with a duality

mapping which is weakly sequentially continuous at 0. If X is a closed and convex subset

of E, andf: X -» X is a nonexpansive mapping, then the same conclusion of Theorem 1

holds true.

Proof. A Banach space E with a weakly sequentially continuous at 0 duality

mapping satisfies Opial's condition, with «s instead of < (see [5]). By uniform

convexity of E we have that the equality can be verified in (1) only if x° = x (see

[5]). Then the hypotheses of our Theorem 1 are verified. Hence, its conclusion is true.

We observe that our starting point, i.e. Opial's condition, allows us to avoid the

explicit use of a duality mapping and of convexity assumptions on E and X.

Moreover, since in any separable Banach space we can introduce a new equivalent

norm satisfying Opial's condition (see [3]), it is easy to show that our Theorem 1 can

be used in a larger class of Banach spaces than Corollary 1, by considering

separable, nonreflexive Banach spaces.

It would be interesting to give an example of a Banach space with Opial's

condition, but for which any duality mapping is not weakly sequentially continuous

at 0; unfortunately, I do not have such an example at present.

3. Corollaries. Now, we consider some corollaries of our Theorem 1 about weak

convergence of the sequence {f"(x)}.
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The first is

Corollary 2. If E, X, f are as in Theorem 1 and f is asymptotically regular, i.e.

f"+1(x) - f(x) -^ 0, then {f(x)} converges weakly to a fixed point of f, if

E(x) ¥= 0.

, ., w

Proof. Since E(x) # 0, {/"(*)} is bounded. Let y g uw(x). If f"u\x) -* y,

one has

limsup \\f"u\x)-f(y)||
j

< limsup {||/"<»(jc) -/^> + 1(*)|| + c\f"^l(x) -f(y)\)
■i

< limsup \\f(J)(x) - y\\

by which y g F(f) follows. Using Theorem 1 we conclude the proof.

In the following result we do not consider assumptions of asymptotic regularity on

/■

Corollary 3. Let E, X, f be as in Theorem 1. Let X be bounded and convex. If

X g]0, 1[ and fx(x) = (1 - X)x + Xf(x), then {f\(x)} converges weakly to a fixed

point off, if F(f)± 0.

Proof. If X is bounded and convex, then F(f) = F(fx) # 0; moreover, /x is

asymptotically regular (see [7]). Then we can apply our Corollary 2 in order to

obtain the result.

In [12] Opial obtained two similar theorems under the assumptions "E is uni-

formly convex" and "F has a weakly sequentially continuous duality mapping".

These results are particular cases of our Corollaries 2 and 3 (see proof of Corollary

1)-

Furthermore, the space lx satisfies Opial's condition, since strong and weak

convergence in lx are the same; however, lx is not uniformly convex and does not

have a duality mapping that is weakly sequentially continuous. Indeed, if a weakly

sequentially continuous duality mapping exists, then the norm of lx has to be

Gateaux differentiable (see [4]), whereas it is not Gateaux differentiable at the point

x = (1,0,0,...). Hence, our results are strictly more general than the results of

Opial.

The following result has been known only in uniformly convex Banach spaces

with Opial's condition (see [6]); we observe that the theorem of Hirano is an

extension of results due to Miyadera [11] and Bâillon, Brück and Reich [1], who used

a weakly sequentially continuous duality mapping in uniformly convex Banach

spaces. For our purpose, we require the following definition [2, p. 56]: a Banach

space E is said to be uniformly convex in every direction if, for each z g E, \\z\\ = 1,

M > 0 and e > 0, there is ¿5 g]0, 1[ for which ||x||, ||_y|| > M, x - y = tz and |i| > e

imply that

\\\x+y\\^(\-8)ma^{\\x\\,\\y\\}.
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Obviously, a uniformly convex Banach space is uniformly convex in every

direction.

Now we are ready to give our result.

Corollary 4. Let E, X, f be as in Theorem 1. We suppose that E is uniformly

convex in every direction and F(f)=£ 0. Then {f"(x)} converges weakly to a fixed

point of f if and only if the sequence {f(x) — f" + 1(x)} converges weakly to 0.

Proof. If {f"(x)} converges weakly to y, y = f(y), we have the result trivially.

Now, we prove that/"(x) - fn+1(x) A 0 implies that {/"(*)} converges weakly to

a fixed point of/.

Since F(f) # 0, we can affirm that uw(x) is nonempty. Let y be a weak

subsequential limit of {/"(*)}; there is a subsequence {f"iJ)(x)} which converges

weakly Xo y; then, {fn(J)+p(x)} converges weakly to y< for anyp g N. If y =t f(y),

we put

rp = \imSup\\f^p(x)-y\\;
j

since rp + x < rp for each p g N, we have the existence of an r < 0 for which

r  —» r, rp^ r. Since y =f= f(y),r > 0 easily follows.

Then, if a > 0, p g TV exists for which

Umsup||/"^^ + 1(x)-/(>')||<r + a,

(2) '
limsup \\f"U)+p + 1(x) -y\\<r+ a.

Now, let 8 g ]0,1[  according to the definition of uniform convexity in every

direction, with M = r + a, z = (y - f(y))/\\y - f(y)\\, t = e = \\y - f(y)\\.

We consider p > 0 such that (1 — 8)(r + p) < r and ap' > p for which (2) holds

with p instead of a. By these inequalities there exists^' such that

max{|/"^^' + 1(x) -f(y)\\, \\f™+'' + 1(x) -y\

< min(r + p, r + a)    fory > j'.

And so by uniform convexity in every direction we have

cn(j)+p' + i(x) _(y + fiy^/2\\< (1 - 8)(r + p)    for each; >/;

this fact implies that

r, + x = limsup \\f"(j)+p' + 1(x) -y\\
j

< limsup \\f{j)+<>' + l(x)-(y+f(y))/2\
j

< (1 - 8)(r + p)^r,

which contradicts the construction of r. Then, y = f(y). Since (ii) of Theorem 1 is

true, our result follows.
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The following example shows that our Corollary 4 is strictly more general than the

cited result by Hirano. We consider lx with the norm \x\ = (\\x\\j + ||.x||2)1/2; it is

known that /, endowed with this norm is uniformly convex in every direction (see

[13, p. 18]). (lx, | • |) is a good example for our purpose; but since, in lx, strong and

weak convergence coincide, our Corollary 4 in (lx,\-\) is a particular case of our

Corollary 2. Thus, we consider the following example of a Banach space E, such that

(a) E is uniformly convex in every direction with Opial's condition;

(b) E is not uniformly convex;

(c) in E, strong and weak convergence do not coincide, in order to prove that

Corollary 4 is strictly more general than the result of [6] and it is "independent"

from Corollary 2.

LetF= lx X l2, with the norm |||(x, j0||| = (\x\2 + ||.y||2)1/2.

(c) is obviously true, since in l2 the strong and weak convergence do not coincide;

moreover, (b) is verified, since lx is not reflexive. In order to prove (a) we observe

that E is uniformly convex in every direction, since in the contrary case an

(x, y) # 0 and a bounded sequence {(xn, yn)} exist in such a way that

2(IUU„ x.)+(■*. >0W2 + K# >OW2) - PC*«. *„)+(*> >0IU2 - o

(see [13, p. 8, (7)]); but, it is easy to prove that this contradicts uniform convexity in

every direction of (/1( | ■ |) or (l2, || • ||), using the definition of || • ||. Now, we prove

that in E Opial's condition is verified. Let {(*„, y„)} be a sequence in E such that
H»

(xn, yn) -» (x, y) g F; we consider (x', y') =£ (x, y). If y + y', one has, since

x„ A x,
2 ¡2 ~>

limsup HI (*„,>>„) -(x, y)\\\   = limsup \\xn - x\   +\\y„-y\\
n n

< lim sup \\y„ - y\\   < lim sup \\y„ — y'\\
n n

< limsup {|x„-x'|   +||j'„-/|| }
n

III/ \       /    /       ,\lll2

if x ¥= x', then

limsup \\\(xn,yn)-(x',y')||| ;
n

i? = lim inf { ||jc„ - x'\\ :»£JV) > 0.

Indeed, if r/ = 0, there is a subsequence {xk{n)} that converges strongly to x'. Since

{xn} converges strongly to x, we have x = x',a contradiction. Thus

limsup |||(x„, y„)-(x,y)\\\   = limsup{|x„ - x\   + \\y„ - y\\ }
n n

< limsup 11^ - yf < limsup \\yn - y'\\
n n

< limsup {r, + |j.y„ - y'\ } < limsup {\x„ - x'\   + \\y„ - y'\\ }

2

= limsup |||(x„,.y„) ~(x', y')\\\ ,
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and so the proof is complete. In passing, we observe that the above defined Banach

space E does not have a weakly sequentially continuous mapping since its norm is

not Gateaux differentiable at the point (x, 0), where x = (1,0,0,... ).

4. Semigroups of nonexpansive mappings. Let 7 be an unbounded subset of [0, oo)

such that t + h g 7 for all t, h g I, t - h g 7 and, for all t, h g 7, / > h (e.g.

I = [0, oo) or I = N). We consider a mapping S, from I X X into X, such that

S(t + h,x)= S(t, S(h, x)) for all t, h g 7 and x g X and \\S(t, x) - S(t, y)\\ < \\x

— y\\ for all t g 7 and x, _y g A", i.e. 5 is a (not necessarily continuous) semigroup of

nonexpansive mappings. Using standard proof as in Corollaries 2 and 4 we have

Theorem 1'. Let E, X be as in Theorem 1 and S, I as defined above. If S has a fixed

point and {S(t + h, x) — S(t, x)}t>0 converges strongly to 0, then {S(t, x)}l>0

converges weakly to a fixed point of S. If, in addition, E is uniformly convex in every

direction, then { S(t, x)}l>0 converges weakly to a fixed point of S, provided that S has

a fixed point and that {S(t + h, x) — S(t, x)}t>0 converges weakly to 0.

In this way we generalize two results due to Hirano [6] and Bâillon, Brück and

Reich [1] obtained in uniformly convex Banach spaces with Opial's condition.

5. Mappings of asymptotically nonexpansive type. Following Kirk (see [8]) we sat

that a continuous mapping /: X -» X, X a closed subset of a Banach space E, is said

to be of asymptotically nonexpansive type if, for each x g X

limsup {sup[||/"(x) -f"(y)\\ - ||* - y\\] : y g A"} < 0.
n

The following result is the extension to the case of mappings of asymptotically

nonexpansive type of a result of Miyadera (see [HP-

Theorem 2. Let E be a uniformly convex Banach space with Opial 's condition and

let X be a bounded and convex subset of E. If f is a mapping of asymptotically

nonexpansive type, thenf(x) — f    (x) -* 0 implies that {f"(x)} converges weakly

to a fixed point off.

Proof. It is known that F(f) * 0 [8]. Let {fU)(x)} and y g F be such that

flJ\x)-*y. If we put

rp = limsup \\fn(j)+p(x)~y\\
j

and fix e > 0, a q g N exists for which q > q implies

\\fn^)+P + «(x) -/*(.y)||< e+\\f"U)+p(x) -y\\    foreachp G N, j G TV;

hence, r + < rp + e. Since e is an arbitrary number, an r > 0 exists in such a way

that rp -» r, rp^ r. Since in a uniformly convex Banach space, for any tj > 0 there is

8 G ]0,1[ such that

2 \\x + V-IN (1 ~ Ö ) max {||x||, \\y\\}    for any x, y g E

with ||jc — y\\ > Tj max {||;t||, \\y\\), as in the proof of Corollary 4, we have that

y g F(f), since {f"(y)} converges strongly to j. Since we can prove easily that the
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limj|/"(x) — y\\ exists for any y g F(f), using Opial's condition we have that

f"(x) -* y. The proof is complete.

Now, we consider the metric projection P, defined on X, with values in F(f); for

the sequence {P(f(x)} we can obtain the following

Theorem 3. Let E, X, f, P be as above. Then, if {/"(*)} converges weakly to a

y G F(f), the sequence {P(f(x))} converges strongly to the same fixed point y.

Proof. At first we show that { ||/"(jc) - P(f(x))\\} is a convergent sequence. If

r = \\fq(x) - P(f(x))\\, using a similar technique to that used in Theorem 2, we

have that an r > 0 exists, with rq -» r, rq^ r. If r = 0, it is easy to prove that

{P(f"(x))} is a Cauchy sequence; when r # 0 and we suppose that {P(f"(x))} is

not a Cauchy sequence, with a proof as in Corollary 4, we obtain the contradiction
s

r > r for a q G N. Hence a z G F exists in such a way that P(f"(x)) -* z. If

{f"(x)} converges weakly to ay G F(f), we have only to prove that z = y. For this

purpose we have

limsup \\f"(x) - z\\

< limsup {\\f"(x) - P(f"(x))\\ + \\P(f(x) - z\\)
n

< limsup ||/"(x) - P{f(x))\\ < limsup \\f(x) - y\\;
n n

Opial's condition implies that z = y. The proof is complete.
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