Convergence of Successive Approximations for Implicit Ordinary Differential Equations in Banach Spaces

By

G. Emmanuele*

(University of Catania, Italy)

§ 1. Introduction.

Let E be a Banach space and let x^0 , y^0 be two points of E. If $B_1 = \{x, x \in E, \|x - x^0\| \le b_1\}$, $B_2 = \{y, y \in E, \|y - y^0\| \le b_2\}$, $b_1, b_2 \in R^+$, $I = [0, a] \subseteq R$, $a \in R^+$, and $F, F: I \times B_1 \times B_2 \to E$, is a suitable function such that one has $F(0, x^0, y^0) = \theta$, we study the following problem

(1)
$$\begin{cases} F(t, x, \dot{x}) = \theta \\ x(0) = x^0. \end{cases}$$

It is easy to show that (1) has a solution if it exists for

$$\begin{cases} y(t) + T \left[F\left(t, x^0 + \int_0^t y(s)ds, y(t) \right) \right] = y(t) \\ y(0) = y^0 \end{cases}$$

where $T, T: E \rightarrow E$, is an operator such that $T(z) = \theta \Leftrightarrow z = \theta$.

And so, we shall study the problem (2). Put G(t, x, y) = y + T[F(t, x, y)], we shall consider hypotheses which guarantee the existence of a unique continuous solution for (2); moreover, we prove that the successive approximations starting from any $y \in B_2$ converge to this solution.

Similar results for the problem

$$\begin{cases} \dot{x} = f(t, x) \\ x(0) = x^0 \end{cases}$$

have been obtained by Vidossich and Kato (see [2], [6]); in order to obtain our theorem we use a different technique than the cited authors.

Finally we observe that our result is strictly more general than a previous one by Pulvirenti, as is shown by an example in n.3; the theorem by Pulvirenti is in [5].

^{*} Work performed under the auspices of the C.N.R.-G.N.A.F.A.

§ 2. The main result.

In this section we shall prove the following fundamental result of the paper. It is the following

Theorem 1. Let E, B_1, B_2, I, F be as in n.1. We suppose that there exists T, T as in n.1, such that, if G(t, x, y) = y + T[F(t, x, y)], one has

(3)
$$||G(t, x, y) - y^0|| \le b_2$$
 for each $(t, x, y) \in I \times B_1 \times B_2$,

(4) for each $\varepsilon > 0$ there exists $\delta > 0$ and $d = d(\varepsilon) > 0$, with $\lim_{\varepsilon \to 0^+} d(\varepsilon) = 0$, such that $|t' - t''| < \delta$, $||x' - x''|| < \delta$, $||y' - y''|| \le d(\varepsilon)$ implies

$$||G(t', x', y') - G(t'', x'', y'')|| \leq d(\varepsilon),$$

- (5) if J=[0,r], $r=\min(a,b_1/(b_2+||y^0||))$, there exists g, g defined on $J\times[0,2b_1]\times[0,2b_2]$ with values in R, such that
 - (5i) g is continuous on $J \times [0, 2b_1] \times [0, 2b_2]$,
 - (5ii) $g(t, x', y') \leq g(t, x'', y'')$ if $x' \leq x'', y' \leq y''$, for each $t \in J$,
 - (5iii) for each (t, x', y'), $(t, x'', y'') \in J \times [0, 2b_1] \times [0, 2b_2]$ we have

$$||G(t, x', y') - G(t, x'', y'')|| \le g(t, ||x' - x''||, ||y' - y''||),$$

(5iv) v(t) = 0 is the unique nonnegative continuous function such that $v(t) \in [0, 2b_2]$ and

$$v(t) \leqslant g\left(t, \int_0^t v(s)ds, v(t)\right)$$
 for each $t \in J$.

Then, there exists a unique continuous solution for (2) on J; and furthermore the successive approximations starting from any $y \in B_2$ converge to this solution.

Proof. Let $y \in B_2$ be; we consider the functions

$$y_n(t) = G\left(t, x^0 + \int_0^t y_{n-1}(s)ds, y_{n-1}(t)\right)$$
 $t \in J$

with $y_0(t) = y$ on $J, n \in \mathbb{N}$.

At first we show that the functions $\{y_n\}_{n\in N}$ are equicontinuous; we show this fact by using induction on n; we consider n=1; for fixed $\varepsilon>0$, we consider p>0 such that $d(p) \leqslant \varepsilon$; if $\eta>0$, $2\eta=\min{(\delta,\delta/(b_2+\|y^0\|))}$, $|t'-t''|<\eta$ implies that, using (4), $\|y_1(t')-y_1(t'')\|=\|G(t',x^0+t'y,y)-G(t'',x^0+t''y,y)\|\leqslant d(p)\leqslant \varepsilon$; we suppose that $|t'-t''|<\eta$ implies $\|y_m(t')-y_m(t'')\|\leqslant d(p)\leqslant \varepsilon$, for each $m\leqslant n-1$; let m=n be; by using (4) we have

$$||y_{n}(t')-y_{n}(t'')|| = ||G(t', x^{0}+\int_{0}^{t'}y_{n-1}(s)ds, y_{n-1}(t'))|$$

$$-G(t'', x^{0}+\int_{0}^{t''}y_{n-1}(s)ds, y_{n-1}(t''))|| \leq d(p) \leq \varepsilon;$$

then, the thesis is true.

Now, for each $n \in \mathbb{N}$, we define a function $v_n, v_n: J \rightarrow \mathbb{R}$, by

$$v_n(t) = \sup_{r, q \geqslant n} ||x_r(t) - x_q(t)|| \qquad t \in J.$$

Obviously, we have

- (j) the mappings $\{v_n\}_{n\in\mathbb{N}}$ are equicontinuous
- (jj) $0 \leqslant v_n(t) \leqslant v_{n-1}(t)$ for each $t \in J$, $n=1, 2, \cdots$

From (jj) it follows the existence of a $v, v: J \to R$, such that $v(t) \ge 0$ and $v_n(t) \to v(t)$, for each $t \in J$; moreover, (j) implies that it is possible to extract a sequence $\{v_{k(n)}\}_{n \in N}$ which converges uniformly on J to a suitable continuous $\underline{v}, \underline{v}: J \to R$; then, $v(t) = \underline{v}(t)$; and so, by Dini's Theorem, $v_n \to v$ uniformly on J.

Since, if $r, q \ge n$, one has

$$||y_{r+1}(t) - y_{q+1}(t)|| = ||G(t, x^0 + \int_0^t y_r(s)ds, y_r(t))||$$

$$-G(t, x^0 + \int_0^t y_q(s)ds, y_q(t))|| \le g(t, \int_0^t v_n(s)ds, v_n(t))$$

and

$$0 \leqslant v_{n+1}(t) \leqslant g\left(t, \int_0^t v_n(s)ds, v_n(t)\right)$$

then, if $n \rightarrow +\infty$, we have

$$0 \leqslant v(t) \leqslant g\left(t, \int_0^t v_n(s)ds, v_n(t)\right)$$
 on J

and so v(t)=0 on J. Then, the sequence $\{y_n\}_{n\in\mathbb{N}}$ converges to a continuous function $\overline{y}, \overline{y}: J \rightarrow B_2$, such that

$$\bar{y}(t) = G\left(t, x^0 + \int_0^t \bar{y}(s)ds, \bar{y}(t)\right).$$

By virtue of (5iii) and (5iv) we can affirm that such a function is unique. Moreover, since $y \in B_2$ is arbitrary, we have proved that the iterates converge to this function \bar{y} . Then, we have only to show that $\bar{y}(0) = y^0$; this is true, as it is easy to prove by considering the iterates starting from y^0 ; in fact, in this case we have $y_n(0) = y^0$ for each

 $n \in \mathbb{N}$. The proof is complete.

Remark 1. Existence of solutions follows from a theorem proved in [1].

Remark 2. With slight changes, our argument can be used to obtain a similar result for

$$y(t) = G\left(t, \int_0^{\alpha(t)} f(t, s, y(s)) ds, y(\beta(t))\right)$$

where G, f, α, β are suitable functions. Some equations of this type have been studied in some papers by Kwapisz ([3]) and Kwapisz and Turo ([4]).

§ 3. An example.

In [5] G. Pulvirenti showed the following result

Theorem 2. Let F be a continuous function defined on $I \times B_1 \times B_2$ into E. Moreover, we suppose that

(6) there exists three constants μ , A, L such that

$$0 \le L < 1, A > 0, 0 \ne |\mu| < \frac{1 - L}{Aa}$$

for which one has

(6i)
$$||y + \mu[F(t, x, y)] - y^0|| \le b_2$$
 for each $(t, x, y) \in I \times B_1 \times B_2$,

(6ii)
$$\|y'-y''+\mu[F(t,x,y')-F(t,x,y'')]\| \le L\|y'-y''\|$$

for each
$$(t, x, y')$$
, $(t, x, y'') \in I \times B_1 \times B_2$,

(6iii)
$$||F(t, x', y) - F(t, x'', y)|| \le A||x' - x''||$$

for each
$$(t, x', y)$$
, $(t, x'', y) \in I \times B_1 \times B_2$,

(7) there exists M > 0 such that

$$||y + \mu[F(t, x, y)]|| \leq M$$
 for each $(t, x, y) \in I \times B_1 \times B_2$.

Then, put J=[0,r], $r=\min(a,b_1/M)$ there is a unique continuous solution for (1).

It is easy to verify that the hypotheses of Theorem 2 imply our assumptions. Now, we want to show, with an example, that there are functions F which satisfy (3), (4), (5), (5ii), (5ii), (5iv) but not the assumptions of Theorem 2; more precisely, we shall construct a function which does not satisfy (6ii).

For this purpose, we put $E = C^0([0, 1])$, $x^0 = y^0 = \theta$, $a \in]0, +\infty[$. If d > 0 is such that $tgu - u < u\sqrt{u}$ in]0, d], we take b_1, b_2 such that $tgb_1 - b_1 + b_2 - b_2\sqrt{b_2} < b_2$, with $b_2 \le 1/8$ and $b_2 \le d/2$ and $b_1 < \pi/2$.

Then, we consider the following $F, F: I \times B_1 \times B_2 \rightarrow E$, defined by

$$F(t, x, y)(s) \equiv h(t)(s) + tg|x(s)| - |x(s)| - y(s)\sqrt{2|y(s)|} \qquad s \in [0, 1]$$

where $h, h: I \to E$, is uniformly continuous, $h(0) = \theta$ and $||h(t)|| \leq Q$, with $Q \leq b_2 \sqrt{b_2} + b_1 - tgb_1$.

At first we show that (6ii) fails be true. We consider a function $p, p: R^+ \to R$, defined by $p(y) = \mu y \sqrt{2y} + (1-L)y$, where $\mu \in R$, $\mu \neq 0$, $L \in [0, 1[$; we observe that p(0) = 0 and p'(0) = 1 - L > 0; then, there is y' > 0 such that p(y') > 0; then, we consider t = 0, $x = x^0$, $y'' = y^0$, y'(t) = y' for each $t \in I$; we have

$$||y^0-y'+\mu[F(0,x^0,y^0)-F(0,x^0,y')]|| > L||y^0-y'||$$

which contradicts (6ii).

Now, we prove that the assumptions of Theorem 1 are satisfied, if T=identity on E; obviously, $F(0, x^0, y^0) = \theta$; moreover, one has

$$G(t, x, y)(s) \equiv h(t)(s) + tg|x(s)| - |x(s)| + y(s) - y(s)\sqrt{2|y(s)|}$$
 $s \in [0, 1].$

It is easy to show that (3) is true. We show (4); for this purpose we observe that

$$\begin{split} |(tgx'-x')-(tgx''-x'')| &\leqslant tg|x'-x''|-|x'-x''| & \text{if } x',x'' \in [0,\pi/2[\\ |(y'-y'\sqrt{2|y'|})-(y''-y''\sqrt{2|y''|})| &\leqslant |y'-y''|-|y'-y''|\sqrt{|y'-y''|}\\ & \text{if } v',v'' \in [-1/8,1/8]; \end{split}$$

then, we have

$$||G(t', x', y') - G(t'', x'', y'')|| \le ||h(t') - h(t'')|| + [tg||x' - x''|| - ||x' - x''||]$$

$$+ [||y' - y''|| - ||y' - y''||\sqrt{||y' - y''||}] \qquad (t', x', y'), (t'', x'', y'') \in I \times B_1 \times B_2$$

and so, since h and tgx-x are uniformly continuous, fixed $\varepsilon > 0$, there is $\delta > 0$ and $d = d(\varepsilon)$, with $d(\varepsilon)_{\varepsilon \to 0^+} \to 0$ such that $|t'-t''| < \delta$, $||x'-x''|| < \delta$ and $||y'-y''|| \le d(\varepsilon)$ imply $||G(t', x', y') - G(t'', x'', y'')|| \le d(\varepsilon)$.

Furthermore, if we take $g(t, x, y) = tgx - x + y - y\sqrt{y}$, we have easily (5), (5i), (5ii), (5iii); we have only to show (5iv); let v as in (5iv); then, we have

$$v(t) \leqslant tg \int_0^t v(s)ds - \int_0^t v(s)ds + v(t) - v(t)\sqrt{v(t)}$$
 $t \in J$;

If $v(t) \le \int_0^t v(s)ds$, for each $t \in J$, we have v(t) = 0 on J by Gronwall's Lemma. We suppose that there exists $\bar{t} \in J$ such that $v(\bar{t}) > \int_0^{\bar{t}} v(s)ds$; in this case

$$0 \leqslant tgv(\bar{t}) - v(\bar{t}) - v(\bar{t})\sqrt{v(\bar{t})}, \qquad 0 < v(\bar{t}) \leqslant 2b_2$$

which is not true since $b_2 \leq d/2$. Then, v(t) = 0 on J.

The proof is complete.

References

- [1] Emmanuele, G. and Ricceri, B., Sull'esistenza delle soluzioni delle equazioni differenziali ordinarie in forma implicita negli spazi di Banach, submitted.
- [2] Kato, S., On the convergence of the successive approximations for nonlinear ordinary differential equations in a Banach space, Funkcial. Ekvac., 21 (1978), 43-52.
- [3] Kwapisz, M., On the existence and uniqueness of solutions of a certain integral-functional equations, Annales Polon. Math., XXXI (1975), 23-41.
- [4] Kwapisz, M. and Turo, J., Some integral-functional equations, Funkcial. Ekvac., 18 (1975), 107-162.
- [5] Pulvirenti, G., Equazioni differenziali in forma implicita in uno spazio di Banach, Ann. Mat. Pura Appl., (4) LVI (1961), 171-192.
- [6] Vidossich, G., Global convergence of successive approximations, J. Math. Anal. Appl., 45 (1974) 285–292.

(Ricevita la 18-an de novembro, 1980)

nuna adreso: Seminar of Mathematics University of Catania, Catania 95125, Italy