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§1. Introduction.

Let E be a Banach space and let x° )»° be two points of E. If B;={x, x ¢ E,
|lx—x°<b), B;={y,y €E,||y—»"|I<b,}, by,b, e R*, I=[0,a]=R, aeR*, and
F, F:I'x B, X B,—E, is a suitable function such that one has F(0, x°, 3°)=6, we study
the following problem

F(t,x,x)=0
(1) 0
x(0)=x".
It is easy to show that (1) has a solution if it exists for
() )+ T[F(1 20+ [ 50, y0) | =50

¥(0)=)°

where T, T: E—E, is an operator such that 7(z)=60&5z=4.

And so, we shall study the problem (2). Put G(¢, x, y)= y+ T[F(t, x, y)], we shall
consider hypotheses which guarantee the existence of a unique continuous solution
for (2); moreover, we prove that the successive approximations starting from any
y € B, converge to this solution.

Similar results for the problem

x=f(t, x)
{x(O) =x°

have been obtained by Vidossich and Kato (see [2], [6]); in order to obtain our
theorem we use a different technique than the cited authors.

Finally we observe that our result is strictly more general than a previous one
by Pulvirenti, as is shown by an example in #n.3; the theorem by Pulvirenti is in [5].

* Work performed under the auspices of the C.N.R.-G.N.AF.A.
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§2. The main result.

In this section we shall prove the following fundamental result of the paper. It
is the following

Theorem 1. Let E, B, B,, I, F be as in n.1. We suppose that there exists T, T as
in n.1, such that, if G(¢t, x, y)=y+ T[F(t, x, y)], one has

(3) 16, x, N—YII<b,  for each (¢, x,y) e IX B, X B,

(4) for each ¢>0 there exists >0 and d=d() >0, with lim,_,. d(¢)=0, such that
[t/ —t" <6, || X' —x"||<3, ||y —V" | d(e) implies

G, X, ¥)— G, X", y") < d(e),

(5) ifJ=[0,r], r=min (a, b,/(b,+]|)°|]), there exists g, g defined on Jx [0, 2b,] X
[0, 2b,] with values in R, such that

(51) g is continuous on J X [0, 2b,]X [0, 2b,],
(5ii) g, x',y)<gt, x",y") if X' <X, YY", for each t € J,
(5iii)  for each (t,x',y), (¢, x”,y"") e J [0, 2b,] X [0, 2b,] we have

1G(, X, )= G, x", y) < g (@ |x' —x"|, | =¥ Ds

(5iv)  v(t)=0 is the unique nonnegative continuous function such that v(t) € [0, 2b,]
and

()< g(t, J: u(s)ds, v(t)) for each t e J.

Then, there exists a unique continuous solution for (2) on J; and furthermore the succes-
sive approximations starting from any y € B, converge to this solution.

Proof Let y € B, be; we consider the functions

Ia(8)= G(f, X°—|-JZ Vu_1(8)ds, yn_l(t)) ted

with y(z)=y on J,n e N.

At first we show that the functions {y,},» are equicontinuous; we show this fact
by using induction on »; we consider n=1; for fixed ¢ >0, we consider p >0 such that
d(p)<e; if 5>0, 2p=min (5, 6/(b,+|)°|)), |t'—1t"|<yp implies that, using (4),
7 @)= )N=1GE, x*+1'y, ) — G, x*+1"y, ) |<d(p)<e; we suppose that
|t’—1t"|<yp implies ||y, (t)—y,(t")]<d(p)<e, for each m<n—1; let m=n be; by
using (4) we have



Convergence of Successive Approximations 327

) =)= G( 22+ [ 30 1(5)ds, 01

14 -
—G(e", 0+ [y i,y )| <dpI<es
0
then, the thesis is true.
Now, for each n € N, we define a function v,, v,: J—R, by

v ()= sup [|x,()—x, ()| ted

r,q2n

Obviously, we have

(j) the mappings {v,},.~ are equicontinuous
) oL, ()<, (1) foreachteJ,n=1,2,....

From (jj) it follows the existence of a v, v: J—R, such that v(¢)>0 and v,(t)—
u(t), for each t e J; moreover, (j) implies that it is possible to extract a sequence
{Us(ny}nen Which converges uniformly on J to a suitable continuous v, v: J—R; then,
v(t)=u(?); and so, by Dini’s Theorem, v,—v uniformly on J.

Since, if r, ¢ >n, one has

@ =30s®l=|6(5 3+ [ 30535, ,0))
— (1,54 [ yulodds, ) | <& (1 [ vals)ds, v, )
and
0<v, (< (. [ (o), ,0))

then, if n— -4 co, we have

o<v()<g (t, jz v,(8)ds, v,(t )) onJ

and so v(¢)=0 on J. Then, the sequence {y,}, ., converges to a continuous function
¥, y: J—B,, such that

(1) = G(t, x°+j: F(s)ds, y(t)).

By virtue of (5iii) and (5iv) we can affirm that such a function is unique. Moreover,
since y € B, is arbitrary, we have proved that the iterates converge to this function p.
Then, we have only to show that y(0)=)°; this is true, as it is easy to prove by con-
sidering the iterates starting from )°; in fact, in this case we have y,(0)=)° for each
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n e N. The proof is complete.
Remark 1. Existence of solutions follows from a theorem proved in [1].

Remark 2. With slight changes, our argument can be used to obtain a similar
result for

90)=G( [ £t 5, 950, 160

where G, f, «, B are suitable functions. Some equations of this type have been studied
in some papers by Kwapisz ([3]) and Kwapisz and Turo ([4]).

§ 3. An example.

In [5] G. Pulvirenti showed the following result

Theorem 2. Let F be a continuous function defined on I’ X B, X B, into E. More-
over, we suppose that

(6) there exists three constants p, A, L such that

0<L<1, 430,05 |uj< =L
Aa
for which one has
(61) |y+F@ x, MI=)°II<b,  for each (t,x,y) € IX B, X B,
(6ii) |V —=y"+plF (@, x, ) —F(@, x, YKL Y ="
Jor each (t,x,)"), (t, x,¥") € IX B{ X By,
(6iii) || F(z, x', y)—F(t, x", p|<A||x"—x"|
Jor each (¢, x',y), (t, X", y) e IX B, X B,,

(7) there exists M >0 such that

[y+plF@x, <M for each (1, x, y) € IX By X B,.
Then, put J=[0, r], r=min (a, b,/ M) there is a unique continuous solution for (1).

It is easy to verify that the hypotheses of Theorem 2 imply our assumptions.
Now, we want to show, with an example, that there are functions F which satisfy (3),
@), (5), (51), (5ii), (5iii), (5iv) but not the assumptions of Theorem 2; more precisely,
we shall construct a function which does not satisfy (6ii).

For this purpose, we put E=C([0, 1]), xX°=)"=0,a € ]0, 4+ oo[. If d>0 is such
that rgu—u<<uy/ u in 10,d], we take b,, b, such that tgh, —b,+b,—b,v b,<b,, with
b,<1/8 and b,<d/2 and b,<x/2.

Then, we consider the following F, F: I’ X B, X B,—>E, defined by
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E(t, x, y)($)=h(t)(s)+-18|x(s)|—[x() | = y(V2[ ()] s€[0, 1]

where ki, h: I—E, is uniformly continuous, 2(0)=6 and ||4(z)||<Q, with Q<b,v/ b,+
b, —1gb,.

At first we show that (6ii) fails be true. We consider a function p,p: R*—R,
defined by p(»)=puy+v'2y+(—L)y, where p e R, p#0, L € [0, 1[; we observe that
p(0)=0 and p’(0)=1—L>0; then, there is y’ >0 such that p(y")>0; then, we con-
sider r=0, x=x°, y"=)", y/(t)=)’ for each t € I; we have

10" ="+ lF O, x°, ) — F(0, x°, y)]|| > L[y —¥'|

which contradicts (6ii).
Now, we prove that the assumptions of Theorem 1 are satisfied, if 7=identity
on E; obviously, F(0, x°, y°)=6; moreover, one has

G(2, x, YNS)=h()(s5)+ 18| X(8)| —| () [+ () —p()V2 [ 1(s)] s €[, 1].
It is easy to show that (3) is true. We show (4); for this purpose we observe that
[(tgx’ —x")—(tgx" —x")|< tg|x' — X" |—|x' —x"| if x', x” € [0, z/2[
| =y V2 D= =" V2 DI =y =Y =y WY =
ify',y" e[—1/8,1/8];
then, we have
16", %', ) = GG, X, y )< ) — (™) |+ Tg 1 = | — | 5 — "]
+0Y =y =Y =" WY =yl @, x,¥), (", x",y") e IXB, X B,

and so, since & and tgx —x are uniformly continuous, fixed ¢>>0, there is § >0 and
d=d(e), with d(e),_o»—0 such that |/ —z"|<4, ||x' —x"||<<d and ||y —»"||<d(e)
imply || G(t/, X', ) — G(t", X, ") | < d()-

Furthermore, if we take g(¢, x, y)=tgx—x+y—y+ y, we have easily (5), (5i),
(5ii), (5iii); we have only to show (5iv); let v as in (5iv); then, we have

3 2 -
w1)< tgj v(s)ds—J W(s)ds+v(t)— WG ted;
0 0
If v(t)gf u(s)ds, for each ¢t € J, we have v(¢)=0 on J by Gronwall’s Lemma. We
0
suppose that there exists 7 € J such that v(7) > f u(s)ds; in this case
0

0< 1gu(H) — v —vOVU(E),  0<u(F)<2b,

which is not true since b,<d/2. Then, v(z)=0 on J.
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The proof is complete.
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