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In the main result of this note we show that for certain Banach spaces E and F
the e-tensor product E®,F inherits the Gelfand-Phillips property from E and
F. In particular we obtain conditions under which spaces of vector valued
continuous functions have the Gelfand-Phillips property.

1. Introduction

Let E be a Banach space. A bounded set B E is called a limited set if for
every o(E’, E)-null sequence (x)),.n in E' one has lim sup |{x}, x>|=0. E is said

n xeB

to have the Gelfand-Phillips property if every limited set in E is relatively
compact. Banach spaces having the Gelfand-Phillips property are, for example,
separable Banach spaces, reflexive Banach spaces and spaces C(K), where K is
both compact and sequentially compact ([2], [4, p. 238]). It is easy to see that
the Gelfand-Phillips property is inherited by closed subspaces.

Unexplained notation can be found in [9]. We will now introduce some
basic facts concerning e-tensor products. Most of them can be found in [9,
IV.2] and [5, pp.223]. Let E and F be Banach spaces. The e-tensor product
E®,F and the g¢norm ||, on E®_F is defined as in [9, IV.2.1]. The com-
pletion of E®,F endowed with the e-norm is denoted by E®,F (in the
notation of [5, pp. 223] this is the same as EQF). Let E, and F, be Banach
spaces, Te Z(E, E,) (=continuous linear operators from E into E,) and
SeZ(F,F,). Then T®S: E(;DSF—>E1®8F1 is the continuous linear extension of
the operator from E®,F into E; ®,F,; defined by

Y L®n— Y (TEH®(Sy).

1<i=Zn 1<iZn

By ext(Up) resp. ext(Up) we denote the set of extreme points of the closed
unit ball of E' resp. F'. An easy calculation shows that for xe EQ), F we have

Ixll,=sup {Kx, &' ®@n">|: &'eext(Ug), n'eext (Up)}. (1)
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If G is a closed subspace of E, then G®_F is a closed subspace of E®£F. If in
addition G is complemented in E (ie. if there exists a continuous linear
projection P on E with PE=G), then G®,F is complemented in EQ,F.

2. The Gelfand-Phillips Property in Certain s-tensor Products

Let (E, ) be a topological vector space. A set C<E is called conditionally 7-
compact if each sequence in C contains a subsequence which is a J-Cauchy
sequence.

2.1 Theorem. Let E and F be Banach spaces. We assume that E has the Gelfand-
Phillips property and ext (Uy.) is conditionally o(F', F)-compact. Then G:=E® F
has the Gelfand-Phillips property.

Proof. We suppose that G does not have the Gelfand-Phillips property, ie.,
there exists a limited set B<= G which is not relatively compact. So we can find a
sequence (x,),.n in B which has no convergent subsequence. Without loss of
generality we may assume that (x,),. I8 a 0{G, G')-Cauchy sequence ([2]) and
there exists d >0 such that |x,—x,, |,>0 for each neN. Thus by (1) we can
find & eext(Ug) and #,eext(Up) such that |{x,—x, , & ®@n,»>!>5. Since
ext (Uy,) is conditionally o(F, F)-compact, there exists a subsequence (1, );n Of
(})pene Which is o(F', F)-convergent to n'eF’. Then (£, ®(1,, —#'))ien 1 @ norm-
bounded ¢(G', EQ,F)-null sequence and thus a o(G', G)-null sequence. For

Y E@neE®,F we define S( Y, &®n):= ). #,n)&<E. In this way S

15i%n 15ign 1<ign

defines a continuous linear operator from E®,F into E. The continuous linear
extension of § to G will be denoted by T Let us mention that for every ¢'eFE’
we have &0 T=¢ ®un'. Since continuous linear operators map limited sets into
limited sets and the difference of two limited sets is limited ([2]), we obtain
that {T(x, —x, ,.): keIN}<E is limited, hence relatively compact. Since
(X = Xpe kew 18 @ 0(G,G)-null sequence it follows that (T(x,, —X,, . hen
converges in norm to zero. Hence there is k,cIN such that

KT (x,, ~Xp 1) ol <6/2  for all kzk,.
Then for each k=k, we have

1<% =Xt 15 E @ (W, =1
2 <Xy, =Xy 4 15 S @M 2| = KX =Xy 415 &, @M
=1 = Xt 15 En @M | = 1<T %, =X 1)s S0
>0—9/2=5/2.
Therefore the set {x, —x :keIN} =B —B is not limited. On the other hand

g+ 1°
B —B is a limited set ([2]). So we have a contradiction. [J

Obviously, ext (U,) is conditionally ¢(F, F}-compact if the Banach space F
has a o(F’, F)-sequentially compact dual unit ball. Examples of Banach spaces
of this type are separable Banach spaces, reflexive Banach spaces, weakly
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compactly generated Banach spaces ([4, XIII, Thim. 4]), the duals of separable
Banach spaces not containing [, ([4, XIII, Thm. 10]), Banach spaces whose
dual space does not contain /, ([4, p. 226]), Banach spaces with an equivalent
smooth norm ([4, p. 2397]) and weak Asplund spaces ([4, p. 239]).

Since the spaces E®Q),F and F®,E are isomorphic ([9, p. 237]), E®,F has
the Gelfand-Phillips property if and only if F®,E has the Gelfand-Phillips
property. For F=IR the Banach spaces E®,F and E are isomorphic. If E is a
space C(K), K compact, and F an arbitrary Banach space, then EQ,F is
isomorphic to the Banach space C(K, F) of F-valued continuous functions on
K ([9, IV.2, Examplel]). Furthermore ext(Ugy,)={+6,:xeK} where
0,€C(K) is defined by <4, f>:=f(x), feC(K). Thus from Theorem 2.1 we
obtain:

2.2 Corollary. Let K be a compact Hausdorff space and F be a Banach space.

(1) If ext(Ug) is conditionally o(F, F)-compact, then F has the Gelfand-
Phillips property.

(i) If K is sequentially compact, then C(K) has the Gelfand-Phillips proper-
ty ([4, p. 2387).

(iii) If C(K) has the Gelfand-Phillips property and ext(Ug) is conditionally
o(F', F)-compact, then C(K, F) has the Gelfand-Phillips property.

(ivy If K is sequentially compact and F has the Gelfand-Phillips property,
then C(K, F) has the Gelfand-Phillips property.

Let E be a Banach space. We denote by ¢, (E) the Banach space of all
sequences in E converging to zero ([9, 1V.2, Example 2]) and by [,(E) the
Banach space of all summable sequences in E ([9, p. 241]). Then c,(E) resp.
1,(E) is isomorphic to ¢,®E resp. [, ®,E ([9, IV.2, Examples 2 and 4]).

2.3 Corollary. Let E be a Banach space with the Gelfand-Phillips property. Then
¢o(E) and 1, (E) also have the Gelfand-Phillips property.

It is easy to see that a Banach space E has the Gelfand-Phillips property if
and only if each countable limited set in E is relatively compact. Recall that a
Banach space F is said to have the separable complementation property if every
separable subspace Y of F is contained in a closed, separable, complemented
subspace of F.

2.4 Corollary. Let E be a Banach space with the Gelfand-Phillips property and F
be a Banach space with the separable complementation property. Then EQ_F has
the Gelfand-Phillips property. If in addition E is isomorphic to a space C(K), K
compact, then C(K, F) also has the Gelfand-Phillips property.

Proof. Let BCE®£F be a countable limited set. Then there exists a closed
separable subspace Y of F such that Bc E®,Y. Without loss of generality we
can assume that Y is complemented in F. Then E®,Y is a complemented
subspace of E®, F. From this we obtain that B is a limited subset of E®.,Y By
Theorem 2.1 E®,Y has the Gelfand-Phillips property. Hence B is relatively
compact in E®,Y and, consequently, in EQ,F. The last assertion follows from
the fact that C(K)®,F and C(K, F) are isomorphic. []
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Banach spaces which have the separable complementation property are, for
example, weakly compactly generated Banach spaces ([3, p. 149]), spaces ¢, (1)
and spaces L,(X, X, i), 1=p<oo and (X, Z, p) an arbitrary measure space ([7,
1.b.87] and [8, Lemma 1.2]). Consequently, if E has the Gelfand-Phillips proper-
ty, then for an arbitrary measure space (X, X, ) the space L,(X,Z, W®,E,
1 £p< oo, has the Gelfand-Phillips property. By [5, p. 224, Thm. 5] this gen-
eralizes Theorem 1 and 2 of [6].
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Added in proof. Meanwhile L. Drewnowski has shown that EQ,F has the Gelfand-Phillips proper-
ty for each pair of Banach spaces E and F with the Gelfand-Phillips property.



