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Banach spaces in which Dunford-Pettis sets are 
relatively compact 1) 

By 

G. EMMANUELE 

Introduction. Let E be a Banach space and X a bounded subset of E. X is called a 
Dunford-Pettis set if for any weak null sequence (x*) c E* one has lim sup ix* (x)] = 0. 

n X 

This note is devoted to a study of the family of Banach spaces with the property that their 
Dunford-Pettis subsets are relatively compact;  we shall say that such a space has the 
(DPrcP). Our  interest in this class of Banach spaces is motivated by the following fact: 
in the paper [4] we proved that a dual Banach space with the Weak Radon-Nikodym 
Property ([8], in short (WRNP)) has the (DPrcP); since any Banach space with the 
(DPrcP) has the so called Compact  Range Property ([8], in short (CRP)), it turns out that 
the result from [4] can be reversed, so obtaining a new characterization of the (WRNP) 
in dual spaces; this result makes the (WRNP) in dual spaces easier to be handled: for 
instance, we are able to answer a question by Ruess, [12], when defining a research 
program concerning projective tensor products of Banach spaces. There is another reason 
that could as well motivate our study: we state that dominated operators from special 
C(K, E) spaces taking values in a Banach space with the (DPrcP) are Dunford-Pettis;  if 
E is finite dimensional it is well-known that this is always verified, but when the dimen- 
sion of E is infinite the above result is no longer true. When looking for hypotheses on 
E and F making dominated operators Dunford-Pettis we realize that this happens if E 
has the Dunford-Pettis property ([2]) and F the (DPrcP); and these are in a sense the best 
hypotheses one can consider. All of these facts are contained in Section 1. Section 2 
contains some more examples of Banach spaces with the (DPrcP) as well as some 
permanence results. 

Main results. Before starting, we note that in the paper we use, without any warning, 
the well-known equivalence "E does not contain l I ,~  E* has the (WRNP)" ([i4], 7.3.8). 
From the definition of the (DPrcP) it follows easily that Schur spaces have this property, 
because it is well-known that Dunford-Pettis sets are weakly precompact, i.e. each 
sequence has a weak Cauchy subsequence. Moreover, in [4] it was shown that dual 
Banach spaces with the (WRNP) have the (DPrcP), a property inherited by closed 
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subspaces. So it is very easy to prove that there exist Banach spaces with the (DPrcP) 
but without the (WRNP) or the Schur property. The first result contains the announced 
characterization of the (WRNP) in dual Banach spaces. 

Theorem 1. Let E be a Banach space with the (DPrcP). Then E has the (CRP). t f  
moreover E is a dual space, then it has the (WRNP) iff it has the (DPrcP). 

P r o o f. Take an E-valued measure # defined on a 6-field Y~ of subsets of a set S, having 
finite variation. It is known ([14], 7.1.2) that there is a Gelfand integrable function 
f :  S ~ E** for which there is M > 0 such that ]x*f(s)I <= M trx* H a.e. on S, where the 
exceptional set depends upon x*, and such that, for all A ~ Z 

(#(A) ,x*)  = Sx*f(s)d[la[ x * 6 E * .  
A 

Now, consider a weak null sequence (x*) ~ E*. It is clear that x* f (s) ~ 0 pointwise. 
Since there is a null set S O such that ]x* f (s)] < m sup ]} x* H, s @ S ~ we get easily that 

n 

sup ( #  (A), x* ) - -  0. 
A 

This means that the range of # is a Dunford-Pettis set in E and so it is relatively compact.  
Assume, now, that E is a dual space. I f E  has the (DPrcP), it has the (CRP) by the previous 
proof. If the predual of E contained 11, E should contain L 1 [0, I] ([9]); but L 1 [0, t] doesn't  
have the (CRP) ([14], 7.2.4) a property usually inherited by subspaces. This contradiction 
shows that E has the (WRNP). Since the converse is in [4] we are done. 

As stated in the Introduction, an application of Theorem i allows us to answer a 
question by Ruess in [12], 6.4. First we prove the following lemma, where Kw,(E*, F) 
denotes the Banach space of all compact,  weak*-weak continuous operators from E* into 
F with the usual operator  norm. 

Lemma 2. I f  E and F have the (DPrcP) and H is a Dunford-Pettis subset of Kw, (E*, F), 
then we have 
a) H (x*) = {h (x*): h e H} (resp. H *  (y*)) is relatively compact in F (resp. in E) for all 

x* e E* (resp. y* e F*). 
b) H (BE,) = {h (x*): h 6 H, x* ~ BE,} (resp. H* (By,)) is weakly precompact in F (resp. 

in E). 

P r o o f .  Since the map h ~ h* from Kw,(E*,F)  into Kw,(F*,E ) is a (surjective) 
isometry, thus preserving the property of being a Dunford-Pettis set, it is enough to prove 
the first assertions of (a) and (b), respectively. 

a) If x* E E* we consider the bounded, linear operator  assigning to each h its value at 
x*, from Kw,(E*, F) into F; hence, H(x*) is a Dunford-Pettis set in F and so it is 
relatively compact.  

b) Let (h, (x*)) be a sequence in H(BE, ). Since H is weakly precompact,  we can suppose 
that  (h,) is a weak Cauchy sequence (otherwise we pass to a subscquence). Furthermore,  
since E o = closed linear span of {h*(F*): n ~ N )  is separable, we can suppose that 
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(X*l Eo) is weak* converging in B~; (otherwise, we pass to a subsequence of the x*'s and 
then to the corresponding subsequence of the h.'s). For n, m e N and y* e F* we have 

)C* * <h.(x*) - hm(x*), y*)  = <h.(x*) - h,.(x~), y*) + (h, .(x*) - h.~( .,), y ) 

< It(h, - hm)* (Y*)II + (x* - x*, h*(y*))  ~ O 

as n, m go to infinity because, as in a), ( h , -  h,,)* (y*) goes to 0 in norm and (x~t~o) 
is weak* converging, while the set {h* (y*) : n 6 N} is relatively compact in Eo by virtue 
of a). This completes the proof. 

In the next result we shall use the following other characterization of the (WRNP) in 
dual spaces that we obtained in [4]:E* has the (WRNP) iff any (L)subset of E* is 
relativeiy compact. (A (L)subset X is one verifying the following limit relation 
limsup Ix,(x*)l = 0 for any weak null sequence (x,) in E). We denote by L ( E , H )  

n X 

(resp. K (E, H)) the Banach space of all bounded, linear (resp. bounded, linear, compact) 
operators from E into H with the usual operator norm. 

Theorem 3. Let E, F contain no copies of  1 I. I f  L (E ,F*)  = K(E, F*) then E |  
doesn't contain copies of  t 1. 

P r o o f .  By virtue of Theorem 1 it is enough to show that (E |  = L ( E , F * )  
= K(E, F*) has the (DPrcP). Let H be a Dunford-Pettis subset of (E|  Since 
K(E,  F*) = Kw.(E**,  F) via the mapping h ~ h**, we can use Theorem 1.5 of [11] to 
prove that H is relatively compact. So it will be enough to prove that the following are 
true: i) H** (x**) is relatively compact, for all x** ~ E** (this is true by virtue of Lem- 
ma 2, a)); ii) H** (Be**) is relatively compact in F*. Since B E is w* dense in Be** it is enough 
to prove that H(Be) is relatively compact. So let (h, (x,)) be a sequence in H (Be); we shall 
prove it is a (L) subset of F*. To this aim, let us consider a weak null sequence (y,) c F; 
we claim that the sequence (x, | y,) is a weak null sequence in E |  Indeed, if 
h ~ (E |  = K (E, F*), we have 

[h ( x . |  < llh*(y.)H -~ 0 

because of the compactness of h. This means that 

h.(x.) (y . )  - ,  0;  

the last limit relation easily implies that (h.(x.)) is a (L) subset of F* and so a relatively 
compact subset of F* (as a consequence of the recalled characterization from [4]). We are 
done. 

Theorem 3 is an improvement over Theorem 4.4 from [13] obtained under the follow- 
ing more restrictive hypotheses: F doesn't contain 11 and E* has the Radon-Nikodym 
property and the Approximation property. The following corollaries are immediate from 
Theorem 3, so we don't give the proof 

Corollary 4. Let E, F contain no copies of  t I and L(E, F*) = K(E,  F*). Then E* |  
has the (DPrcP). 
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Corollary 5. Let E*, F contain no copies of I l and L(E*, F*) = K (E*, F*). Then the 
space N 1 (E, F) of all nuclear operators from E into F doesn't contain copies of l ~*. 

In some special cases the hypothesis L(E, F*) = K (E, F*) in Theorem 3 is even neces- 
sary for E | F to contain no copies of 11 as the following result shows; it follows along 
the lines of reasoning for Corollary 415 in [13], but it actually is a wide generalization of 
that result obtained under the following hypotheses: E has a shrinking unconditional 
basis and F doesn't contain copies of/1. The difference between Corollary 4.5 in [13land 
our Corollary 6 below resides in the fact that thanks to Theorem 3 above we can use in 
its complete generality a result (used even in [13]) due to Diestel and Morrison ([1])about 
the containment of 1 ~o by spaces of operators 

Corollary 6. Assume E and F contain no copies ofl 1. I f  E or F* has a finite dimensional 
unconditional Schauder decomposition, the following facts are equivalent 

i) E | doesn't contain copies of 11 
ii) E | F doesn't contain complemented copies of 11 

iii) L(E, F*) = K(E, F*). 

We omit the proof similar to that of Corollary 4.5 in [13]. We also note that thanks to 
a result from [5] the assumption on F* can be substituted with the following one: F* is 
a complemented subspace of a Banach space Z having an unconditional Schauder 
decomposition (Z,) with L(E, Z,) = K (E, Z,) for all n ~ N. Indeed, we showed in [5] that 
if L(E, F*) -+- K(E, F*) then c o embeds into K(E, F*). Other results implying the pres- 
ence of a copy ofc o in K (E, F*) as soon as L(E, F*) ~ K (E, F*) can be found in the paper 
[6]. For  anyone of them, we can obtain a result like Corollary 6 above. 

Theorem 7. Let E have the Schur property and F the (DPrcP). Then, the Banach space 
Kw.(E*, F) has the (DPrcP). 

P r o o f. Using Theorem 1.5 in [11] and Lemma 2 we obtain our thesis immediately, 
since E has the Schur property. 

Corollary 8. Let E, F be as in Theorem 7. Then E | F has the (DPrcP). 

Corollary 9. Let E have a dual E* with the Schur property, F have the (DPrcP). Then, 
K (E, F) has the (DPrcP). I f  F is a dual Banach space, i.e. F = Z*, then E |  doesn't 
contain copies of 11. 

P r o o f. We have already noted that K (E, F) = Kw. (E**, F); so it enough to note 
that, when F = Z*, any operator T:  E -~ F maps the unit ball of E, that is a Dunford- 
Pettis set, in a relatively compact set. 

Corollary 9 improves greatly a result in [13], Corollary 4.6, obtained under the hy- 
potheses: E* has the Schur property and Z has a shrinking unconditional basis. 

Corollary 10. Let F have the (DPrcP). Then the space tl[F] of all unconditionally 

the (DPrcP). n = 
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P r o o f. I t  is well-known that  l i [F] is isometrically isomorphic  to K (co, F). 
The second appl icat ion of the family of Banach spaces with the (DPrcP) is to dominat -  

ed operators  on C (K, E) spaces, as announced in the Introduct ion.  Fo r  the definition of 
this kind of operators  we refer to the book  [3], CH. I I I ,w 19.3. 

Theorem 11. Let E have the Dunford-Pettis property and F the (DPrcP). I f  K is a 
compact Hausdorff space, then any dominated operator T from C (K, E) into F is Dunford- 
Pettis. 

P r o o f. We need a representat ion Theorem for dominated  operators  that  can be 
found in [3], CH.II I ,w Thm. 5. It says that  for any dominated  opera tor  
T: C(K, E) ~ F there is a function G from K into L(E, F**) such that 

a) [[G(t) l l= l# .a -e ,  inK 
b) for each y * e  F*  and f 6 C (K, E) the function (G ( ' ) f  ( ' ) ,  y*} is #-integrable and 

moreover  

( T ( f ) ,  y*} = .[ (G(t) f ( t ) ,  y*} dp f ~ C(K, E) 
K 

where # is the least regular Borel measure dominat ing  T. In order to prove our thesis, we 
shall consider a weak null sequence (f , )  in C(K, E) and we shall show that  ( T ( f , ) )  is a 
Dunford-Pet t is  subset of F. Let us consider a weak null sequence (y*) c F*.  Fo r  each 
t ~ K, G* (t) y* ~ 0 in E*. On the other hand, (f~ (t)) is a weak null sequence in E. Hence, 
by virtue of the Dunford-Pet t is  proper ty  in E, we have 

( G (t) f~ (t), y* ) = (f~ (t), G * (t) y* > -* 0 

pointwise on K. Fur thermore ,  we note that  there exists a constant  M > 0 such that  
l(G(t)f,(t), Y*}I < M for a.a. t in K and all n ~ N.  Thanks  to the nature of ~ we may 
conclude that  

lira (T(f~), y*} = lira ~ (G(t) f.(t), Y*} dt l = 0 
n n K 

a limit relat ion that  finishes our proof. 
We note that  the assumption on E in the above theorem cannot  be d ropped  at all; 

indeed, if a Banach space E doesn' t  enjoy the Dunford-Pet t is  property,  it is well-known 
that there is a reflexive Banach space F and a non Dunford-Pet t is  opera tor  S : E -~ F;  
hence, the dominated  opera tor  T: C ([0, 1], E) -~ F defined by 

T ( f ) =  ~ Sf ( t )dm 
[o ,  11 

is not  Dunford-Pet t i s  (use constant  functions). If  we try to change the hypothesis on F 
in Theorem 11, leaving unchanged that  one on E, we cannot  say anything about  domi- 
nated T. It is enough to consider the cases E = F = Co or E = F = L 1 [0, 1] defining T as 
above (S = identity). 

Archiv  der  M a t h e m a t i k  58 31 
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We finish this section with the following natural  

Q u e s t i o n. If E and F have the (DPrcP), does Kw. (E*, F) have the same property, 
provided Kw.(E*, F) = Lw.(E*, F)? 

In case of a positive answer to this question, Thms. 3, 7 and 13 would be nothing but 
special cases of it. 

Further examples and permanence properties. In light of Theorem ! 1 it becomes inter- 
esting to have results pointing out more Banach spaces with the (DPrcP), The final part  
of the note is devoted to this problem. 

Theorem 12. Let E be a Banach lattice with the (WRNP). Then E has the (DPrcP). 

P r o o f. First of all, note that E has the Radon-Nikodym property ([14], 7,5.2). Now, 
consider a separable subspace Y of E. It is known ([7]) that there is a closed sublattice 
Z of E that is separable and contains Y. A beautiful result by Talagrand ([14], 7.5,4) shows 
that Z is isometrically isomorphic to a dual Banach lattice, because Z inherites the 
Radon-Nikodym property by E. Now, we can apply our Theorem 1 to show that  Z has 
the (DPrcP) and so even Y has the (DPrcP). Hence, we have proved that any separable 
subspace of E has the (DPrcP). Now, observe that E doesn't  contain co and so it is an 
order continuous Banach lattice, from which it follows that it is a separab!y complement-  
ed Banach space. Let (xn) be a Dunford-Pett is  sequence in E. From the above remarks  
it follows that (x,) is contained in a complemented separable subspace Yof E, possessing 
the (DPrcP). Since one sees very easily that (x,) is Dunford-Pettis even in Y, we have that 
(xn) is relatively compact  in (Y and so in) E. We are done. 

Theorem 13. Let E be a Banach space such that E* has the (DPrcP) and F be a Banach 
lattice with the (WRNP). I f  L(E, F) = K (E, F), then K (E, F) has the (DPrCP). 

P r o o f. Let (h,) be a Dunford-Pett is  sequence in K (E, F). Since the closed span Y of 
{h, (x): x e E, n e N } is separable, there is a closed subspace Z of F that is separable and 
complemented in F and contains Y (see Theorem 12). It is clear that K (E, Z) is comple- 
mented in K (E, F) and so (h,) is Dunford-Pettis in K (E, Z). As in Theorem 12, we choose 
a separable closed sublattice H containing Z and isometrically isomorphic to a dual 
Banach space. F rom our hypotheses, it follows that L(E, H) = K(E, H). Hence, in this 
setting, we may apply Theorem 3. K (E, H)  has the (DPrcP), that is inherited by K (E,Z): 
This gives the relative compactness of (h,). We are done. 

The next results can be obtained with a straightforward (but long) proof; so we shall 
only give sketches of their proofs 

Proposition 14. Let F be a set and 1 <= p < ~ .  I f  (E~)r is a family of Banach spaces 
with the (DPrcP), then le(F, ET) has the same property. 

P r o o f. Let us assume first that F is countable, i. e. F = N. Let (x~) be a Dunford-Pet-  
tis sequence in lP(Ek), where x~ = (xin) for alI n G N. Arguing by contradiction it is not 
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difficult to show that  

(1) lim sup ~ II xi. I]p = 0. 
m n i=m 

Now, observe that  (x~.) is a Dunford-Pet t is  set in Ei and hence a relatively compact  subset 
of E~. By passing to a subsequence if necessary, we can assume (x.) is such that there is 

�9 ~ x ~. F r o m  this last limit relation we can easily see that  x z ~ E i, for all i ~ N,  with lira x.  = 
n 

x = (x i) is in 1 p (Ei). Moreover,  since for all s ~ N,  one has 

( < (  llx. - x II = i ll :-  '11 + 
i = 1  i = s + l  

( <( 
i = 1  i=s+l  

i X i p )Up N x. - II 

p)l/p( 
ii x~. II + i=s+:~' 11 x / II p)l/v 

it is a s traightforward task to prove that  x.  ~ x, using (1) and the fact that  lira xi. = x i 
n 

and x e l v (El). When F is not  necessarily countable,  if (x~) is a Dunford-Pet t is  sequence 
in IP(E), it is easy to show that  there is a countable subset Fo of F such that  (x.) can be 
considered a Dunford-Pet t i s  sequence in 1 v (Fo, E~o), that  is i somorphic  to I p (E~). The first 
par t  of the Propos i t ion  concludes our proof. 

Proposition 15. L e t  (S, Z, #) be a f in i te  measure space and I < p < oo. I f  E is a closed 
subspace o f  a dual space Z *  with the (DPrcP), then LP(E) has the (DPrcP). 

P r o o f. If p -  1 + q -  1 = 1, L q (Z) doesn' t  contain copies of l 1 ( [ 1 0 ] )  and hence (L q (Z))* 
has the (DPrcP) by Theorem 1. Since L; (E) is a closed subspace of (L q (Z))* we are done. 

We observe that  thanks to Propos i t ion  14 the last result can be extended very easily 
to case of a a-finite measure space. 

The last fact we present is a character izat ion of the (DPrcP) by means of the behaviour  
of certain operators  

Proposition 16. The fol lowing fac ts  are equivalent: 
a) E has the (DPrcP) 
b) any conjugate operator T f rom E* into any F*  that is Dunford-Pett is  is compact 
c) the same as b) with F = 11. 

P r o o f. a) ~ b): Let T: E* - ,  F *  be a Dunford-Pet t is  operator .  Consider  a weak null 
sequence (x*) c E* and y e Br; we have 

]x*~(T(y))[ <= [I T*(x~*)]] ~ 0 uniformly on y.  

Hence T ( B e )  is a Dunford-Pet t is  set in E and so, from a), Tis  compact,  b) ~ c) is obvious. 
c) ~ a) : Assume X is a non relatively compact ,  Dunford-Pet t is  subset of E. Since X is 
weakly precompact  and X - X = {x - y:  x, y ~ X} is still a Dunford-Pet t is  subset of E, 

31" 
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we can find a sequence ( x . ) c  E that is weak null, Dunford-Pet t is  

0 < inf t{x,,II _-__ sup ilx, II < 1. Define S:  E* -+ t ~~ by put t ing 
n n 

and for which 

S(x*) = (x*(x.))  x* e E *  

(note that actually S takes its values in Co). S is a conjugate operator.  To this aim, consider 
a weak* null net ( x * ) c E *  with I I x * f t < l ,  and choose an element y ~ I  1, 

ti y }I < 1, y = (Y0- F o r  each ~ we have 

k s (x~*)(y)= x * ( x . )  (y . ) .  
n = I  

co 

Given e > 0 there is no e N such that  ~ l Y.J<e /2 .  S o w e h a v e  
n = n o + l  

lS(x*)(y)[ < E Ix*(x,)J +~/2  for alice. 
n = l  

Since (x*) is weak* null and e is a rb i t ra ry  it is easy to conclude that  (S(x*)) is weak* nutl, 
too, i.e, S is a conjugate operator .  Now, we show that S is a Dunford-Pet t is  operator .  Let 
(x*) be a weak null sequence in E*. Since (x,) is a DunfordiPet t i s  sequence in E, we have 
sup [x~' (x,)i --+ 0 as k ~ co, i.e. If S(x*)ti --' 0. So S is compact,  because of c). If T:  ! t --* E 

n 
is such that  T* = S, T is compact,  too;  since, clearly, T maps the unit basis of t 1 onto 
(x,) we reach a contradict ion that  concludes the proof. 
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