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THE PROJECTIVE AND INJECTIVE
TENSOR PRODUCTS OF Lp[0, 1]

AND X BEING GROTHENDIECK SPACES

QINGYING BU AND G. EMMANUELE

ABSTRACT. Let X be a Banach space and 1 < p, p′ < ∞
such that 1/p + 1/p′ = 1. Then Lp[0, 1]⊗̂X, respectively
Lp[0, 1]⊗̌X, the projective, respectively injective, tensor prod-
uct of Lp[0, 1] and X, is a Grothendieck space if and only if X
is a Grothendieck space and each continuous linear operator

from Lp[0, 1], respectively Lp′
[0, 1], to X∗, respectively X∗∗,

is compact.

1. Introduction. In [1, 4, 5], Bu, Diestel, and Dowling gave a
sequential representation of Lp[0, 1]⊗̂X, the projective tensor product
of Lp[0, 1] and X when 1 < p < ∞. By this sequential representation,
they showed that Lp[0, 1]⊗̂X, 1 < p < ∞, has the Radon-Nikodym
property (respectively the analytic Radon-Nikodym property, the near
Radon-Nikodym property, contains no copy of c0) if and only if X
has the same property. Using this sequential representation, Bu in [2]
showed that Lp[0, 1]⊗̂X, 1 < p < ∞, contains no copy of l1 if and only
if X contains no copy of l1 and each continuous linear operator from
Lp[0, 1] to X∗ is compact, and he also in [3] discussed all these geometric
properties in Lp[0, 1]⊗̌X, the injective tensor product of Lp[0, 1] and
X when 1 < p < ∞.

In [9], Emmanuele showed that if X and Y are Grothendieck Banach
spaces, one of which is reflexive, and if each continuous linear operator
from X to Y ∗ is compact, then X⊗̂Y , the projective tensor product
of X and Y , is a Grothendieck space. And he also in [10] showed
that if X⊗̂Y is a Grothendieck space and Y ∗ has the (b.c.a.p), then
each continuous linear operator from X to Y ∗ is compact. As a special
case of Emmanuele’s results, we have that if X has the (b.c.a.p), then
Lp[0, 1]⊗̂X, 1 < p < ∞, is a Grothendieck space if and only if X is a
Grothendieck space and each continuous linear operator from Lp[0, 1]
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to X∗ is compact. In this paper, through the sequential representation
of Lp[0, 1]⊗̂X, we give a new proof of Emmanuele’s special case and,
meanwhile, we characterize Lp[0, 1]⊗̂X and Lp[0, 1]⊗̌X, 1 < p < ∞,
being Grothendieck spaces for any Banach space X.

2. Preliminaries. For 1 < p < ∞, let p′ denote its conjugate, i.e.,
1/p + 1/p′ = 1. For a sequence x̄ = (xi)i ∈ XN and n ∈ N, denote

x̄(i > n) = (0, . . . , 0, xn+1, xn+2, . . . ).

For any Banach space X, we will denote its topological dual by X∗

and its closed unit ball by BX . For two Banach spaces X and Y , let
L(X, Y ) denote the space of all continuous linear operators from X
to Y , K(X, Y ) the space of all compact operators from X to Y , and
N (X, Y ) the space of all nuclear operators from X to Y .

From [12, p. 3] and [13, p. 155], we know that the Haar system
{χi}∞i=1 is an unconditional basis of Lp[0, 1] for 1 < p < ∞. Let us
use Kp to denote the unconditional basis constant of the basis {χi}∞i=1.
Now renorm Lp[0, 1] by

‖f‖new
p = sup

{∥∥∥∥
∞∑

i=1

θiaiχi

∥∥∥∥
p

: θi = ±1, i = 1, 2, . . .

}
,

f =
∞∑

i=1

aiχi ∈ Lp[0, 1].

Then
‖ · ‖p ≤ ‖ · ‖new

p ≤ Kp · ‖ · ‖p.

With this new norm, Lp[0, 1] is also a Banach space. Furthermore,
{χi}∞i=1 is a monotone, unconditional basis with respect to this new
norm. Now let

ei =
χi

‖χi‖new
p

, i = 1, 2, . . . .

Then {ei}∞i=1 is a normalized, unconditional basis of (Lp[0, 1], ‖ · ‖new
p )

whose unconditional basis constant is 1. For convenience, let

e∗i =
χi

‖χi‖new
p′

, i = 1, 2, . . . .
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From [12, pp. 18 19] we have the following

Proposition 1. Let u =
∑∞

i=1e
∗
i (u)ei ∈ Lp[0, 1], 1 < p < ∞. Then

(i) For each subset σ of N, ‖∑
i∈σ e∗i (u)ei‖new

p ≤ ‖u‖new
p .

(ii) For each choice of signs θ = {θi}∞1 , ‖∑∞
i=1θie

∗
i (u)ei‖new

p ≤
‖u‖new

p .

(iii) For each λ = (λi)i ∈ l∞, ‖∑∞
i=1λie

∗
i (u)ei‖new

p ≤ 2·‖λ‖l∞ ·‖u‖new
p .

For any Banach space X and 1 < p < ∞ with 1/p + 1/p′ = 1, define

Lp
weak(X) =

{
x̄ = (xi)i ∈ XN :

∑
i

x∗(xi)ei converges in

Lp[0, 1] ∀x∗ ∈ X∗
}

,

Lp〈X〉 =
{

x̄ = (xi)i ∈ XN :
∞∑

i=1

|x∗
i (xi)| < ∞ ∀ (x∗

i )i ∈ Lp′
weak(X

∗)
}

;

and define norms on Lp
weak(X) and Lp〈X〉, respectively, to be

‖x̄‖Lp
weak(X) = sup

{∥∥∥∥
∞∑

i=1

x∗(xi)ei

∥∥∥∥
new

p

: x∗ ∈ BX∗

}
, x̄ ∈ Lp

weak(X),

‖x̄‖Lp〈X〉 = sup
{ ∞∑

i=1

|x∗
i (xi)| : (x∗

i )i ∈ B
Lp′

weak(X∗)

}
, x̄ ∈ Lp〈X〉.

With their own norm, respectively, Lp
weak(X) and Lp〈X〉 are Banach

spaces [1, 4]. Let Lp
weak,0(X) denote the closed subspace of Lp

weak(X)
such that the tail of each member of Lp

weak,0(X) converges to zero, i.e.,

Lp
weak,0(X) =

{
x̄ = (xi)i ∈ Lp

weak(X) : lim
n

‖x̄(i > n)‖Lp
weak(X) = 0

}
.

From [1] we have the following proposition.

Proposition 2. (i) For each x̄ = (xi)i ∈ Lp〈X〉,
lim
n

‖x̄(i > n)‖Lp〈X〉 = 0.
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(ii) Lp[0, 1]⊗̂X is isomorphic to (Lp[0, 1], ‖ · ‖new
p )⊗̂X which is iso-

metrically isomorphic to Lp〈X〉.

Proposition 3. Lp
weak(X) is isometrically isomorphic to

L((Lp′
[0, 1], ‖ · ‖new

p′ ), X).

Proof. Define

φ : Lp
weak(X) −→ L((Lp′

[0, 1], ‖ · ‖new
p′ ), X)

x̄ 
−→ φ(x̄),

where, for each x̄ = (xi)i ∈ Lp
weak(X),

φ(x̄) : (Lp′
[0, 1], ‖ · ‖new

p′ ) −→ X

u∗ 
−→
∞∑

i=1

u∗(ei)xi .

Let u∗ ∈ (Lp′
[0, 1], ‖ · ‖new

p′ ) and n, m ∈ N with m > n. Then

∥∥∥∥
m∑

i=n

u∗(ei)xi

∥∥∥∥
X

= sup
{∣∣∣∣

m∑
i=n

u∗(ei)x∗(xi)
∣∣∣∣ : x∗∈BX∗

}

= sup
{∣∣∣∣〈

m∑
i=n

u∗(ei)e∗i ,
∞∑

i=1

x∗(xi)ei

〉∣∣∣∣ : x∗∈BX∗

}

≤ sup
{∥∥∥∥

m∑
i=n

u∗(ei)e∗i

∥∥∥∥
new

p′
·
∥∥∥∥

∞∑
i=1

x∗(xi)ei

∥∥∥∥
new

p

: x∗∈BX∗

}

= ‖x̄‖Lp
weak(X) ·

∥∥∥∥
m∑

i=n

u∗(ei)e∗i

∥∥∥∥
new

p′
.

Since
∑

iu
∗(ei)e∗i converges in (Lp′

[0, 1], ‖ · ‖new
p′ ), {∑m

i=nu∗(ei)xi}∞n=1

is a Cauchy sequence in X and, hence, converges in X. So
∑∞

i=1u
∗(ei)xi

∈ X and ∥∥∥∥
∞∑

i=1

u∗(ei)xi

∥∥∥∥
X

≤ ‖x̄‖Lp
weak(X) · ‖u∗‖.
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Therefore φ is well defined and

(1) ‖φ(x̄)‖ ≤ ‖x̄‖Lp
weak(X).

On the other hand, Let T ∈ L((Lp′
[0, 1], ‖ · ‖new

p′ ), X). Define xi =
T (e∗i ) for each i ∈ N. By Proposition 1, for each x∗ ∈ X∗ and each
n ∈ N,

∥∥∥∥
n∑

i=1

x∗(xi)ei

∥∥∥∥
new

p

= sup
{∣∣∣∣

n∑
i=1

x∗(xi)u∗(ei)
∣∣∣∣ : u∗ ∈ B(Lp′ [0,1],‖·‖new

p′ )

}

≤ ‖x∗‖ · sup
{∥∥∥∥

n∑
i=1

u∗(ei)xi

∥∥∥∥
X

: u∗ ∈ B(Lp′ [0,1],‖·‖new
p′ )

}

= ‖x∗‖ · sup
{∥∥∥∥

n∑
i=1

u∗(ei)T (e∗i )
∥∥∥∥

X

: u∗ ∈ B(Lp′ [0,1],‖·‖new
p′ )

}

≤ ‖x∗‖ · ‖T‖ · sup
{∥∥∥∥

n∑
i=1

u∗(ei)e∗i

∥∥∥∥
new

p′
: u∗ ∈ B(Lp′ [0,1],‖·‖new

p′ )

}

≤ ‖x∗‖ · ‖T‖ · sup
{∥∥∥∥

∞∑
i=1

u∗(ei)e∗i

∥∥∥∥
new

p′
: u∗ ∈ B(Lp′ [0,1],‖·‖new

p′ )

}

≤ ‖x∗‖ · ‖T‖.

So

(2) sup
n

∥∥∥∥
n∑

i=1

x∗(xi)ei

∥∥∥∥
new

p

≤ ‖x∗‖ · ‖T‖ < ∞.

Since {ei}∞1 is a boundedly complete basis of Lp[0, 1], the series∑
ix

∗(xi)ei converges in Lp[0, 1] for each x∗ ∈ X∗. Thus x̄ = (xi)i ∈
Lp

weak(X). Moreover, φ(x̄) = T . Therefore φ is onto. Furthermore,
from (2),

(3) ‖x̄‖Lp
weak(X) ≤ ‖T‖ = ‖φ(x̄)‖.

Thus, combining (1) and (3), φ is an isometry.
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Proposition 4. Lp
weak,0(X) is isometrically isomorphic to

K((Lp′
[0, 1], ‖ · ‖new

p′ ), X)

which is isomorphic to Lp[0, 1]⊗̌X.

Proof. For each x̄ = (xi)i ∈ Lp
weak,0(X), it is easy to see that

its corresponding operator Tx̄ is the limit of finite rank operators.
So Tx̄ ∈ K((Lp′

[0, 1], ‖ · ‖new
p′ ), X). On the other hand, if Tx̄ ∈

K((Lp′
[0, 1], ‖ · ‖new

p′ ), X), then its adjoint operator T ∗
x̄ : X∗ → Lp[0, 1]

is compact. Note that, for each x∗ ∈ X∗, T ∗
x̄ (x∗) =

∑∞
i=1x

∗(xi)ei. So
{∑∞

i=1x
∗(xi)ei : x∗ ∈ BX∗} is a relatively compact subset of Lp[0, 1].

Thus,

lim
n

‖x̄(i > n)‖Lp
weak(X) = lim

n
sup

{∥∥∥∥
∞∑

i=n+1

x∗(xi)ei

∥∥∥∥
new

p

: x∗ ∈ BX∗

}

= 0.

Hence x̄ ∈ Lp
weak,0(X). Therefore Lp

weak,0(X) = K((Lp′
[0, 1], ‖ · ‖new

p′ ),
X). Note that Lp[0, 1] has the approximation property. Thus
K(Lp′[0, 1], X) = Lp[0, 1]⊗̌X.

It is known that, cf. [8, p. 230], (Lp[0, 1]⊗̂X)∗ is isometrically isomor-
phic to L(Lp[0, 1], X∗). Thus, from Proposition 2 and Proposition 3,
we have

Proposition 5. (Lp〈X〉)∗ is isometrically isomorphic to Lp′
weak(X

∗).
The dual operation is defined by

〈x̄, x̄∗〉 =
∞∑

i=1

x∗
i (xi)

for each x̄ = (xi)i ∈ Lp〈X〉 and each x̄∗ = (x∗
i )i ∈ Lp′

weak(X
∗).

Note that Lp[0, 1] has the Radon-Nikodym property when 1 < p < ∞.
It is known from [8, pp. 232, 248, Theorem 6] that (Lp[0, 1]⊗̌X)∗ is
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isometrically isomorphic to N (Lp[0, 1], X∗). Also note that Lp[0, 1]
has the approximation property. It is also known from [14, p. 3]
that Lp′[0, 1]⊗̂X is isometrically isomorphic to N (Lp[0, 1], X). Thus,
combining Proposition 2 and Proposition 4, we have

Proposition 6. (Lp
weak,0(X))∗ is isometrically isomorphic to Lp′〈X∗〉.

The dual operation is defined by

〈x̄, x̄∗〉 =
∞∑

i=1

x∗
i (xi)

for each x̄ = (xi)i ∈ Lp
weak,0(X) and each x̄∗ = (x∗

i )i ∈ Lp′〈X∗〉.

3. Main results. Recall that a Banach space X is called a
Grothendieck space, cf. [6, 11], if each separably valued bounded linear
operator on X is weakly compact. By [8, p. 179] we know that a Banach
space is a Grothendieck space if and only if any weak∗ convergent
sequence in its dual space is weakly convergent.

Lemma 7. Let x̄(n) = (x(n)
i )i ∈ Lp

weak,0(X) for each n ∈ N. Then

(4) σ(Lp
weak,0(X), Lp′〈X∗〉) − lim

n
x̄(n) = 0

if and only if

(5) σ(X, X∗) − lim
n

x
(n)
i = 0, i = 1, 2, . . .

and

(6) M = sup
n

‖x̄(n)‖Lp
weak(X) < ∞.

Proof. It is obvious that (4) ⇒ (5) + (6). Next we want to show that
(5) + (6) ⇒ (4).

For each fixed x̄∗ = (x∗
i )i ∈ Lp′〈X∗〉 and each ε > 0, there exists,

from Proposition 2, an m ∈ N such that

‖x̄∗(i > m)‖Lp′ 〈X∗〉 ≤ ε/2M.
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From (5) there exists an n0 ∈ N such that for each n > n0,

|x∗
i (x

(n)
i )| ≤ ε/2m, i = 1, 2, . . . , m.

Thus, for each n > n0,

|〈x̄(n), x̄∗〉| =
∣∣∣∣

m∑
i=1

x∗
i (x

(n)
i )

∣∣∣∣ +
∣∣∣∣

∞∑
i=m+1

x∗
i (x

(n)
i )

∣∣∣∣
≤

m∑
i=1

|x∗
i (x

(n)
i )| + |〈x̄(n), x̄∗(i > m)〉|

≤ ε/2 + ‖x̄(n)‖Lp
weak(X) · ‖x̄∗(i > m)‖Lp′ 〈X∗〉

≤ ε/2 + M · ε/2M = ε.

Therefore (4) follows.

Similarly, we have

Lemma 8. Let x̄∗(n) = (x∗(n)
i )i ∈ Lp′

weak(X
∗) for each n ∈ N. Then

(7) σ(Lp′
weak(X

∗), Lp〈X〉) − lim
n

x̄∗(n) = 0

if and only if

(8) σ(X∗, X) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . .

and

(9) M = sup
n

‖x̄∗(n)‖
Lp′

weak(X∗)
< ∞.

Theorem 9. Let X be a Banach space and 1 < p < ∞. Then
Lp[0, 1]⊗̂X, the projective tensor product of Lp[0, 1] and X, is a
Grothendieck space if and only if X is a Grothendieck space and each
continuous linear operator from Lp[0, 1] to X∗ is compact.
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Proof. By Propositions 2, 3 and 4, it is enough to show that Lp〈X〉
is a Grothendieck pace if and only if X is a Grothendieck space and
Lp′

weak(X
∗) = Lp′

weak,0(X
∗).

Now suppose that X is a Grothendieck space and Lp′
weak(X

∗) =
Lp′

weak,0(X
∗). By Propositions 5 and 6,

(10) (Lp〈X〉)∗ = Lp′
weak(X

∗), (Lp〈X〉)∗∗ = Lp〈X∗∗〉.

Let x̄∗(n) = (x∗(n)
i )i ∈ Lp′

weak(X
∗) be such that x̄∗(n) converges to 0

weak∗ in (Lp〈X〉)∗, i.e.,

σ(Lp′
weak(X

∗), Lp〈X〉) − lim
n

x̄∗(n) = 0.

By Lemma 8,

σ(X∗, X) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . .

and
sup

n
‖x̄∗(n)‖

Lp′
weak(X∗)

< ∞.

Since X is a Grothendieck space,

σ(X∗, X∗∗) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . . .

Note that x̄∗(n) ∈ Lp′
weak(X

∗) = Lp′
weak,0(X

∗). By Lemma 7,

σ(Lp′
weak,0(X

∗), Lp〈X∗∗〉) − lim
n

x̄∗(n) = 0.

It follows from (10) that x̄∗(n) converges to 0 weakly in (Lp〈X〉)∗, and
hence, Lp〈X〉 is a Grothendieck space.

On the other hand, suppose that Lp〈X〉 is a Grothendieck space. It
is obvious that X is a Grothendieck space. Next we want to show that
Lp′

weak(X
∗) = Lp′

weak,0(X
∗).

Let x̄∗ = (x∗
i )i ∈ Lp′

weak(X
∗). For each k ∈ N, define

x̄∗(k) = (0, . . . , 0, x∗
k, 0, 0, . . . ).
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Then x̄∗(k) ∈ Lp′
weak(X

∗) for each k ∈ N. Next we want to show that the
series

∑
k x̄∗(k) is subseries convergent series in Lp′

weak(X
∗) = (Lp〈X〉)∗.

For each fixed subsequence n1 < n2 < · · · and each m ∈ N, define

z̄ = (. . . , x∗
n1

, . . . , x∗
n2

, . . . , x∗
nk

, . . . )

and

z̄(m) =
m∑

k=1

x̄∗(nk) = (. . . , x∗
n1

, . . . , x∗
n2

, . . . , x∗
nm

, 0, 0, . . . ).

By Proposition 1, z̄ ∈ Lp′
weak(X

∗), z̄(m) ∈ Lp′
weak(X

∗) for each m ∈ N
and

‖z̄(m)‖
Lp′

weak(X∗)
≤ ‖x̄∗‖

Lp′
weak(X∗)

, m = 1, 2, . . . .

By Lemma 8,

σ(Lp′
weak(X

∗), Lp〈X〉) − lim
m

z̄(m) = z̄.

Thus the partial sum
∑m

k=1 x̄∗(nk) converges to z̄ weak∗ in (Lp〈X〉)∗.
Since Lp〈X〉 is a Grothendieck space, the partial sum

∑m
k=1 x̄∗(nk)

converges to z̄ weakly in (Lp〈X〉)∗. Hence we have shown that the
series

∑
k x̄∗(k) is weakly subseries convergent in (Lp〈X〉)∗. It follows

from the Orlicz-Pettis theorem, cf. [7, p. 24], that the series
∑

k x̄∗(k) is
subseries convergent in (Lp〈X〉)∗, and hence, convergent in (Lp〈X〉)∗.
Therefore,

lim
n

‖x̄∗(i > n)‖
Lp′

weak(X∗)
= lim

n

∥∥∥∥
∞∑

k=n+1

x̄∗(k)

∥∥∥∥
(Lp〈X〉)∗

= 0.

Thus x̄∗ ∈ Lp′
weak,0(X

∗).

Lemma 10. Let x̄(n) = (x(n)
i )i ∈ Lp〈X〉 for each n ∈ N. Then

(11) σ(Lp〈X〉, Lp′
weak(X

∗)) − lim
n

x̄(n) = 0
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is equivalent to

(12) σ(X, X∗) − lim
n

x
(n)
i = 0, i = 1, 2, . . .

and

(13) M = sup
n

‖x̄(n)‖Lp〈X〉 < ∞

if and only if Lp′
weak(X

∗) = Lp′
weak,0(X

∗).

Proof. Suppose that Lp′
weak(X

∗) = Lp′
weak,0(X

∗). Note that, for

each x̄∗ ∈ Lp′
weak(X

∗) = Lp′
weak,0(X

∗), limn ‖x̄∗(i > n)‖
Lp′

weak(X∗)
= 0.

Similarly as the proof of Lemma 7, we can show that (11) ⇔ (12)+(13).

Now suppose that (11) ⇔ (12) + (13). We want to show that
Lp′

weak(X
∗) = Lp′

weak,0(X
∗). If there exists an x̄∗ = (x∗

i )i ∈ Lp′
weak(X

∗)

but x̄∗ 
∈ Lp′
weak,0(X

∗), then from Proposition 5,

lim
n

‖x̄∗(i > n)‖
Lp′

weak(X∗)
= lim

n
sup

{∣∣∣∣
∞∑

i=n+1

x∗
i (xi)

∣∣∣∣ : (xi)i ∈ BLp〈X〉

}


= 0.

Thus there are ε0 > 0, x̄(k) = (x(k)
i )i ∈ BLp〈X〉, k = 1, 2, . . . and a

subsequence n1 < n2 < · · · such that∣∣∣∣
∞∑

i=nk

x∗
i (x

(k)
i )

∣∣∣∣ ≥ ε0, k = 1, 2, . . . .

Let z̄(k) = (0, . . . , 0, x
(k)
nk , x

(k)
nk+1, . . . ). Then z̄(k) ∈ BLp〈X〉 for each

k ∈ N. Moreover, it is easy to see that

σ(X, X∗) − lim
k

z
(k)
i = 0, i = 1, 2, . . . .

By hypothesis,

σ(Lp〈X〉, Lp′
weak(X

∗)) − lim
k

z̄(k) = 0.
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But for each k ∈ N,

|〈z̄(k), x̄∗〉| =
∣∣∣∣

∞∑
i=nk

x∗
i (x

(k)
i )

∣∣∣∣ ≥ ε0.

This contradiction shows that Lp′
weak(X

∗) = Lp′
weak,0(X

∗).

Similarly we have

Lemma 11. Let x̄∗(n) = (x∗(n)
i )i ∈ Lp′〈X∗〉 for each n ∈ N. Then

(14) σ(Lp′〈X∗〉, Lp
weak,0(X)) − lim

n
x̄∗(n) = 0

if and only if

(15) σ(X∗, X) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . .

and

(16) M = sup
n

‖x̄∗(n)‖Lp′ 〈X∗〉 < ∞.

Theorem 12. Let X be a Banach space and 1 < p, p′ < ∞ such that
1/p+1/p′ = 1. Then Lp[0, 1]⊗̌X, the injective tensor product of Lp[0, 1]
and X, is a Grothendieck space if and only if X is a Grothendieck space
and each continuous linear operator from Lp′

[0, 1] to X∗∗ is compact.

Proof. By Propositions 3 and 4, it is enough to show that Lp
weak,0(X)

is a Grothendieck space if and only if X is a Grothendieck space and
Lp

weak(X
∗∗) = Lp

weak,0(X
∗∗). By Propositions 5 and 6,

(17) Lp
weak,0(X)∗ = Lp′〈X∗〉, Lp

weak,0(X)∗∗ = Lp
weak(X

∗∗).

Now suppose that X is a Grothendieck space and Lp
weak(X

∗∗) =
Lp

weak,0(X
∗∗). Let x̄∗(n) = (x∗(n)

i )i ∈ Lp′〈X∗〉 such that x̄∗(n) converges
to 0 weak∗ in Lp

weak,0(X)∗, i.e.,

σ(Lp′〈X∗〉, Lp
weak,0(X)) − lim

n
x̄∗(n) = 0.
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By Lemma 11,

σ(X∗, X) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . .

and
sup

n
‖x̄∗(n)‖Lp′ 〈X∗〉 < ∞.

Since X is a Grothendieck space,

σ(X∗, X∗∗) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . . .

Note that Lp
weak(X

∗∗) = Lp
weak,0(X

∗∗). By Lemma 10,

σ(Lp′〈X∗〉, Lp
weak(X

∗∗)) − lim
n

x̄∗(n) = 0.

It follows from (17) that x̄∗(n) converges to 0 weakly in Lp
weak,0(X)∗,

and, hence, Lp
weak,0(X) is a Grothendieck space.

On the other hand, suppose that Lp
weak,0(X) is a Grothendieck space.

It is obvious that X is a Grothendieck space. Next we want to show
that Lp

weak(X
∗∗) = Lp

weak,0(X
∗∗).

Let x̄∗(n) = (x∗(n)
i )i ∈ Lp′〈X∗〉 for each n ∈ N such that

(18) σ(X∗, X∗∗) − lim
n

x
∗(n)
i = 0, i = 1, 2, . . .

and

(19) sup
n

‖x̄∗(n)‖Lp′ 〈X∗〉 < ∞.

By Lemma 11,

σ(Lp′〈X∗〉, Lp
weak,0(X)) − lim

n
x̄∗(n) = 0.

It follows from (17) that x̄∗(n) converges to 0 weak∗ in Lp
weak,0(X)∗.

Since Lp
weak,0(X) is a Grothendieck space, x̄∗(n) converges to 0 weakly

in Lp
weak,0(X)∗, i.e., from (17) again

(20) σ(Lp′〈X∗〉, Lp
weak(X

∗∗)) − lim
n

x̄∗(n) = 0.
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Thus we have shown that (18) + (19) ⇔ (20). By Lemma 10,
Lp

weak(X
∗∗) = Lp

weak,0(X
∗∗).
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