The (BD) Property in L' (u,E)

G. EMMANUELE

A subset X of a Banach space E is limited if for each weak* null sequence
(zy) in E* one has
limsup |z}, (z)| = 0;
n x

E has the (BD) property if every limited set in E is relatively weakly compact.
In this brief note we prove that the (BD) property lifts from E to L!(u,E), for
any finite measure space (S,X,u).

Bourgain and Diestel [2] showed that all spaces not containing ¢! have the
(BD) property; moreover, it is easy to see that the Gelfand—Phillips spaces [4]
have this property as do spaces with the (RDP)* property [5]; in particular, it
is easy to show that spaces with dual not containing £, and weakly sequentially
complete spaces too, have the (RDP)* property.

We recall that limited sets are bounded and conditionally weakly compact,
that the image of a limited set under a linear operator is limited, and that a
subset X of E is limited if and only if T(X) is relatively compact in ¢, for
e = very linear operator T:E — ¢, [2]. We also recall that a subset Y of ¢, is
relatively compact if and only if lim, supy |y,| = 0.

We refer the reader to [3, II1.2] for the definitions of a finite partition = and
the related conditional expectation E,, and to [1] for the definition of A;(co);
for our purpose it is sufficient to know that Aj(co) is a set of operators from
LY(u,E) to co.

Our result follows from a result on relative weak compactness in L!(u,E)
due to Batt and Hiermeyer [1; 2.1, 2.6], which we state as a lemma.

Lemma. Let X be a subset of L' (u,E) and suppose that:
(i) X s bounded and uniformly integrable,
(ii) for every A € T the set Xa = {[, fdu: f € X} is relatively weakly
compact in E,
(iii) T(X) is relatively weakly compact in c, for every T in Ai(co),
(iv) for every increasing sequence (mx) of finite partitions and every
L € (L*(u,E))* one has

limsup|(L,E,,"f '"EkafH =0.
n X k
Then X is relatively weakly compact in L' (u,E).
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Theorem. Let E have the (BD) property. Then L'(u,E) also has the
(BD) property.

Proof. Let X be a limited subset of L!(u,E). Then, since X is bounded
and conditionally weakly compact, X must be uniformly integrable [3, IV.2.4].
Further, X 4 is the image of X under the linear operator

Ta: f—>/Afdu;

X 4 is therefore limited in E and so it is relatively weakly compact (for any
A€Y).

Also T'(X) is relatively compact in ¢, for any linear operator T: L (u,E) —
Co; a fortiori for any T € Aq(co) .-

Let L belong to (L!(u,E))*. Since

1By = By 11l =,
we can again define the operator
Timy) Lt f = ((L,Ennf—EL‘:mkf))
from L'(u,E) to c,; and since T(r,),(X) is relatively compact, we see that
liranSI)l(pI(L,Ennf—Ewka =0.

The lemma now assures us that X is relatively weakly compact; the theorem is
proved. O
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