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About the Position of K,,: (E*, F) Inside L, (E*, F) (**).

Abstract. — We prove that if ¢, embeds into K,.(E*, F) then either
Ky«(B*, F)=L,.(E*, F) or K,,«(E*, F) is uncomplemented in the space
Ly« (E*, F). A lot of consequences of this result are then presented: among
them some theorems about the position of K(E,F) inside W(E, F) and of
cca(X, E) inside ca(X, E).

Introduction.

Let E, F be two Banach spaces. An old, not yet solved, conjecture
about K(E,F) (= space of compact operators from E into F) and
L(E, F) (= space of bounded linear operators from E into F) is the fol-
lowing: either K(E,F)=L(E,F) or K(E,F) is uncomplemented in
L(E, F). The best result we know seems to be the following theorem
due to Feder ([8])

THEOREM 1 ([8]). Let us assume there exist T e L(E, F)\ K(E,F)
and a sequence (T,) in K(E, F), such that for any = € E 3T, (x) = T(x)
unconditionally. Then K(E,F) is uncomplemented in L(E,F).

Recently ([6]) we proved that Feder hypothesis is exactly equiva-
lent to the existence of copies of ¢, inside K(E, F). So the previous re-
sult can be reformulated as it follows.

(*) Dipartimento di Matematica dell’Universita di Catania, Citta Universi-
taria, Viale A. Doria 6, 95125 Catania.

(**) Nota giunta in Redazione il 27-I111-1992.

Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially
supported by M.U.R.S.T. of Italy (40%).




124 G. EMMANUELE [2]

THEOREM 2 ([6]). Let ¢, embed into K(E,F). Then K(E,F) is un-
complemented in L(E,F).

In this note we want to extend Theorem 2 above to a different situ-
ation, in some sense improving the same Theorem 2 (see Corollary 7 in
section 2). Precisely, let K,,- (E*, F') denote the space of compact, w*-w
continuous operators from E* into F; we prove (with techniques com-
pletely different from those employed in[8]) the following

MaIN THEOREM. If ¢, embeds into K,.(E*, F) then either
K,«(E*, F)=L,(E* F) (=space of w*w continuous operators
from E* into F) or K,«(E*, F) is uncomplemented in L,«(E*, F).

In passing we observe that we even show that, if ¢, embeds into
K« (E*, F), then K,-(E*, F)=L,.(E*, F) if and only if either £
or F' has the Schur property. Since K(E, F)=K,.(E**, F) and
W, F) =L, (E**, F) ([13]) (W(&,F) = space of weakly compact
operators from E into F), our Main Theorem improves Theorems 1 and
2 (at least in the case of E* and F without the Schur property). Fur-
thermore, in the case F = ca(¥) (= space of countably additive mea-
sures from a s-algebra X into R) we get results about ca (¥, E) (= space
of countably additive vector measures). To this purpose we recall that
cca(X, E)=K,«(E* ca(¥)) and that ca(¥,E)=L,.(E*, ca(}))
([13]). We note that in all the considered spaces of operators and vector
measures the norm will be the sup norm.

1. - The Main Theorem.

The first section is devoted to a proof of the Main Theorem of the pa-
per (Theorem 4 below), already quoted in the Introduction, about the
position of K, (E*, F') inside L,«(E*, F). We first need a Lemma
about K(I;, F) and W(l,, F)

LEMMA 3. Let F be a Banach space without the Schur property.
Then K(l,, F') is uncomplemented in W(l,, F).

PRrROOF. Our proof is a suitable modification of that of Lemma 3
in[9] (and the present lemma actually is an improvement of that re-
sult). Let (y,) be a normalized w-null basic sequence in F. Define, for
¢el., a linear, bounded operator @(?) by putting

Q(E)(g)zzfnen(g)yny gEll
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(where (e,) is the unit vector basis of ¢y in [.,). Note that the series con-
verges absolutely and 9(¢) e W(l,, F) since y"ie. Furthermore, the
map &— (%) is linear, bounded from [, into W(l;, F). If () is a
bounded sequence of biorthogonal functionals for (y,) we can define
R: W(ly, F)— Wy, 1..) (with R(K(l;, F) c K(I;, 1..)) by putting
R(TXg) = (T(g), y¥), gel.

Let us assume P: W(l,, F) o K(l,, F') is a projection. We con-

sider the following two linear, bounded operators

RO, RPO: 1., — K(l;, 1)
for which we clearly have
R(9(%)) = R(PP(%)), fec.

Proposition 5 in[9] gives the existence of an infinite subset M of N
such that

R(®(2)) = R(PO(%)), fel.(M).
In particular, we have
R(®(1y)) = R(PO(1y)),

where 1), equals 1 if n e M, 0 otherwise. Hence

R(PP(1,))(g) = (haeh(g)yh, yn*), gely.

On the other hand, R(P9(1;)) is compact. This means that the se-
quence (R(PD(1,))(e)), (ej) the unit vector basis of [, must be rela-
tively compact in [, . But, for all m € M, we have

R(PO(1y))(e) = (Ym» ¥i¥) = €1

a non-relatively compact subset of ... This contradiction proves that
K(l;, F') is not complemented in W(l,, F).

We are now ready for the main Theorem, in which we even use the
existence of the following isometric isomorphisms: K,«(E*, F') =
=K, +(F* E) and Ly«(E* F)=L,(F* E) (via the mapping
T—T%)
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THEOREM 4. Let c¢, embed into K,+(E*, F). Then either
K,«(E*, F)=L,+(E*,F) or K, (E* F) is uncomplemented in
L+ (E*, F). Furthermore, K,«(E*, F) = L,«(E*, F) if and only if
one of the following two mutually exclusive facts is verified

i) ¢y embeds into E and F has the Schur property
ii) ¢y embeds into F and E has the Schur property.

Proor. Let us suppose K+ (E*, F') # L, (E*, F'). This means that
E and F do not possess the Schur property. Let [., embed into F. It is
well known that [, is then complemented in F. If P from L,.(E*, F)
onto K,.(E*, F) were a projection, it can be easily seen that
K,-(E*,l,) should be complemented in L,.(E*,!,). Now, observe
that L,«(E*,1,) = L,«(l%, E)=W(l,, E) and that K,.(E*,1.)=
=K,-(l%,E)=K(,, E). Hence K(l;, E) should be complemented in
W(l,, E'); since E does not have the Schur property, we obtain some-
thing contradicting Lemma 3. So we can suppose (and we do) that F
does not contain l. (and even that E does not contain I, since
Ly« (E*, F)=L,+(F*,E) and K,,«(E*, F)=K,.(F*, E)). A recent
result of Drewnowski ([3]) gives that [, does not live inside of
K,«(F*, E). Now, let us assume F contains a copy of ¢, (the same proof
works if £ contains a copy of ¢,). Let (x,) be a normalized, w-null basic
sequence in £, (y,) be a copy of the unit vector basis of ¢, in F and de-
fine, for £el,, a linear, bounded operator by putting

DY) =2 5,2,(x*)y,, x*eE*

(note that the series converges unconditionally). We show that
(%) € Ly« (E*, F). To this aim, it will be enough to consider a w*-null
net (x*)cBg+ and y* € Bp+ and to prove that

(1) lim |@(£)(x#)(y*)| = 0.

Since X |9, (y*)| < + o given y > 0 there is p e N such that

o

) 2y y®)| < y/2ld

Sp+1

@if ||& = O there is nothing to prove). On the other hand, we have

4
lim 5_21 [En 2y (@ )y (y*)] = 0.

These two facts together give (1). Hence ®(¢) € L,,. (E*, F). Let us
onto

suppose P: L,.(E* F) — K,.(E* F) is a projection. Since the
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map £— @) is easily seen to be linear, bounded from [, into
L,+(E* F) we get a linear, bounded operator P9 from [, into
K,«(E*, F). Since [, does not embed into K,«(E*, F'), PP is weakly
compact ([12]) and so P®(e,)—6; but it is clear that P®(e,) =
=2, ® y, + 0. The reached contradiction concludes the proof when ¢, em-
beds into F (or E). So we can assume that ¢, lives inside K, (E*, F')
but not in E and in F. Let (T,,) be a copy of the unit vector basis of ¢, in
K, (E*, F). For £el, define (as above) a linear, bounded operator

DY a*) =25, T, (x*), x*eE*.

The series converges unconditionally, because 2, T, is weakly un-
conditionally converging and ¢, does not live inside F. The map & — ®(£)
is linear, bounded from [, into L(E* F); but actually,
@(%) € Ly, (E*, F); the proof of this last assertion is similar to the pre-
vious one (case of ¢, embedded into F') once we note that > TH (y*) con-
verges unconditionally in E since E does not contain cy. Assuming the
existence of a projection P from L, (E*, F') onto K,«(E*, F'), we can
conclude our proof as in the previous case. It remains to show just the
second claim of our statement. We first observe that if i) or ii) is true,
then L,«(E*, F)=K,«(E*, F') (and we note that this equality holds
true as soon as either E or F has the Schur property, without any other
hypothesis). Now, look at the proof of the final part of the first state-
ment: if ¢, embeds into K,:(E*, F) but not in £ and F, then
K,«(E* F) must be uncomplemented in L,«(E*, F). Hence, if
K,+(E*, F) = L,«(E*, F), then either £ or F has to contain ¢,. Let us
assume E does it. Let (,) be a w-null sequence in F. Define, as above,
an element of L,.(E*, F') by putting

T(x*) =D, (x*)y,, t*cE*

where (x,) is a copy of the unit vector basis of ¢, in £. T must be com-
pact and so (y,) is forced to be norm null. We are done.

THEOREM 5. Let ¢, embeds into K,«(E*, F). Then 1, embeds into
L,«(E*, F), provided E and F do mot have the Schur property.

PRroOF. If ¢, embeds into E or F, we can define @: [, — L,,«(E*, F')
as in Theorem 4. Since ®(e,) -+ 0, there is an infinite subset M of N
such that @|;_, is an isomorphism (see[12]). But /.. (M) is isomorphic
to I, . When ¢, embeds into K« (E*, F') but not in £ and F' we can re-
peat a similar construction. We are done.
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The next result is similar to Theorem 6 in[9]

THEOREM 6. Let F have an unconditional finite dimensional ex-
pansion (A,) of identity (we refer to[9] for this notion and equivalent
reformulations). Then the following are equivalent

i) Ky« (E*, F) # Ly (B*, F),
i) E and F do not possess the Schur property and co embeds into
K, (E*, F),
iiiy E and F do not possess the Schur property and L., embeds into
Ly« (E*, F),
iv) K,«(E*, F) 1s uncomplemented in L. (E*, F).

PROOF. ii) implies iii) is in Theorem 5 and ii) implies iv) is in Theo-
rem 4. iii) implies i) follows from Theorem 4, too; indeed, if
K, (E*, F)=L,:(E*, F) under iii), the second part of Theorem 4
gives a contradiction. iv) implies i) is trivial. So it remains only to show
that i) implies ii). It is clear that £ and F are not allowed to possess the
Schur property. Let T e L, (E*, F)\K,+(E*, F); the series >A,T
verifies the assumptions contained in Theorem 1. The proof of Theorem
2 from[6] shows that ¢, must be inside K,:(E*, F). We are done.

2. — Applications of the Main Theorem to K(E,F) and W(E, F).

As remarked at the beginning, we have the following isometric iso-
morphisms K(E, F) = K,«(E**, F) and W(E, F)=L,(E**, F).
Hence, from the results in section 1 the following corollaries follow
immediately

COROLLARY 7. Let ¢, embed into K(E,F). Then either
KE,F)=W(E,F) or K(E,F) s uncomplemented in W(E, F). Fur-
thermore, K(E,F) = W(E, F) if and only if one of the following two
mutually exclusive facts is true

i) ¢, embeds into E* and F has the Schur property,
i) ¢, embeds into F and E* has the Schur property.

COROLLARY 8. Let ¢, embeds into K(E,F). Then l. embeds into
W(E, F), provided neither E* nor F has the Schur property.

COROLLARY 9. Let either E* or F have an unconditional finite di-
mensional expansion of the identity. Then the following are equiva-
lent
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i) K(E,F)=W(,F),
ii) E* and F do not possess the Schur property and c, embeds
into K(E, F),
iii) E* and F do not posses the Schur property and 1, embeds into
W, F),
iv) K(E, F) is uncomplemented in W(E,F).

The results of section 1 also have other interesting consequences;
the first two improve results by Kalton ([9]) and Feder ([7]) about
K(E,F) and L(E, F)

COROLLARY 10. Let E have an wunconditional finite dimensional
expansion of the identity. Then the same conclusion of Corollary 9 is
true.

PrROOF. As a consequence of Corollaries 7 and 8 we have just to
show that i) implies ii). Under i) E* and F are not allowed to possess
the Schur property; furthermore, i) implies that K(E,F) = L(E,F)
and so we have just to appeal to Theorem 6 in[9] to get a copy of ¢, in-
side K(E, F). We are done.

Corollary 11 below follows from Corollaries 7 and 8 and the result
in[7] as Corollary 10 from Corollaries 7 and 8 and the result in[9] (so we
do not give the proof of Corollary 11)

COROLLARY 11. Let us assume one of the following hypotheses is
verified

1) E is weakly compactly generated, F is a subspace of a space G
with a shrinking unconditional basis and E* or F* has the bounded
approximation property,

2) E is a quotient of a space G having a shrinking unconditional
basis and either E* has the bounded approximation property or F* is
separable and has the bounded approximation property.

Then the same conclusion of Corollary 9 is true.
We observe that Corollaries 7-11 are improvements of the correspond-

ing Theorems in the papers[3],[7],[8],[9] when E* and F do not pos-
sess the Schur property. The following result seems to be new

COROLLARY 12. Let us assume that E has the Dunford-Pettis prop-
erty and there is a linear, bounded operator T: l,— F taking the unit
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vector basis (e2) of l, onto a normalized basic sequence. Then the same
conclusion of Corollary 9 is true.

Proor. As in Corollary 10 we have just to prove that i) implies ii).
First, note that under i) E* and F' do not possess the Schur property
(for F' this is true as a consequence of our assumption about the exis-
tence of a special T': [, — F'). On the other hand, E has the Dunford-Pet-
tis property and hence it must contain /; ([1]). It is known that this im-
plies that L; must live inside E* ([4]) and hence I, must do the same.
The sequence (¢2 ® T(e2)) is a copy of the unit vector basis of ¢, inside
K(E,F) (see[6]). We are done.

3. — Applications of the Main Theorem to cca(¥, E) and ca(®, E).

In the Introduction we observed that cca (¥, E)=K,.(E*, ca(X))
and ca(¥, E)=L,:-(E*, ca(Y)). Hence, the results of section 1 have
corollaries similar to Corollaries 7 and 9.

COROLLARY 13. Let ¢, embed into cca(S,E). Then either
cca(X,E)=ca(X,E) or ccaX,E) is uncomplemented in ca(,E).
Furthermore, cca (X, E) = ca(X, E) if and only if ¢, embeds into E and
ca(X) has the Schur property (we recall ca(X) has the Schur property if
and only if every finite positive measure on X is purely atomic).

COROLLARY 14. Let E have an unconditional finite dimensional
expansion of the identity. Then the following are equivalent
i) cca(X,E) # ca(X, E),
ii) £ and ca(X) do not possess the Schur property and c, embeds
into cca (X, K),

iii) E and ca(¥Y) do not possess the Schur property and ., embeds
into ca(X, E),

iv) cca (X, E) is uncomplemented in ca (¥, E).
Now, we want to point out some other results about these two
spaces. Recently, Drewnowski ([2]) has shown the following
THEOREM 15 ([2]). Suppose the s-algebra X admits a nonzero atom-
less finite positive measure. Then the following facts are equivalent
a) calX,E)ol,,
b) there exists a moncompact operator T: l, — E,
¢) ca(X, E)>oc.
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From now on, we assume the validity of Drewnowski’s hypothesis.
We can improve his Theorem by remarking that the following result is
true

THEOREM 16. Suppose the s-algebra ¥ admits a nonzero atomless
finite positive measure. Then b) of Theorem 15 implies

c¢') cca(X, E) contains c,.

Proor. Let T:l,—E as in b). T* is a not compact operator from E*
into l,. If P, denotes the n-th projection in Iy, the operator P, T* is in
K,«(E*, l5). Let j be an isomorphic embedding of , into ca (¥). We have
that jP,T*eK,«(E*, ca(X)) and jT*eL,.(E*, ca(¥)). Furthermore,
the hypotheses of Theorem 1 are verified (with the obvious changes)
and so following the proof of Theorem 2 (see[6]) we reach our goal. We
are done.

As observed before, ¢') gives that cca (¥, E) is not complemented in
ca (X, E); and so the existence of a non compact operator T from [, into
E implies that cca(¥,E) is not complemented in ca(¥,E). This re-
mark, Corollary 4 and Theorem 15 show that cca (Y, l,)=ca(X,l,) if
1<sp<2 and cca(¥, [,) is uncomplemented in ca (¥, l)if 2sps< + o,
this way improving results from [2]. Furthermore, we have the follow-
ing new

THEOREM 17. Let E be the dual of a space Y with the Dunford-Pet-
tis property. Then either cca (X, E) = ca(X,E) or cca(X, E) is uncom-
plemented in ca (X, E).

Proor. If cca (X, E) # ca(X, E), then E does not enjoy the Schur
property. As in Corollary 12, I, embeds into E. Hence b) of Theorem 15
is true. The above remarks conclude the proof.

We also observe that if T'e L,«(E*, ca(Y)), which implies it is a
weakly compact operator, its range is contained in a suitable L, (u)
space. And so if such a T is not compact (ie. if cca(X, E)=
=K, «(E*, ca(Y)) # Ly (E*, ca(¥)) = ca(¥, E)) and moreover ifit fac-
torizes through [, b) of Theorem 15 is true. For hypotheses that guar-
antee the existence of such a factorization we refer to[10]. The last re-
sult we want to present implies that ¢') of Theorem 16 can be improved
by the following:

") cca (X, E) contains a complemented copy of c,.

We first need the definition of Gel'fand-Phillips space: a Banach
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space X is a Gel'fand-Phillips space if any limited subset M of X is rel-

atively compact (a bounded subset is limited if for any w*-null sequence

(x,f) in X* one has limsup |z} (x)| = 0). It is known that ca(Y) is a
" M

Gel'fand-Phillips space ([14]).

THEOREM 18. Let ¢y embed into K,«(E*, F). If F is a Gel'fand-
Phillips space, then c, embeds complementably into K,(E*, F).

ProOF. If ¢, embeds into either £ or F, the thesis is true by virtue
of a result due to Ryan ([11]). So let us suppose ¢, does not live inside £
and F. Let (7)) be a copy of the unit vector basis of ¢, in K,,«(E*, F).
Take (x,}) c By« with inf ||, (;*)|| > 0.

We affirm that 7, (x;¥) - 0; indeed, if y* € F* we have

[T, (&) (y*)| < |TF(y*)|—0

because X, T (y*) is unconditionally converging in £ (recall that £ does
not contain c,). This implies that (7', (x,*)) is not limited in ¥ and so there
is a w*-null sequence (y,*) c By« for which il%f | T () (y¥)| > 0. Now,
observe that the sequence (v} ® ) is w*-null in (K, (E*, F))*; in-
deed, for T € K« (E*, F') we have

KT, z¥ @ uk)| <|IT* (g9 —0.

This means that (7)) is not limited in K. (E'*, F). A result from [5]
and[14] gives that a suitable subsequence of (7)) spans a complement-
ed copy of ¢, inside K,«(E*, F') as required. We are done.

We remark that if F has an unconditional finite dimensional expan-
sion of the identity, then it is a Gel'fand-Phillips space. And so Theo-
rem 6 can be improved, because ii) is equivalent to

i") E and F do not possess the Schur property and c, embeds
complementably into K, (E*, F).

Similar improvements can be carried out in Corollary 10 and Corol-
lary 11 (under (1)).

At the end, we observe that Theorem 18 has the following conse-
quence concerning a special (not closed) subspace of cca (¥, E)

COROLLARY 19. Let (S,X,v) be a finite measure space. If ¢, em-
beds into P.(v, E') (= normed space of Pettis integrable functions with
indefinite integral having relatively compact range), then it actually
embeds complementably into P,(v, E).



[11] ABOUT THE POSITION OF K,«(E*, F') INSIDE L,«(E*, F) 133

Proor. It is known that P,(v, E') is a subspace of K,,.(E*, L;(v))
and L, (v) is a Gel'fand-Phillips space. If £ contains a copy of ¢, the re-
sult is true as it was showed by J. Diestel (see note after the present
Corollary). If E' does not contain ¢,, we can use the same proof of Theo-
rem 18. We are done.

Corollary 19 improves a result due to J. Diestel (unpublished, 1988)
who proved that if ¢, embeds into E, then it embeds complementably
into P.(v, E).

NoTE. The results contained in the last two sections were the con-
tent of the talk given by the author at the II Congreso de Analisis Fun-
cional; Jarandilla de la Vera (Caceres, Espafa), 18-22 Junio 1990.
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