On the Banach Spaces with the Property (V*) of Pelczynski (*).

GI0VANNI EMMANUELE

Summary. — We consider the Banach spaces with the property (V*) of Pelczynski giving a suf-
ficient condition for a Bamach space to have this property as well as a characterization of
Banach laltices with the same property. Several other resulis are given which are concerning
relationships among that properly and other famous isomorphic properties of Banach spaces.
Also a characterization of Banach spaces with property (V*) using Schauder decompositions
is given. Some result concerning lifting of that property from a Banach space E to L'(u, )
is presented, too.

0. — Introduction.

Let B be a Banach space and X be a bounded subset of H. We say that X is
a (V*) set iff for any weakly unconditionally converging series > & in E* one has

lim sup |} (z)] = 0
n X

(We recall that a series 3 & is weakly unconditionally converging if > |o**(a¥)] < oo
for all #** ¢ E** ([1]); this is equivalent to > |2(#7)] < oo for all » EE).

Following [17] we say that E has the property (V*) (of Pelczynski) iff any its
{V*) subset is relatively weakly compact.

This property was introduced by Pelezynski in [17] as a dual property, in a
sense, of the property (V) (see [17] for this definition); indeed Pelczynski showed
that if & Banach space E has property (V) then F* has property (V*). This could
be seen as a good reason to study property (V*); moreover we observe that the fol-
lowing result is true (we recall that an operator I7': ¥ — F, E, F two Banach spaces,
i named unconditionally converging if it maps weakly unconditionally converging
series into unconditionally converging ones).

PrOPOSITION. — Let B, F be two Banach spaces. If E has property (V*) of Pele-
zynski any conjugate unconditionally converging operator from E* into F* is weakly
compaoct.
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Proor. — Let §%: B* — F* be a conjugate operator which is unconditionally
converging. We consider a sequence (y,) C By, the unit ball of F, and we show that
(8(y.)) must be relatively weakly compact. If 3 #* is a weakly unconditionally
converging series in F* we have

since [8%(x%)| -> 0. Hence (S(y.)) is a (V*) set in F and so it is relatively weakly
compact. We are done.

The first result of this note is a characterization of (V*) sets by means of oper-
ators with values in I*. We also give a useful sufficient condition for a Banach space ¥
to have property (V*) and a simple proof of the converse result stated, without proof,
in [13] for the first time. As a consequence we obtain a result on weak compactness
of operators defined on C(XK, E) spaces as well as a characterization of Banach lat-
tices with property (V*) and other results relating that property to other famous
properties of Banach spaces always in the setting of Banach lattices. Section 2
contains a characterization of Banach spaces with property (V*) using Schauder
decompositions and some results concerning the lifting of property (V*) from a
Banach space ¥ to the usual space L*u, #) of Bochner integrable functions on a
finite measure space (8, F, u).

1. — Characterization of (V*) seis and other results.

Our first result is a necessary and sufficient condition for a set to be a (V*) set.
For our aim we recall that there is a one-to-one correspondence between operators
from F into I* and weakly unconditionally converging series > o, in E* (see [5])
given by T(x) = («}(x)) for € E.

THEOREM 1.1. —~ A bounded subset X of E is a (V*) set iff any T: E — 1%, linear and
continuous, maps X into o relatively compact subset of 1.

Proor. - If Xiga (V¥)setin B, T(X)is a (V*) set in I, a space with property (V¥)
{see [17]) and Schur property. Hence 7'(X) is relatively compact. Conversely, let X
be a subset of # which is mapped into & relatively compact subset of I* by any oper-
ator T from F into {*. We consider a weakly unconditionally converging series
>« in E* and the corresponding operator T. Since T(X) is relatively compact,
a well known result ([6]) on the compactness in I* gives that lim sup |2 ()] = 0.
Hence X is a (V*) set. The proof is complete.

It is easy to see that Propositions 5 and 6 of [17] are consequences of The-
orem 1.1. Another useful consequence of that result is the following theorem
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THEOREM 1.2. — Let I be o Banach space verifying the following assumption: if
o bounded subset X is not relatively weakly compact there is a sequence (%,)C X equi-
valent to the unit basis of I* such that span (z,) is complemented in E. Then E has prop-
evty (V*),

Proor. — Let X be a bounded (V*) subset of F which is not relatively weakly
compact. Let (x,) be as in our assumption and P be the existing projection from F
onto §pan (#¢,). We also denote with j the existing isomorphism between ' and
span (x,). Obviously, joP maps (#,) into the unit basis of {*. Theorem 1.1 implies
that the basis of ! should be relatively compact. A clear contradiction.

We observe that both A* (the dual of the disk algebra 4) and L'[H; verify the
assumption of Theorem 1.2 (see [18]).

Theorem 1.2 has the following converse obtained for the first time in [13]; there
the authors didn’t furnish a proof, but only said that one can get it by using the dif-
ficult techniques of Theorem 13 of the paper [7]. We are able to present a simpler
proof of it based upon our Theorem 1.1 and other well known results concerning I

THEOREM 1.3 (Godefroy, Saab [13]). — Let B be a Banach space with property (V*).
Then if (x.) is a bounded, but not relatively weakly compact, sequence in H, then there
s o subsequence (Ty)) equivalent to the unmit basis of I* so that its closed limear span is
complemented in K.

Proor. — Since (x,) is bounded and not relatively weakly compact it cannot be
a (V*) set. Theorem 1.1 gives the existence of an operator 7': B ~ I* so that (T(z,))
is not relatively (weakly) compact in 7*. Hence (T'(x,)) has a subsequence, say
(T(zum)), equivalent to the unit basis of I* (see [5]). Further §pan (7(mym)) can
be supposed complemented in I* by virtue of Theorem 3.3 of [19] applied to I* (other-
wise we pass to a subsequence). So we have that

i) (#pw) and (T(a.)) arve equivalent to the unit basis of I
ii) span (I'(wm)) is complemented in I* by a projection @

i) T3 ey 18 @1 isomorphism.

Hence P = T |57 ey 18 the required projection.

COROLLARY 1.4. — Let L\u, E) have property (V*). Any nonreflemive subspace of
it contains a complemented copy of I

The same proof of Theorem 1.3 can be used to obtain the following result

THEOREM 1.5. — Let (f,) be abounded sequence in L'y, B) with B not containing I
Then only one of the two mutually exclusive facts is true:
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i) (fx) is uniformly integrable (a fact equivalent to the conditional weak compact-
ness, by [2])

ii) there is a subsequence (fuw) of (f.) equivalent to the wnit basis of I* having a
span complemented in L' (u, H).

Another result, concerning weakly compact operators on C(K, B) spaces, follows
from Theorem 1.3. Here K is a compact Hausdorfl space and O(K, E) denotes the
usual Banach space of continuous functions. In the paper [14] Grothendieck showed
that if # = R and F is weakly sequentially complete then any T': C(K) — F is weakly
compact; this result was improved in [17] by assuming F reflexive and F not contain-
ing ¢,. In the paper [12] GAMLEN obtained a similar result supposing F weakly
sequentially complete (& more restrictive assumption than the non containment of ¢,);
in this way he was able to weaken the assumption on F; he supposed that E* has
the Radon Nikodym property. Recently this result has been generalized by Fierro
BELLO ([11]) to the case of K not containing copies of I*. Now we have the follow-
ing theorem

THEOREM 1.6. — Let B be o Banach space not containing complemented copies of 1.
If ¥ has property (V) then any T from C(K, E) into F is weakly compact.

Proor. — If a not weakly compact operator T exists there is a sequence (f,) so0
that (T(ﬁ,)) is not a weakly Cauchy sequence. Using a proof like that of Theorem 1.3
we obtain a subsequence (f,) equivalent to the unit basis of I* so that spamn (f.) is
complemented in C(K, K). A result of SaaB and SaaB ([20]) now implies that B
has a complemented copy of 1, a contradiction which concludes the proof.

‘We observe that in case I is a Banach lattice the above theorem is an improve-
ment of the cited results from [11], [12], [14], [17]. Indeed in such a framework F
doesn’t contain copies of ¢, iff it is weakly sequentially complete iff ' has property (V)
(for the last equivalence see Theorem 1.7 below). We observe that our result is not
longer true if one agsumes ¥ weakly sequentially complete. The Banach space X
constructed in [3] is an infinite dimensional Banach space with the Schur property
(hence it is weakly sequentially complete) and it doesn’t contain complemented
copies of I' since it is a separable L®-space. If any T: O(K, X) — X were weakly
compact, the same would happen for the identity operator from X intfo itself. So X
would be reflexive and, via the Schur property, finite dimensional. The above re-
marks on X also show that it is a Banach space with Schur property not having
property (V*).

After this digression we return to consider consequences of our previous results
concerning Banach spaces with property (V*). Theorem 1.2 is useful to characterize
Banach lattices with property (V*).

TarOoREM 1.7. ~ Let K be o Banach lattice. Then E has property (V*) iff it is weakly
sequentially complete.
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Proor. ~ If H has property (V*) it is weakly sequentially complete. Conversely
a result due to Niculescu ([16]) shows that E verifies the assumption of Theorem 1.2.

REMARK., — Theorem 1.7 was discovered at the same time by E. SAAB and
P. SAAB in their paper [21] with entirely different techniques.

Now we are going to present some implication of Theorem 1.7 relating prop-
erty (V*) and other isomorphic properties of Banach lattices. We need the following
definitions due to Grothendieck ([14]): j) a Banach space E has the Reciprocal
Dunford Pettis (in symbols (RDP)) property iff any ,completely (i.e. Dunford Pet-
tis) operator 7': E — F is weakly compact; §j) a Banach space E has the Dieudonné
(in symbols (D)) property iff any weakly completely continuous operator I': E — F
is weakly compact.

THEOREM 1.8. — Let B be a Banach lattice. E has the (RDP) property iff E* has
property (V*).

Proor. — Theorem 2.1 of [16] states that a Banach lattice Z has the (RDP)
property iff it doesn’t contain complemented copies of [*. This fact is true iff E*
doesn’t contain copies of ¢, (see[1]), i.e. iff E* is weakly sequentially complete.
Theorem 1.7 concludes the proof.

REMARK 2. - In the paper [15] the author introduced the (RDP*) property show-
ing that

i) if F has the (RDP) property, then E* has the (RDP*) property;
ii) if E* has the (RDP) property, then F has the (RDFP*) property

without giving results or counterexamples on the converse. Theorem 1.8 allows
us to show that ii} cannot be reversed. Indeed in [24] an example of weakly se-
quentially complete Banach lattice with E** not weakly sequentially complete is
given. Then E has (property (V*) via Theorem 1.7 and so) the (RDP*) property.
If B* had the (RDP) property, then Theorems 1.7 and 1.8 would imply that B**
has to be weakly sequentially complete. In passing we observe that the space X
constructed in [3] easily implies that i) cannot be reversed.

COROLLARY 1.9. ~ Let E be o Banach lattice with the (D) property. Then E* has
property (V*).

Proof. — It is easy to see that if ¥ has the (D) property it has the (RDP) property.
The above results seem to be interesting since we have

i) if B has property (V) then E* has property (V*) (see [17]);

ii) if E has property (V) it has property (D) and hence the (RDP) property.
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Hence Theorem 1.8 and Corollary 1.9 are improvements of i) in the setting of Banach
lattices whereas the same implications arve not longer true in general Banach spaces:
the famous space J of James doesn’t contain a copy of I' and hence it has the (D)
property (see [8]) but it doesn’t have property (V) since its dual is not weakly
sequentially complete. In a sense we can say that the three quoted properties are
closer in Banach lattices. However ([10]) there is a Banach lattice £ which doesn’t
contain I* (and hence has the (D) property) and an operator I': # — ¢, which is
unconditionally converging without being weakly compact {and so E doesn’t have
(V) property). By virtue of Corollary 1.9 this space furnishes a positive answer to
the following question put by PELCZYNSKI in [17]: Does a Banach space I exist
3o that B* has property (V*) and ¥ doesn’t have property (V)?

REMARK 3. — This question was also solved in [21] independently; the example
given there is not a Banach latbice.

At the end of the section we present two other consequences of Theorems 1.7
and 1.8.

COROLLARY 1.10. — Let H be a Banach lattice. Then O(K, E) has the (RDP) properiy
iff B has.

Proor. — First of all we observe that O(K, H) iz a Banach lattice as well as
reabv{ Bo(K), B*), its dual space. Theorems 1.7 and 1.8 imply that E* is weakly
sequentially complete. A result by Talagrand ([23] and [24]) implies that also the
space reabv{Bo(K), B*) is weakly sequentially complete. An appeal to Theorems 1.7
and 1.8, again, concludes the proof.

CoROLLARY 1.11. — Lei B be a Banach lattice with the REadon Nikodym property.
Then E has property (V¥).

ProoF. - It is known that F doesn’s contain a copy of ¢,. Hence F is weakly
sequentially complete. Now Theorem 1.7 works.

The converse of Corollary 1.11 isn’t true as the space L*([0, 1]) shows. Moreover
the same corollary cannot be extended to general Banach spaces as the James
space J Pproves.

2. — More on the property (V*) of Pelezynski.

The first result of this section furnishes a characterization of Banach spaces with
property (V*) which velies on the concept of unconditional Schauder decomposition
(see [22]). A sequence (H,) of closed subspaces of a Banach space F is said a
Schauder decomposition if any # € # can be written in a unique way as sum of a
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series > #,, ®#,€H,. This decomposition is said unconditional if for each ze H
the corresponding series converges unconditionally.

The following result clearly shows that the class of Banach spaces with property
(V*) is quite small

THEOREM 2.1. — Let H be a Banach space. Then E has property (V*) iff either B
is reflewive or 1) B is wealkly sequentially compleie and ii) E has an unconditional Schauder
decomposition (H,) with any E, having property (V¥*).

Proor. — We suppose that ¥ has property (V*) and is not reflexive. Obviously i)
is true. It remains to show ii). Since ¥ is not reflexive there is a bounded not rela-
tively weakly compact sequence in . Hence F contains a completemented copy I
of I*, by Theorem 1.3. An appeal to Proposition 15.12 of [22] concludes the proof,
after recalling that any closed subspace of I has property (V+#). In passing we ob-
gerve that if P is the projection from F onto F a decomposition can be obtained as
if follows: B;=ker P, H,y; = {ly,: Ae R} for ne N where (y;) is a basis for F.
To show the converse implication we first observe that if Z is reflexive, then obviously
it has property (V*). Now suppose that i) and ii) are true. Let X be abounded (V*)
set in E. We shall show that for any #* € E* we have

=9

lim sup K8,.(z) — », %>
7 X

n
where 8,= > P;and P;is the existing projection from F onto E,, i € N. We con-
i=1

sider the ma.i»ping T from FE into I* defined by putting
T (m) == (<Sn+1(a}) - Sn(x)y w*>) ve k.

One can easily see that T is well defined, linear and continuous, using the uncon-
ditionality of (F,). Hence T{X) is relatively compact in I* by Theorem 1.1. This
fact implies that the following limit relation is true

lim sup 3 [<8;54(2) — Su@), #*>| = 0.
n X i=n
Since 8,(#) — & strongly in E, for any x € E, we obtain
lim sup [{S.(@) —x, *>| = 0.
n X

Now we observe that any P,(X)is a (V*) set and hence it is relatively weakly compact
set in H,. If (v,) is a sequence in X we can suppose that (S,(x:)) is & weak Cauchy
sequence for any n €N (by passing to a subsequence if necessary). The following
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inequalities

K@y — @y )| < K0 — 8 (@), 25| 4
-+ [{8al@n) — Sul@rs), | 4 K8ulwp) — @y @*>] K, k', meN

and the above remarks allow us to conclude that (z,) is a weak Cauchy sequence in E.
Weak sequential completeness of E concludes the proof.

REMARK 4. — A first version of the sufficient part of the above result was ob-
tained under the more restrictive assumption «any F, is reflexive ». Prof. L. DREW-
NOWSKI observed that the same proof worked under the hypothesis « any F, has
property (V*)». We take this opportunity to thank him very much.

The last part of the paper concerns with the property (V*) in L(u, E). The
first result of this type is an easy consequence of Theorem 1.7 and a result of Tala-
grand on weak sequential completeness of L'(u, B) (see [23]).

THEOREM 2.2. — Lét B be a Banach lattice with property (V*). Then L'(u, E) has
the same property.

The following result makes use of Theorem 2.1.

THEOREM 2.3. — Let B hove an unconditional Schauder decomposition (IH,) with

reflewive summands. If B is weakly sequentially complete (and hence has property (V*)
by Theorem 2.1) then L'(u, B) has property (V*).

ProOF. — Let X be a (V*) set in L'(u, B). It is not difficult to see that it is
uniformly integrable. The operators P, and S, (see the proof of Theorem 2.1)
extend to operators on L*(u, E) in. an obvious manner; we continue to denote by P,
and S, the extensions. Let L belong to (L*(u, H))* and we consider an operator T,
from L'(u, E) into I* defined by

Ti(f) = (Bura($) — 8ulf), D) fe LHp, B).

As in [9] we ean prove that 7', is well defined, bounded and linear. Hence we obtain
{as in Theorem 2.1)

lim sup [(8.() — 7, 1> = 0.

Moreover the set { f f(s)du: fe X} is easily seen to be relatively weakly compact
A
in B, for any A e X. Summing up the following facts are true

j) X is bounded and uniformly integrable;
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jj) the set {ff(s)dy: fe X} is relatively weakly compact, for any 4 e X}
4
jjj) for any I e (LXu, E))*, lim Sup IK8u(f) — f, L>| = 0.

Theorem 6 of [9] now works to get that X is conditionally weakly compact. Weak
sequential completeness of L'(u, B) (see[23]) concludes the proof.

REMARK 5. — At the beginning of the paper [21] the authors put the following
question: Let (2, F, 1) be a probability measure space and let X be a closed sub-
space of a Banach space ¥ with an unconditional basis. Does the Banach space.
LY, X) have property (V*) whenever X has?

They move from this question to investigate property (V*) and answer positively
the question considered. Using our techniques of section 2 and Theorem 1.1 we are
able to answer positively the following more general question: Let (2, F, 1) be a
probability measure space and let X be a closed subspace of a Banach space Y with
an unconditional Schauder decomposition with reflexive summands. Does the Banach
space LA, X) have property (V*) whenever X has?

Let ¥ and X be as above. If M is a (V*) set in LY4, X) then it is a (V*) set
in LY(A, ¥) via Theorem 1.1. The proof of Theorem 2.3 may be now applied to show
that M is conditionally weakly compact (in L}4, ¥) and hence) in L(4, X), which
is weakly sequentially complete ([23]). So M is relatively weakly compact.

Now we extend some of our previous results to the case of an uncountable family
of summands

LEMMA 2.4. — Let E be a Banach space such that for any its separable subspace F
there is & complemented closed subspace Z of E so that i) Z contains F, ii) Z has prop-
erty (V*). Then E has property (V*).

Proor. — Let X be a (V*) get in F and (x,) be a sequence in X. We take
F = span (»,) and Z as in our hypotheses. Let P from K onto Z the existing projec-
tion. We consider an operator 7' from Z into [*' and the operator ZoP: E — .
Theorem 1.1 implies that (ZoP)(X) is relatively compact as well as the sequence
((ToP)(w,)). Since P|,= identity on Z, the sequence (I(x,)) actually is relatively
compact in 1*. The arbitrarity of T gives that (x,) is a (V*) set in Z and so it is
relatively weakly compact. The proof is over.

THEOREM 2.5. — Let E be a weakly sequentially complete Banach space with a (not
necessarily countable) unconditional Schauder decomposition (B,),.; (see[22]) where
any L, has property (V*). Then E has the same property.

Proow. — Let F be a separable closed subspace of E and (x,) be a dense sequence
in F. We have #,= Y " for any ne N. It is known that

iel

supp (v,) = {4 I: a{™ = 0}
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is countable {see [22]) for any n e N. This implies that ¥ can be embedded into &
closed subspace Z of X having an unconditional Schauder decomposition (Z)),.,
where only countable many Z/s are equal to suitable E,s whereas the remaining
ones are equal to the null subspace {0}. By taking advantage of the unconditionality
of (B,),e; we can reordered the Z,’s in such a way that Z can be considered isomorphic
to a Banach space ¥ with a countable unconditional 3chauder decomposition. An
appeal to Theorem 2.1 gives that Z has property (V*). Since Z is obviously com-
plemented in ¥, Lemma 2.4 finishes the proof.
We present now two corollaries of the above obtained result

COROLLARY 2.6. — If (B)),.; i¢ a {possibly uncountadble) family of Banach spaces
with property (V*), then the spacs NI, H,) has the same properiy.

For the proof of this result we have to use Theorem 2.5.

CoroLLARY 2.7. — If o Banach space I verifies the assumptions of Theorem 2.5,
but with B, reflexive for all i € I, then L¥u, K) has property (V*).

Proor. —~ Let A be a separable closed subspace of LYy, B). Itis known that there
exists a separable closed subspace ¥ of B such that L'(u, F') contains A (see [6]).
Let Z and P be as in Theorem 2.5. By virtue of the nature of Z we can affirm that
LYy, Z) is isomorphic to & suitable LYy, Y), ¥ being a Banach space isomorphic
to Z as in Theorem 2.5. Hence (L'u, ¥) and so) L'y, Z) has property (V¥), via
Theorem 2.3. Now we can extend P to a projection from L u, F) onto Ly, Z)
in an obvious manner. In this way all of the agsumptions of Lemma 2.4 are sat-
isfied and the proof iz ecomplete.
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