THE POSITION OF $\mathcal{K}(X, Y)$ IN $\mathcal{L}(X, Y)$.

DANIELE PUGLISI

Abstract

In this note, we investigate the nature of family of pairs of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. It is proved that the family of pairs (X, Y) of separable Banach spaces such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$ is not Borel, endowed with the Effros-Borel structure.

1. Introduction

Let X and Y be two infinite dimensional real Banach spaces. It has been a long standing question the following (see [18] and [3]).

Question 1.1. Are the following properties equivalent?
(a) There exists a projection from the the space $\mathcal{L}(X, Y)$ of continuous linear operators onto the space $\mathcal{K}(X, Y)$ of compact linear operators;
(b) $\mathcal{L}(X, Y)=\mathcal{K}(X, Y)$.

Many results have been found about this question. In [19], A.E. Tong and D.R. Wilken showed that if X has an unconditional basis, then the equivalence in the above question is true. Some years later, N.J. Kalton (see [13]) extended this result showing the following

Theorem 1.2. Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space the following are equivalent.
(i) $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$;
(ii) $\mathcal{L}(X, Y)=\mathcal{K}(X, Y)$;
(iii) $\mathcal{K}(X, Y)$ contains no copy of c_{0};
(iv) $\mathcal{L}(X, Y)$ contains no copy of ℓ_{∞}.

In [10] and [11], G. Emmanuele proved that, without assumption of unconditional finite dimensional expansion of the identity, we still have some implication of the above theorem; i.e., if c_{0} embeds in

[^0]$\mathcal{K}(X, Y)$, then $\mathcal{K}(X, Y)$ is uncomplemented in $\mathcal{L}(X, Y)$. Moreover, he also showed that the classical Bourgain Delbaen's space $X_{a, b}$ (see [6]) is such that $\mathcal{K}\left(X_{a, b}\right)$ contains no copy of c_{0}, despite $\mathcal{L}\left(X_{a, b}\right) \neq \mathcal{K}\left(X_{a, b}\right)$.

Recently, S.A. Argyros and R.G. Haydon [2], in a truly spectacular way, have solved the Question 1.1 above. Indeed, using a mixed Tsirelson trick, they constructed a space \mathfrak{X}_{K}, in the wake of Bourgain Delbaen's space (see [5, 6]), such that

$$
\begin{aligned}
& \mathcal{K}\left(\mathfrak{X}_{K}\right) \text { contains no copy of } c_{0} ; \\
& \mathcal{L}\left(\mathfrak{X}_{K}\right)=\mathcal{K}\left(\mathfrak{X}_{K}\right) \oplus \mathbb{R} I,
\end{aligned}
$$

where I denotes the identity map. In particular $\mathcal{K}\left(\mathfrak{X}_{K}\right)$ is non-trivially complemented in $\mathcal{L}\left(\mathfrak{X}_{K}\right)$.

See also the other interesting paper [12], where the authors extend the Argyros-Haydon construction in terms of totally incomparable spaces.

In what follows, we want to study the descriptive set nature of such spaces: the family of separable Banach spaces, endowed with the EffrosBorel structure, such that $\mathcal{K}(X)$ is non-trivially complemented in $\mathcal{L}(X)$. In particular we are interested to study the following

Question 1.3. Let \mathcal{A} be the family of all couple of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. Is \mathcal{A} Borel?

As standard notation, we shall consider $\mathcal{L}(X, Y)$ the space of all bounded linear operator between the Banach spaces X and Y, endowed by the classical norm

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\|_{Y}
$$

We shall denote by $\mathcal{K}(X, Y)$ the closed subspace of $\mathcal{L}(X, Y)$ of all compact operators. In case $X=Y$ briefly $\mathcal{L}(X)$ and $\mathcal{K}(X)$ will stand for $\mathcal{L}(X, X)$ and $\mathcal{K}(X, X)$ respectively. We refer the reader any classical functional analysis 's book for any notation (i.e., see $[1,8,16]$).

Let us recall the following
Definition 1.4 ([14]). Let $1 \leq p<\infty$. A separable Banach space X is said to have property $\left(m_{p}\right)$ if

$$
\limsup _{n \rightarrow \infty}\left\|x+x_{n}\right\|^{p}=\|x\|^{p}+\limsup _{n \rightarrow \infty}\left\|x_{n}\right\|^{p}
$$

whenever $x_{n} \rightarrow 0$ weakly.
Such a property has been intensively studied in [14], where it was proved that a Banach space X has property $\left(m_{p}\right)$ if and only if X is
almost isometric to a subspace of some ℓ_{p}-sum of finite-dimensional spaces.

2. Preliminaries and Notation

Let X be a separable Banach space. We endow the set $\mathcal{F}(X)$ of all closed subsets of X with the Effros-Borel structure, i.e. the structure generated by the family

$$
\{\{F \in \mathcal{F}(X): F \cap O \neq \emptyset\}: O \text { is an open subset of } X\} .
$$

We denote by $\mathcal{S B}(X)$ the subset of $\mathcal{F}(X)$ consisting of all linear closed subspaces of X endowed with the relative Effros-Borel σ-algebra. If X is $C\left(2^{\omega}\right)$ (where $2^{\omega}=\{0,1\}^{\omega}$ is a compact Polish space endowed with the product topology), we denote briefly $\mathcal{S B}(X)$ by $\mathcal{S B}$. It is well known that, if X is a Polish space, then $\mathcal{F}(X)$ with the Effros Borel structure is a standard Borel space. We refer the reader to the recent book [9].

We denote by $\omega=\{0,1, \ldots\}$ the first infinite ordinal, and let $\omega^{<\omega}$ be the tree of all finite sequences in ω. Let \mathcal{T} be the set of all trees on ω. If $s=(s(0), \ldots, s(n-1))$ is a sequence of ω, we denote its length n by $|s|$. In particular the empty sequence \emptyset has length 0 .

For $s=(s(0), \ldots, s(n-1)), t=(t(0), \ldots, t(k-1))$ the concatenation $s \frown t$ is defined by

$$
s \frown t=(s(0), \ldots, s(n-1), t(0), \ldots, t(k-1)) .
$$

For a tree θ, a branch through θ is an $\varepsilon \in \omega^{\omega}$ such that for all $n \in \omega$,

$$
\varepsilon \mid n=(\varepsilon(0), \ldots, \varepsilon(n-1)) \in \theta
$$

We denote by

$$
[\theta]=\left\{\varepsilon \in \omega^{\omega}: \varepsilon \text { is a branch through } \theta\right\}
$$

the body of θ.
We call θ well founded if $[\theta]=\emptyset$, i.e. θ has no branches. Otherwise, we will call θ ill founded. We will denote by $\mathcal{W} \mathcal{F}$ (resp. $\mathcal{I F}$) the set of well-founded trees (resp. ill founded trees) on ω.

For a tree $\theta \in \mathcal{T}$, roughly speaking the high of θ (denoted by $h t(\theta))$ is the supremum of the lengths of its elements (see [15] for the definition).

We refer the reader the book [15] for all notion and notation in Descriptive set theory.

Let us recall the constructive space of [17, Theorem 1] with normalized unconditional basis which is universal for all spaces with unconditional basis (some time called Pelczynski's space \mathcal{U}).

Theorem 2.1. There exists a space \mathcal{U} with a normalized unconditional basis $\left(u_{n}\right)_{n}$ such that for every seminormalized unconditional basic sequence $\left(x_{n}\right)_{n}$ in a Banach space X there exists $L=\left\{l_{0}<l_{1}<\cdots\right\} \in$ $[\omega]$ such that $\left(x_{n}\right)_{n}$ is equivalent to $\left(u_{l_{n}}\right)_{n}$ and the natural projection P_{L} onto $\overline{\operatorname{span}}\left\{u_{n}: n \in L\right\}$ has norm one. Moreover, if U^{\prime} is another space with the above properties, then U^{\prime} is isomorphic to \mathcal{U}.

3. Proof of the main result

For $s \in \omega^{<\omega}$, we denote by $\chi_{s}: \omega^{<\omega} \longrightarrow\{0,1\}$ the characteristic function of $\{s\}$. For a tree $\theta \in \mathcal{T}$, let $U_{p}(\theta)(1<p<\infty)$ be the completion of the $\operatorname{span}\left\{\chi_{s}: s \in \theta\right\}$ under the norm

$$
\|y\|_{p}=\sup \left[\sum_{j=0}^{k}\left\|\sum_{s \in I_{j}} y(s) u_{|s|}\right\|_{\mathcal{U}}^{p}\right]^{\frac{1}{p}}
$$

where the supremum is taken over $k \in \omega$ and over all admissible choice of intervals $\left\{I_{j}: 0 \leq j \leq k\right\}$ (an admissible choice of intervals is a finite set $\left\{I_{j}: 0 \leq j \leq k\right\}$ of intervals of θ such that every branch of θ meets at most one of these intervals.).

Both of the below Lemma's are essentially included in [4].
Lemma 3.1. For any θ tree on ω, the sequence $\left\{\chi_{s_{i}}: s_{i} \in \theta\right\}$ determines an unconditional basis for $U_{p}(\theta)$.

Proof. Let $\left(\lambda_{i}\right)_{i \in \omega}$ be a sequence in \mathbb{R}, I an interval of θ and $n, m \in \omega$. Let us denote by $c_{\underline{u}}$ the basis constant for the universal basis $\underline{u}=\left(u_{n}\right)_{n}$ of \mathcal{U}.

Let $\mathcal{K}: \omega \longrightarrow \omega^{<\omega}$ be an enumeration of $\omega^{<\omega}$ such that if $s \nRightarrow t$ then $\bar{s}<\bar{t}$, where $\bar{s}=\mathcal{K}^{-1}(s)$.

For $s \in T,\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s)$ is equal to $\lambda_{\bar{s}}$ if $\bar{s} \leq n$, and 0 if not. Therefore

$$
\begin{aligned}
\left\|\sum_{s \in I}\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}} & =\left\|\sum_{\substack{s \in I \\
\bar{s} \leq n}} \lambda_{\bar{s}} u_{|s|}\right\|_{\mathcal{U}} \leq c_{\underline{u}}\left\|\sum_{\substack{\bar{s} \in I \\
\bar{s} \leq n+m}} \lambda_{\bar{s}} u_{|s|}\right\|_{\mathcal{U}} \\
& =c_{\underline{u}}\left\|\sum_{s \in I}\left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}
\end{aligned}
$$

since for $s, t \in I$, then $t \supseteqq s$ if and only if $\bar{t} \geq \bar{s}$.
Let $\left\{I_{j}: 0 \leq j \leq k\right\}$ be an admissible choice of intervals. We have

$$
\sum_{j=0}^{k}\left\|\sum_{s \in I_{j}}\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}^{p} \leq c_{\underline{u}}^{p} \sum_{j=0}^{k}\left\|\sum_{s \in I}\left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}^{p} .
$$

Thus $\left\|\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right\|_{p} \leq c_{\underline{u}}\left\|\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right\|_{p}$ and $\left\{\chi_{s_{i}}: i \in \omega\right\}$ is a basic sequence.

Using the unconditionality of $\left(u_{n}\right)_{n}$, the same argument as above shows that $\left\{\chi_{s_{i}}: s_{i} \in \theta\right\}$ is actually an unconditional basis for $U_{p}(\theta)$.

Lemma 3.2. Let $\left(A_{i}\right)_{i \in \omega}$ be a sequence of subsets of θ such that every branch meets at most one of these subsets. Then the spaces

$$
U_{p}\left(\bigcup_{i \in \omega} A_{i}\right) \text { and }\left(\bigoplus_{i \in \omega} U_{p}\left(A_{i}\right)\right)_{\ell_{p}} \text { are isometric }
$$

Proof. Pick $y \in \operatorname{span}\left\{\chi_{s}: s \in \bigcup_{i \in \omega} A_{i}\right\}$. We let $y_{i}=\sum_{s \in A_{i}} y(s) \chi_{s}$. Since the set $\left\{y_{i}: i \in \omega\right.$ and $\left.y_{i} \neq 0\right\}$ is finite, there is $m \in \omega$ such that $y=\sum_{i=0}^{m} y_{i}$. To finish the proof, it is enough to show the following Claim $\|y\|_{p}^{p}=\sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}$.
Indeed, let $\left\{I_{j}: 0 \leq j \leq k\right\}$ be an admissible choice of intervals. We set, for $0 \leq j \leq k$ and $0 \leq i \leq m, I_{j}(y)=\sum_{s \in I_{j}} y(s) u_{|S|}$ and $M_{i}=\left\{j \in \omega: 0 \leq j \leq k, I_{j} \cap A_{i} \neq \emptyset\right\}$. The largest interval with ends in $I_{j} \cap A_{i}$ is denoted by J_{j}^{i}. For any $i \in \omega,\left\{J_{j}^{i}: j \in M_{i}\right\}$ is an admissible choice of intervals, thus

$$
\sum_{j=0}^{k}\left\|I_{j}(y)\right\|^{p}=\sum_{i=0}^{m} \sum_{j \in M_{i}}\left\|J_{j}^{i}\left(y_{i}\right)\right\|^{p} \leq \sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}
$$

It follows by taking the supremum over admissible choices of intervals that

$$
\|y\|_{p}^{p} \leq \sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}
$$

Now, for any $0 \leq i \leq m$, let $\left\{I_{j}^{i}: 0 \leq j \leq_{i}\right\}$ be an admissible choice of intervals. We denote by \widetilde{I}_{j}^{i} the largest interval with ends in $I_{j}^{i} \cap A_{i}$. Then $\left\{\widetilde{I}_{j}^{i}: 0 \leq i \leq m, 0 \leq j \leq k_{i}\right\}$ is an admissible choice of intervals, because every branch of T meets at most one of the A_{i} 's. For any i,

$$
\sum_{j=0}^{k_{i}}\left\|I_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{j=0}^{k_{i}}\left\|\widetilde{I}_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{j=0}^{k_{i}}\left\|I_{j}^{i}(y)\right\|^{p}
$$

$$
\sum_{i=0}^{m} \sum_{j=0}^{k_{i}}\left\|I_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{i=0}^{m} \sum_{j=0}^{k_{i}}\left\|\widetilde{I}_{j}^{i}(y)\right\|^{p} \leq\|y\|_{p}^{p}
$$

thus

$$
\sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p} \leq\|y\|_{p}^{p}
$$

Theorem 3.3. Let $\theta \in \mathcal{T}$, and let $1<q<p<\infty$.
(i) If θ is ill founded, then $\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)$ is uncomplemented in $\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right) ;$
(ii) If θ is well founded, then $\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)$ is complemented in $\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)$.

Proof. (i) We actually show that if θ is ill founded, then $U_{p}(\theta)$ is isomorphic to \mathcal{U}. Since both spaces $U_{p}(\theta)$ and $U_{q}(\theta)$ are isomorphic, we get that $\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right) \neq \mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)$. Since \mathcal{U} has an unconditional basis, the thesis follows by [19, Theorem 6].

Suppose θ is ill founded, and let $b \in[\theta]$ a branch of θ. Let

$$
U_{p}(b)=U_{p}(\{s \in \theta: s \subseteq b\})
$$

We show that actually, $U_{p}(b)$ is isomorphic to \mathcal{U}.
Indeed, it is enough to show that the elements $\left\{\chi_{b \mid j}: j \in \omega\right\}$ are equivalent to the basis of \mathcal{U}.

Note that, if $\lambda \in \ell_{\infty}$ then

$$
\begin{aligned}
\left\|\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right\|_{p} & =\sup \left\{\left\|\sum_{s \in I}\left(\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right)(s) u_{|s|}\right\|: I \text { interval, } I \subseteq\{s: s \varsubsetneqq b\}\right\} \\
& =\sup \left\{\left\|\sum_{j=l}^{m} \lambda_{j} u_{j}\right\|: 0 \leq l \leq m \leq n\right\}
\end{aligned}
$$

Thus

$$
\left\|\sum_{j=0}^{n} \lambda_{j} u_{j}\right\|_{\mathcal{U}} \leq\left\|\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right\|_{p} \leq 2 c_{\underline{u}}\left\|\sum_{j=0}^{n} \lambda_{j} u_{j}\right\|_{\mathcal{U}},
$$

where $c_{\underline{u}}$ is the unconditional basis constant of the basis of \mathcal{U}.
Thus $U_{p}(b)$ is isomorphic to \mathcal{U}.

Let $y=\sum_{i \in \omega} y\left(s_{i}\right) \chi_{s_{i}}$ be an element of $U_{p}(\theta)$. We have

$$
\begin{aligned}
\left\|\sum_{\substack{i \in \omega \\
s_{i} \in b}} y\left(s_{i}\right) \chi_{s_{i}}\right\|_{p} & =\sup \left\{\left\|\sum_{s \in I} y(s) u_{|s|}\right\|: I \text { interval, } I \subseteq\{s: s \varsubsetneqq b\}\right\} \\
& \leq\|y\|_{p}
\end{aligned}
$$

That means $U_{p}(b) \cong \mathcal{U}$ is complemented in $U_{p}(\theta)$. By properties of \mathcal{U}, we get that $U_{p}(\theta) \cong \mathcal{U}$.
(ii) Suppose that θ is well founded. Since $U_{p}(\theta)$ has an unconditional basis, by [19, Theorem 6], it is equivalent to show that

$$
\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)=\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right) .
$$

For $s \in T$ and $i \in \omega$, we define

$$
s \frown \theta=\{s \frown t: t \in \theta\}, \quad \theta_{i}=\{t \in T:(i) \frown t \in \theta\} .
$$

Since $U_{p}(\theta)=U_{p}(\emptyset \frown \theta)$, to prove the theorem, it is enough to show the following

Claim If θ is well founded, then for any $s \in T$,

$$
\mathcal{K}\left(U_{p}(s \frown \theta), U_{q}(s \frown \theta)\right)=\mathcal{L}\left(U_{p}(s \frown \theta), U_{q}(s \frown \theta)\right) .
$$

Since θ is well founded and since the map $h t: \mathcal{W} \mathcal{F} \longrightarrow \omega_{1}$ is a Π_{1}^{1}-rank on $\mathcal{W} \mathcal{F}$ (see [15]), we will show the Claim using transfinite induction on $h t(\theta)$.

We assume that for every tree $\tau \in \mathcal{T}$ such that $h t(\tau)<\alpha<\omega_{1}$,

$$
\mathcal{K}\left(U_{p}(s \frown \tau), U_{q}(s \frown \tau)\right)=\mathcal{L}\left(U_{p}(s \frown \tau), U_{q}(s \frown \tau)\right) .
$$

for any $s \in T$.
Let θ such that $h t(\theta)=\alpha$, and for $s \in T$ let

$$
N_{s}=\{i \in \omega: s \frown(i) \in \theta\} .
$$

We let $A_{i}=s \frown(i) \frown \theta_{i}$ for $i \in N_{s}$, so that

$$
\cup_{i \in N_{s}} A_{i}=s \frown(\theta \backslash\{s\})
$$

and every branch of T meets at most one of the A_{i} 's. If $i \in N_{s}$ then $h t\left(A_{i}\right)<\alpha$, thus

$$
\mathcal{K}\left(U_{p}\left(A_{i}\right), U_{q}\left(A_{i}\right)\right)=\mathcal{L}\left(U_{p}\left(A_{i}\right), U_{q}\left(A_{i}\right)\right) .
$$

By Lemma 3.2, we have

$$
U_{r}(s \frown(\theta \backslash\{s\}))=U_{r}\left(\bigcup_{i \in N_{s}} A_{i}\right)=\left(\bigoplus_{i \in N_{s}} U_{r}\left(A_{i}\right)\right)_{\ell_{r}},
$$

for $r=p, q$ respectively.

Since $\left\{\chi_{s_{j}}: j \in \omega, s_{j} \in s \frown \theta\right\}$ is a basis of $U_{r}(s \frown \theta)$ with the first element χ_{s} and the other element generate $U_{r}(s \frown(\theta \backslash\{s\}))$. Then, we have that $U_{r}(s \frown \theta) \cong \mathbb{R} \times U_{r}(s \frown(\theta \backslash\{s\}))$. Thus the theorem will be complete once we prove the next two Lemma's.

Lemma 3.4. Let $1<p<\infty$. For every $\theta \in \mathcal{W} \mathcal{F}, U_{p}(\theta)$ is reflexive and it has property $\left(m_{p}\right)$.

Proof. Since θ is well-founded one can use transfinite induction on $h t(\theta)$. It is clear when $h t(\theta)=1$. Suppose the lemma holds for all trees with highs less than $h t(\theta)$. As before, we can write

$$
U_{p}(\theta)=\left(\bigoplus_{n \in \omega} U_{p}\left(A_{n}\right)\right)_{\ell_{p}}
$$

with $h t\left(A_{n}\right)<h t(\theta)$. By induction, since $U_{p}\left(A_{n}\right)$ has $\left(m_{p}\right)$, whenever we fix x and a weakly null sequence $\left(w_{n}\right)_{n}$ in $U_{p}(\theta)$ we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|_{U_{p}(\theta)}^{p} & =\limsup _{n \rightarrow \infty} \sum_{i \in \omega}\left\|x^{i}+w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\sum_{i \in \omega} \limsup _{n \rightarrow \infty}\left\|x^{i}+w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\sum_{i \in \omega}\left\|x^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p}+\limsup _{n \rightarrow \infty} \sum_{i \in \omega}\left\|w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\|x\|_{U_{p}(\theta)}^{p}+\underset{n \rightarrow \infty}{\limsup }\left\|w_{n}\right\|_{U_{p}(\theta)}^{p} .
\end{aligned}
$$

The reflexivity of $U_{p}(\theta)$ follows by standard argument.
The following Lemma slightly extends a classical Pitt's compactness theorem.

Lemma 3.5. Let $1 \leq q<p<\infty$ and let $\left(X_{n}\right)_{n}$ and $\left(Y_{n}\right)_{n}$ two sequences of Banach spaces such that

- X_{n} is reflexive and it has property $\left(m_{p}\right)$, for each $n \in \mathbb{N}$,
- Y_{n} has property $\left(m_{q}\right)$, for each $n \in \mathbb{N}$.

Then

$$
\mathcal{K}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}},\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right)=\mathcal{L}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}},\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right)
$$

Proof. The proof is similar to what of [7]. We give a sketch for sake of completeness.

Let

$$
T:\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}} \longrightarrow\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}
$$

be a norm one operator. Since $\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}$ is reflexive, any bounded sequence has a weak convergent subsequence. Thus, it is enough to show that T is weak-norm continuous.

Let $\left(h_{n}\right) \subseteq\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}$ be a weakly null sequence.
By hypothesis, since $\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$ has the property $\left(m_{r}\right)$, where $Z_{n}=$ X_{n} (resp. $\left.Z_{n}=Y_{n}\right)$ if $r=p($ resp. $r=q)$, for every $x \in\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$ and every weakly null sequence $\left(w_{n}\right)_{n}$ in $\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|^{r}=\|x\|^{r}+\underset{n \rightarrow \infty}{\limsup }\left\|w_{n}\right\|^{r} \tag{3.1}
\end{equation*}
$$

For every $\varepsilon>0$, let x_{ε} of norm one such that

$$
1-\varepsilon \leq\left\|T\left(x_{\varepsilon}\right)\right\| \leq 1
$$

For all $n \in \omega$ and $t>0$

$$
\begin{equation*}
\left\|T\left(x_{\varepsilon}\right)+T\left(t h_{n}\right)\right\| \leq\left\|x_{\varepsilon}+t h_{n}\right\| \tag{3.2}
\end{equation*}
$$

Now, applying (3.1) to the left hand side of (3.2) inequality for $r=q$ and to the right hand side for $r=p$ we get

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{t^{q}}\left[\left(1+t^{p} M^{p}\right)^{\frac{q}{p}}-(1-\varepsilon)^{q}\right]
$$

where $M>0$ is an upper bound for $\left(\left\|h_{n}\right\|\right)_{n}$.
Taking $t=\varepsilon^{\frac{1}{p}}$, we get

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{\varepsilon^{\frac{q}{p}}}\left[1+\frac{q}{p} M^{p} \varepsilon-(1-q \varepsilon)+o(\varepsilon)\right] .
$$

Letting $\varepsilon \rightarrow 0$ we get that $\left(T\left(h_{n}\right)\right)_{n}$ norm converges to zero.
Remark 3.6. Notice that the above lemma extends Pitt compactness's theorem since we have spaces with property $\left(m_{p}\right)$ which are not isomorphic to ℓ_{p}. For example, any space with Schur property has property $\left(m_{p}\right)$, for any $1 \leq p<\infty$. Then, in the above ℓ_{q}-sum, we can mix different kind of spaces.

Theorem 3.7. For $1<q<p<\infty$, the map $\varphi_{p, q}: \mathcal{T} \longrightarrow \mathcal{S B} \times \mathcal{S B}$ defined by

$$
\varphi_{p, q}(\theta)=U_{p}(\theta) \times U_{q}(\theta)
$$

is Borel.
Proof. It is enough to show that the map

$$
\theta \longmapsto U_{p}(\theta)
$$

is Borel.
Let O be open subsets of $C\left(2^{\omega}\right)$. It is enough to show that $\Omega=\{\theta \in$ $\left.\mathcal{T}: U_{p}(\theta) \cap O \neq \emptyset\right\}$ is Borel.

Since $\left\{\chi_{s_{i}}: i \in \omega, s_{i} \in \theta\right\}$ defines a basis of $U_{p}(\theta)$, we have
$U_{p}(\theta) \cap O \neq \emptyset \Leftrightarrow \exists \lambda \in \mathbb{Q}^{<\omega}$ such that $\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O$ and if $\lambda_{i} \neq 0$ then $s_{i} \in \theta$.
Let $\Lambda=\left\{\lambda \in \mathbb{Q}^{<\omega}: \sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O\right\}$. Then

$$
\Omega=\bigcup_{\lambda \in \Lambda} \bigcap_{i \in \operatorname{supp}(\lambda)}\left\{\theta \in \mathcal{T}: s_{i} \in \theta\right\}
$$

thus Ω is Borel since $\left\{\theta \in \mathcal{T}: s_{i} \in \theta\right\}$ is an open and closed subset.
Theorem 3.8. The family \mathcal{A} of all couple of separable Banach spaces (X, Y) such that

$$
\mathcal{K}(X, Y) \text { is complemented in } \mathcal{L}(X, Y)
$$

is not Borel in $\mathcal{S B} \times \mathcal{S B}$.
Proof. Suppose \mathcal{A} is even analytic. For $1<q<p<\infty$, let $\varphi_{p, q}$ be the map defined in Theorem 3.7. Then $\varphi_{p, q}^{-1}(\mathcal{A})$ is analytic containing $\mathcal{W} \mathcal{F}$. Since $\mathcal{W} \mathcal{F}$ is not analytic, there is some θ_{0} in $\varphi_{p, q}^{-1}(\mathcal{A})$ which is ill founded. Therefore, by Theorem 3.3, $\varphi_{p, q}\left(\theta_{0}\right)$ doesn't lie in \mathcal{A}. A contradiction.

We would like to finish this note with the following
Question 3.9. Let \mathcal{B} be the family of all separable Banach space X such that $\mathcal{K}(X)$ is complemented in $\mathcal{L}(X)$. Is it \mathcal{B} Borel? Is it coanalytic?

Acknowledgement. The author wishes to thank G. Emmanuele for useful discussions.

References

1. F. Albiac, N.J. Kalton; Topics in Banach space theory. Graduate Texts in Mathematics, 233. Springer, New York, (2006).
2. S.A. Argyros, R. G. Haydon; A hereditarily indecomposable \mathcal{L}_{∞}-space that solves the scalar-plus-compact problem. Acta Math. 206 (2011), no. 1, 1-54.
3. D. Arterburn, R.J. Whitley; Projections in the space of bounded linear operators. Pacific J. Math. 15 (1965), 739-746.
4. B. Bossard; A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. Fund. Math. 172 (2002), no. 2, 117-152.
5. Jean Bourgain; New classes of \mathcal{L}_{p}-spaces. Lecture Notes in Mathematics, 889. Springer-Verlag, Berlin-New York, (1981).
6. J. Bourgain, F. Delbaen; A class of special \mathcal{L}_{∞} spaces. Acta Math. 145 (1980), no. 3-4, 155-176.
7. Sylvain Delpech; A short proof of Pitt's compactness theorem. Proc. Amer. Math. Soc. 137 (2009), no. 4, 1371-1372.
8. J. Diestel; Geometry of Banach spacesselected topics. Lecture Notes in Mathematics, Vol. 485. Springer-Verlag, Berlin-New York, (1975).
9. P. Dodos; Banach spaces and descriptive set theory: selected topics. Lecture Notes in Mathematics, 1993, Springer-Verlag, Berlin, (2010).
10. G. Emmanuele; A remark on the containment of c_{0} in spaces of compact operators. Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331-335.
11. G. Emmanuele; Answer to a question by M. Feder about $\mathcal{K}(X, Y)$. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 2, 263-266.
12. D. Freeman, E. Odell, Th. Schlumprecht, The universality of ℓ_{1} as a dual space. Math. Ann. 351 (2011), no. 1, 149-186.
13. N.J. Kalton; Spaces of Compact Operators. Math. Ann. 208 (1974), 267-278.
14. N.J. Kalton, D. Werner; Property (M), M-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178.
15. A. S.Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, (1995).
16. J. Lindenstrauss, L. Tzafriri; Classical Banach spaces. Lecture Notes in Mathematics, Vol. 338. Springer-Verlag, Berlin-New York, (1973).
17. A. Pelczynski; Universal bases. Studia Math. 32 (1969) 247-268.
18. E. Thorp; Projections onto the subspace of compact operators. Pacific J. Math. 10 (1960), 693-696.
19. A. E. Tong, D. R. Wilken; The uncomplemented subspace K(E,F). Studia Math. 37 (1971), 227-236.

Department of Mathematics and Computer Sciences, University of Catania, Catania, 95125, Italy (EU)

E-mail address: dpuglisi@dmi.unict.it

[^0]: 2000 Mathematics Subject Classification. Primary 46B20.
 Key words and phrases. space of compact operators, space of bounded linear operators, Borel set, well founded trees.

