THE POSITION OF K(X,Y) IN L(X,Y).
DANIELE PUGLISI

ABSTRACT. In this note, we investigate the nature of family of
pairs of separable Banach spaces (X,Y") such that (X,Y") is com-
plemented in £(X,Y). It is proved that the family of pairs (X,Y)
of separable Banach spaces such that (X, Y) is complemented in
L(X,Y) is not Borel, endowed with the Effros-Borel structure.

1. INTRODUCTION

Let X and Y be two infinite dimensional real Banach spaces. It has
been a long standing question the following (see [18] and [3]).

Question 1.1. Are the following properties equivalent?

(a) There exists a projection from the the space L(X,Y) of contin-
uous linear operators onto the space K(X,Y') of compact linear

operators;
(b) L(X,Y) = K(X,Y).

Many results have been found about this question. In [19], A.E.
Tong and D.R. Wilken showed that if X has an unconditional basis,
then the equivalence in the above question is true. Some years later,
N.J. Kalton (see [13]) extended this result showing the following

Theorem 1.2. Let X be a Banach space with an unconditional finite
dimensional expansion of the identity. If Y is any infinite-dimensional
Banach space the following are equivalent.
(i) K(X,Y) is complemented in L(X,Y);
(i) L(X,Y) =K(X,Y);
(iii) K(X,Y) contains no copy of co;
(iv) L(X,Y) contains no copy of lw.

In [10] and [11], G. Emmanuele proved that, without assumption
of unconditional finite dimensional expansion of the identity, we still
have some implication of the above theorem; i.e., if ¢y embeds in
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K(X,Y), then K(X,Y) is uncomplemented in £(X,Y). Moreover, he
also showed that the classical Bourgain Delbaen’s space X, (see [6])
is such that K(X,;) contains no copy of ¢y, despite L(X,p) # K(Xap)-

Recently, S.A. Argyros and R.G. Haydon [2], in a truly spectacu-
lar way, have solved the Question 1.1 above. Indeed, using a mixed

Tsirelson trick, they constructed a space Xk, in the wake of Bourgain
Delbaen’s space (see [5, 6]), such that

K(X k) contains no copy of ¢;

£(Xx) = K(Xx) @RI,
where [ denotes the identity map. In particular (X ) is non-trivially
complemented in L(Xg).

See also the other interesting paper [12], where the authors ex-
tend the Argyros-Haydon construction in terms of totally incomparable
spaces.

In what follows, we want to study the descriptive set nature of such
spaces: the family of separable Banach spaces, endowed with the Effros-
Borel structure, such that K(X) is non-trivially complemented in £(X).
In particular we are interested to study the following

Question 1.3. Let A be the family of all couple of separable Banach
spaces (X,Y) such that IK(X,Y) is complemented in L(X,Y). Is A
Borel?

As standard notation, we shall consider £(X,Y) the space of all
bounded linear operator between the Banach spaces X and Y, endowed
by the classical norm

IT|| = sup ||Tz[|y.
=<1
We shall denote by IC(X,Y) the closed subspace of L(X,Y) of all com-
pact operators. In case X =Y briefly £(X) and K(X) will stand for
L(X,X) and K(X, X) respectively. We refer the reader any classical
functional analysis ’s book for any notation (i.e., see [1, 8, 16]).
Let us recall the following

Definition 1.4 ([14]). Let 1 < p < co. A separable Banach space X
is said to have property (m,) if
limsup ||z + 2, ||” = ||z|” + limsup ||z, |
n—00 n—00

whenever z,, — 0 weakly.

Such a property has been intensively studied in [14], where it was

proved that a Banach space X has property (m,,) if and only if X is
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almost isometric to a subspace of some /,-sum of finite-dimensional
spaces.

2. PRELIMINARIES AND NOTATION

Let X be a separable Banach space. We endow the set F(X) of all
closed subsets of X with the Effros-Borel structure, i.e. the structure
generated by the family

{{F e F(X) : FNO # 0} : O is an open subset of X}.

We denote by SB(X) the subset of F(X) consisting of all linear closed
subspaces of X endowed with the relative Effros-Borel o-algebra. If
X is C(2¥) (where 2¥ = {0,1}¥ is a compact Polish space endowed
with the product topology), we denote briefly SB(X) by SB. It is well
known that, if X is a Polish space, then F(X) with the Effros Borel
structure is a standard Borel space. We refer the reader to the recent
book [9].

We denote by w = {0, 1, ...} the first infinite ordinal, and let w<*“ be
the tree of all finite sequences in w. Let T be the set of all trees on w.
If s = (s(0),...,s(n — 1)) is a sequence of w, we denote its length n by
|s|. In particular the empty sequence () has length 0.

For s = (s(0),...,s(n —1)),t = (¢(0),...,t(k — 1)) the concatenation
s —~ t is defined by

s ~t=(s(0),...,s(n —1),t(0),....t(k — 1)).
For a tree 6, a branch through 6 is an € € w* such that for all n € w,
eln = (£(0),...,e(n — 1)) € 6.
We denote by
[0] = {¢ € w* : € is a branch through 6}

the body of 6.

We call 6 well founded if [0] = (), i.e. 6 has no branches. Otherwise,
we will call 6 ill founded. We will denote by W.F (resp. ZF) the set of
well-founded trees (resp. ill founded trees) on w.

For a tree 6 € T, roughly speaking the high of 6 (denoted by ht(9)) is
the supremum of the lengths of its elements (see [15] for the definition).

We refer the reader the book [15] for all notion and notation in
Descriptive set theory.

Let us recall the constructive space of [17, Theorem 1] with normal-
ized unconditional basis which is universal for all spaces with uncondi-

tional basis (some time called Pelczynski’s space U).
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Theorem 2.1. There exists a space U with a normalized unconditional
basis (uy), such that for every seminormalized unconditional basic se-
quence (x,)n in a Banach space X there exists L = {lyp <l <---} €
[w] such that (x,,), is equivalent to (uy, ), and the natural projection Py,
onto span{u, : m € L} has norm one. Moreover, if U’ is another
space with the above properties, then U’ is isomorphic to U.

3. PROOF OF THE MAIN RESULT

For s € w<¥, we denote by x5 : w<“ — {0,1} the characteristic
function of {s}. For a tree § € T, let U,(d) (1 < p < o0) be the
completion of the span{yxs : s € 8} under the norm

k ak
Iylly = sup | D {1 u(s) wy
=0 ||sel; u
where the supremum is taken over k € w and over all admissible choice
of intervals {I; : 0 < j < k} (an admissible choice of intervals is a

finite set {I; : 0 < j <k} of intervals of # such that every branch of
6 meets at most one of these intervals.).

Both of the below Lemma’s are essentially included in [4].

Lemma 3.1. For any 0 tree on w, the sequence {xs, : s; € 0}
determines an unconditional basis for U,(0).

Proof. Let (\;)icw be a sequence in R, I an interval of § and n,m € w.
Let us denote by ¢, the basis constant for the universal basis u = (uy,),,
of .

Let K : w — w=¥ be an enumeration of w=<* such that if s ; t then
S < t, where 5 = K~1(s).

For s € T, (3 7 qAixs)(s) is equal to As if 5 < n, and 0 if not.
Therefore

120 Axe)(s) wisille = 11 dstwigill < e || Astgs

sel =0 sel sel
s<n s<n+m
n+m
=cu 1D 0O Aixa)(s) wpllu
sel =0

since for s,t € I, then t 2 s if and only if ¢ > 5.

Let {I; : 0 <j <k} be an admissible choice of intervals. We have
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n+m

Z 1 Z&st wsilly < cf Z 1D O Aixs) () wllE

= sel; =0 = sel =0

Thus H Z?:o AiXsillp < cu H Zn+m AiXsillp
sequence.

and {x;, : 7 € w} is a basic

Using the unconditionality of (u,),, the same argument as above
shows that {xs, : s; € 0} is actually an unconditional basis for U,(#).
O

Lemma 3.2. Let (A;)ic, be a sequence of subsets of 0 such that every
branch meets at most one of these subsets. Then the spaces

UA ) and ( @U g are isometric

1EW €W

Proof. Pick y € spcm{xs s s € Uew Ai}. We let yi = > ca ¥(8)Xs-
Since the set {y; : i € w and y; # 0} is finite, there is m € w such that
y =3,y To finish the proof, it is enough to show the following

Claim [lyl5 = >0 lslly.

Indeed, let {I; : 0 < j < k} be an admissible choice of intervals.
We set, for 0 < j < kand 0 < i < m, Lj(y) = > o y(s)us and
M,={jcew:0<j <k I;nA; # 0}. The largest interval with
ends in I; N A; is denoted by Ji. For any i € w, {J} : j € M;} is an
admissible choice of intervals, thus

Z 15w)IP = Z D5l < Z 19:l[5-

1=0 jeM;

It follows by taking the supremum over admissible choices of intervals

that
Iyll2 <> lwillb.
i=0

Now, for any 0 < i < m, let {IjZ : 0 < j <;} be an admissible choice
of intervals. We denote by [ ; the largest interval with ends in [; N A;.

Then {_7]’ : 0<i<m,0<j <k} isan admissible choice of intervals,
because every branch of 7" meets at most one of the A;’s. For any 1,

ZHF vi) IP—ZHI’ yi) !”—ZHF )P,
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kq

> I IP—ZZHI’ P < llyll5

=0 5=0 =0 7=0

thus

m
> lwills < llwlly.
i=0

Theorem 3.3. Let 0 € T, and let 1 < ¢ < p < 0.

(i) If 6 is ill founded, then K(U,(8),U,(0)) is uncomplemented in
L(Uy(0),Uy(0));

(ii) If 0 is well founded, then K(U,(8),U,(0)) is complemented in
L(Up(0),Uq(0)).

Proof. (i) We actually show that if 6 is ill founded, then U,(#) is isomor-
phic to U. Since both spaces U,(0) and U,(f) are isomorphic, we get
that IC(U,(0),U,(0)) # L(U,(8),U,(#)). Since U has an unconditional
basis, the thesis follows by [19 Theorem 6.

Suppose € is ill founded, and let b € [0] a branch of . Let
Up(b) =U,({s €8 : sCb})

We show that actually, U,(b) is isomorphic to U.

Indeed, it is enough to show that the elements {x;; : j € w} are
equivalent to the basis of U.

Note that, if A € /, then

| ZAJXWHP sup {H Z Z)‘JX”‘J s) uy|| : Iinterval, I C{s:s& b}}

361]0

= sup{HZ/\jujH :0<I<m<n}.

Thus
1D Ml < 1D Aixslls < 2ea 1D Al
=0 =0 =0

where ¢, is the unconditional basis constant of the basis of U.

Thus U, (b) is isomorphic to U.
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Let y = > ., ¥(5i)Xs, be an element of U,(¢). We have

|| Z y(si)XSi

1EW
s; €D

p = Sup {H Zy(s) us|] : I interval, I C{s:s& b}}

sel

< [lylly

That means U,(b) = U is complemented in U,(6). By properties of
U, we get that U,(0) =U.

(77) Suppose that 0 is well founded. Since U,(¢) has an unconditional
basis, by [19, Theorem 6], it is equivalent to show that

K(Up(0), Ug(0)) = L(U,(0), Uyg(0)).
For s € T and 7 € w, we define
s~O0={s~t:teb} O;={teT:(i)~teb}

Since U,(0) = U,(0 ~ ), to prove the theorem, it is enough to show
the following

Claim 1f 6 is well founded, then for any s € T,
K(Uy(s ~ ), Uy(s ~ ) = LUy(s ~ ), Uy(s ~ 6).

Since 6 is well founded and since the map ht : WF — w; is a
[}-rank on WF (see [15]), we will show the Claim using transfinite
induction on ht(6).

We assume that for every tree 7 € T such that hi(7) < a < wy,
K(Uy(s ~ 7),Uy(s ~ 7)) = £Up(s ~ 7), Uyls ~ 7).
for any s € T.
Let 6 such that ht(f) = «, and for s € T' let
Ny={icw:s~ (i) € 0}.
We let A; = s ~ (i) ~ 0; for i € N, so that
Uien,4i = s ~ (0 \ {s})

and every branch of T" meets at most one of the A;’s. If 1 € N, then
ht(A;) < «, thus

K(Up(Ai)a Uq(Ai)) = £(Up(Ai)a Uq(Ai))'
By Lemma 3.2, we have
Unls ~ O\ {5) = UL 40 = (@D (4.

for r = p, q respectively.



Since {xs, : j €w, s; € s ~ 0} is a basis of U,(s ~ 0) with the first
element x, and the other element generate U,.(s ~ (6\ {s})). Then, we
have that U.(s ~ 0) 2= R x U,(s ~ (0 \ {s})). Thus the theorem will
be complete once we prove the next two Lemma’s. U

Lemma 3.4. Let 1 < p < oco. For every § € WF, Uy,(0) is reflexive
and it has property (m,).

Proof. Since 0 is well-founded one can use transfinite induction on
ht(0). It is clear when ht(6) = 1. Suppose the lemma holds for all
trees with highs less than ht(0). As before, we can write

Up(0) = (€D Up(An))s,.
new
with ht(A,) < ht(#). By induction, since U,(A,) has (m,), whenever
we fix x and a weakly null sequence (wy,), in U,(6) we get
limsup ||z + wy |7 ) = limsup Z 2" + wfl||pUp(Ai)

n—o0 n—oo .
1EWw

= limsup ||« + willf, 4

. n— 00
1EW

_ i||P : i ||P
= § |z ||Up(Ai) + h?_ﬁ:jp E HwnHUp(Ai)
1€EW (S

= ||$||pUp(9) + hin_igp ”wnH[pJp(e)'

The reflexivity of U,(#) follows by standard argument. O

The following Lemma slightly extends a classical Pitt’s compactness
theorem.

Lemma 3.5. Let 1 < ¢ < p < 00 and let (X,), and (Y,), two se-
quences of Banach spaces such that

o X, is reflexive and it has property (m,), for each n € N,
e Y, has property (m,), for each n € N.

Then

K ((@ Xn)fpa (@ Yn)&;) =L ((@ Xn)épa (@ Yn)eq>

Proof. The proof is similar to what of [7]. We give a sketch for sake of
completeness.

Let
T: (@ Xn)e, — (EP Vo),
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be a norm one operator. Since (,, X,),, is reflexive, any bounded
sequence has a weak convergent subsequence. Thus, it is enough to
show that 7" is weak-norm continuous.

Let (h,) C (B,, Xu)e, be a weakly null sequence.

By hypothesis, since (€D,, Z,)s, has the property(m,), where Z, =
X, (vesp. Z, =Y,) if r = p (resp. r = q), for every x € (P,, Z»)¢, and
every weakly null sequence (w,), in (,, Z»)e,

(3.1) limsup ||z + w,||" = ||z||" + lim sup ||w,||".
n—oo n—oo

For every € > 0, let x. of norm one such that
1 —e< TG < 1.
For alln € wand t > 0
(3.2) 1T (e) + T (thn)|| < [lze + thl|

Now, applying (3.1) to the left hand side of (3.2) inequality for r = ¢
and to the right hand side for r = p we get
1 q
limsup || T'(h,)]|? < t_q[(l +tPMP)r — (1 — €)1,
n—oo

where M > 0 is an upper bound for (||hy,||)s.
Taking t = 5%, we get
1
lim sup |[7(h,) | < ~¢[1 4 MP= — (1~ ge) +o(c)].
n—00 er p

Letting ¢ — 0 we get that (T'(h,)), norm converges to zero. O

Remark 3.6. Notice that the above lemma extends Pitt compactness’s
theorem since we have spaces with property (m,) which are not isomor-
phic to £,. For example, any space with Schur property has property
(mp), for any 1 < p < oco. Then, in the above {,-sum, we can mix
different kind of spaces.

Theorem 3.7. For 1 < ¢ < p < oo, the map ¢,,: T — SB x SB
defined by

@pyq(e) = UP(Q) X Uq(g)
1s Borel.

Proof. 1t is enough to show that the map
0 — Uy(0)
is Borel.

Let O be open subsets of C'(2¥). It is enough to show that Q = {6 €
T :U,(0) N O # 0} is Borel.
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Since {xs, : © € w,s; € 8} defines a basis of U,(f), we have

U,()NO # 0 < 3\ € Q<* such that Z Aixs; € Oand if \; # Othen s; € 6.
i=0

Let A={AeQ<¥: > " Xixs, € O}. Then
Q:U ﬂ {QGTZSZ‘EQ}

AEA i€supp(N)

thus Q is Borel since {# € T : s; € 0} is an open and closed subset. [

Theorem 3.8. The family A of all couple of separable Banach spaces
(X,Y) such that

K(X,Y) is complemented in L(X,Y)
is not Borel in SB x SB.

Proof. Suppose A is even analytic. For 1 < ¢ < p < oo, let ¢, , be
the map defined in Theorem 3.7. Then ¢, !(A) is analytic containing
WF. Since WF is not analytic, there is some 6y in ¢, | (A) which is
ill founded. Therefore, by Theorem 3.3, ¢, ,(6y) doesn’t lie in A. A
contradiction. O

We would like to finish this note with the following

Question 3.9. Let B be the family of all separable Banach space X
such that K(X) is complemented in L(X). Is it B Borel? Is it coana-
lytic?
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