THE POSITION OF $\mathcal{K}(X,Y)$ IN $\mathcal{L}(X,Y)$.

DANIELE PUGLISI

ABSTRACT. In this note, we investigate the nature of family of pairs of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. It is proved that the family of pairs (X, Y) of separable Banach spaces such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$ is not Borel, endowed with the Effros-Borel structure.

1. INTRODUCTION

Let X and Y be two infinite dimensional real Banach spaces. It has been a long standing question the following (see [18] and [3]).

Question 1.1. Are the following properties equivalent?

(a) There exists a projection from the the space $\mathcal{L}(X,Y)$ of continuous linear operators onto the space $\mathcal{K}(X,Y)$ of compact linear operators;

(b)
$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y).$$

Many results have been found about this question. In [19], A.E. Tong and D.R. Wilken showed that if X has an unconditional basis, then the equivalence in the above question is true. Some years later, N.J. Kalton (see [13]) extended this result showing the following

Theorem 1.2. Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space the following are equivalent.

- (i) $\mathcal{K}(X,Y)$ is complemented in $\mathcal{L}(X,Y)$;
- (ii) $\mathcal{L}(X,Y) = \mathcal{K}(X,Y);$
- (iii) $\mathcal{K}(X,Y)$ contains no copy of c_0 ;
- (iv) $\mathcal{L}(X,Y)$ contains no copy of ℓ_{∞} .

In [10] and [11], G. Emmanuele proved that, without assumption of unconditional finite dimensional expansion of the identity, we still have some implication of the above theorem; i.e., if c_0 embeds in

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B20.

Key words and phrases. space of compact operators, space of bounded linear operators, Borel set, well founded trees.

 $\mathcal{K}(X,Y)$, then $\mathcal{K}(X,Y)$ is uncomplemented in $\mathcal{L}(X,Y)$. Moreover, he also showed that the classical Bourgain Delbaen's space $X_{a,b}$ (see [6]) is such that $\mathcal{K}(X_{a,b})$ contains no copy of c_0 , despite $\mathcal{L}(X_{a,b}) \neq \mathcal{K}(X_{a,b})$.

Recently, S.A. Argyros and R.G. Haydon [2], in a truly spectacular way, have solved the Question 1.1 above. Indeed, using a mixed Tsirelson trick, they constructed a space \mathfrak{X}_K , in the wake of Bourgain Delbaen's space (see [5, 6]), such that

> $\mathcal{K}(\mathfrak{X}_K)$ contains no copy of c_0 ; $\mathcal{L}(\mathfrak{X}_K) = \mathcal{K}(\mathfrak{X}_K) \oplus \mathbb{R}I$,

where I denotes the identity map. In particular $\mathcal{K}(\mathfrak{X}_K)$ is non-trivially complemented in $\mathcal{L}(\mathfrak{X}_K)$.

See also the other interesting paper [12], where the authors extend the Argyros-Haydon construction in terms of totally incomparable spaces.

In what follows, we want to study the descriptive set nature of such spaces: the family of separable Banach spaces, endowed with the Effros-Borel structure, such that $\mathcal{K}(X)$ is non-trivially complemented in $\mathcal{L}(X)$. In particular we are interested to study the following

Question 1.3. Let \mathcal{A} be the family of all couple of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. Is \mathcal{A} Borel?

As standard notation, we shall consider $\mathcal{L}(X, Y)$ the space of all bounded linear operator between the Banach spaces X and Y, endowed by the classical norm

$$||T|| = \sup_{||x|| \le 1} ||Tx||_Y.$$

We shall denote by $\mathcal{K}(X, Y)$ the closed subspace of $\mathcal{L}(X, Y)$ of all compact operators. In case X = Y briefly $\mathcal{L}(X)$ and $\mathcal{K}(X)$ will stand for $\mathcal{L}(X, X)$ and $\mathcal{K}(X, X)$ respectively. We refer the reader any classical functional analysis 's book for any notation (i.e., see [1, 8, 16]).

Let us recall the following

Definition 1.4 ([14]). Let $1 \le p < \infty$. A separable Banach space X is said to have *property* (m_p) if

$$\limsup_{n \to \infty} \|x + x_n\|^p = \|x\|^p + \limsup_{n \to \infty} \|x_n\|^p$$

whenever $x_n \to 0$ weakly.

Such a property has been intensively studied in [14], where it was proved that a Banach space X has property (m_p) if and only if X is

almost isometric to a subspace of some ℓ_p -sum of finite-dimensional spaces.

2. Preliminaries and Notation

Let X be a separable Banach space. We endow the set $\mathcal{F}(X)$ of all closed subsets of X with the *Effros-Borel* structure, i.e. the structure generated by the family

$$\{\{F \in \mathcal{F}(X) : F \cap O \neq \emptyset\} : O \text{ is an open subset of } X\}.$$

We denote by $\mathcal{SB}(X)$ the subset of $\mathcal{F}(X)$ consisting of all linear closed subspaces of X endowed with the relative Effros-Borel σ -algebra. If X is $C(2^{\omega})$ (where $2^{\omega} = \{0,1\}^{\omega}$ is a compact Polish space endowed with the product topology), we denote briefly $\mathcal{SB}(X)$ by \mathcal{SB} . It is well known that, if X is a Polish space, then $\mathcal{F}(X)$ with the Effros Borel structure is a standard Borel space. We refer the reader to the recent book [9].

We denote by $\omega = \{0, 1, \ldots\}$ the first infinite ordinal, and let $\omega^{<\omega}$ be the tree of all finite sequences in ω . Let \mathcal{T} be the set of all trees on ω . If $s = (s(0), \ldots, s(n-1))$ is a sequence of ω , we denote its length n by |s|. In particular the empty sequence \emptyset has length 0.

For s = (s(0), ..., s(n-1)), t = (t(0), ..., t(k-1)) the concatenation $s \frown t$ is defined by

$$s \frown t = (s(0), ..., s(n-1), t(0), ..., t(k-1)).$$

For a tree θ , a *branch* through θ is an $\varepsilon \in \omega^{\omega}$ such that for all $n \in \omega$,

$$\varepsilon | n = (\varepsilon(0), ..., \varepsilon(n-1)) \in \theta.$$

We denote by

 $[\theta] = \{ \varepsilon \in \omega^{\omega} : \varepsilon \text{ is a branch through } \theta \}$

the *body* of θ .

We call θ well founded if $[\theta] = \emptyset$, i.e. θ has no branches. Otherwise, we will call θ *ill founded*. We will denote by \mathcal{WF} (resp. \mathcal{IF}) the set of well-founded trees (resp. ill founded trees) on ω .

For a tree $\theta \in \mathcal{T}$, roughly speaking the high of θ (denoted by $ht(\theta)$) is the supremum of the lengths of its elements (see [15] for the definition).

We refer the reader the book [15] for all notion and notation in Descriptive set theory.

Let us recall the constructive space of [17, Theorem 1] with normalized unconditional basis which is universal for all spaces with unconditional basis (some time called Pelczynski's space \mathcal{U}). **Theorem 2.1.** There exists a space \mathcal{U} with a normalized unconditional basis $(u_n)_n$ such that for every seminormalized unconditional basic sequence $(x_n)_n$ in a Banach space X there exists $L = \{l_0 < l_1 < \cdots\} \in [\omega]$ such that $(x_n)_n$ is equivalent to $(u_{l_n})_n$ and the natural projection P_L onto $\overline{span}\{u_n : n \in L\}$ has norm one. Moreover, if U' is another space with the above properties, then U' is isomorphic to \mathcal{U} .

3. Proof of the main result

For $s \in \omega^{<\omega}$, we denote by $\chi_s : \omega^{<\omega} \longrightarrow \{0,1\}$ the characteristic function of $\{s\}$. For a tree $\theta \in \mathcal{T}$, let $U_p(\theta)$ $(1 be the completion of the <math>span\{\chi_s : s \in \theta\}$ under the norm

$$||y||_p = \sup\left[\sum_{j=0}^k \left\|\sum_{s\in I_j} y(s) \ u_{|s|}\right\|_{\mathcal{U}}^p\right]^{\frac{1}{p}}$$

where the supremum is taken over $k \in \omega$ and over all admissible choice of intervals $\{I_j : 0 \leq j \leq k\}$ (an *admissible choice of intervals* is a finite set $\{I_j : 0 \leq j \leq k\}$ of intervals of θ such that every branch of θ meets at most one of these intervals.).

Both of the below Lemma's are essentially included in [4].

Lemma 3.1. For any θ tree on ω , the sequence $\{\chi_{s_i} : s_i \in \theta\}$ determines an unconditional basis for $U_p(\theta)$.

Proof. Let $(\lambda_i)_{i \in \omega}$ be a sequence in \mathbb{R} , I an interval of θ and $n, m \in \omega$. Let us denote by $c_{\underline{u}}$ the basis constant for the universal basis $\underline{u} = (u_n)_n$ of \mathcal{U} .

Let $\mathcal{K}: \omega \longrightarrow \omega^{<\omega}$ be an enumeration of $\omega^{<\omega}$ such that if $s \subsetneqq t$ then $\overline{s} < \overline{t}$, where $\overline{s} = \mathcal{K}^{-1}(s)$.

For $s \in T$, $(\sum_{i=0}^{n} \lambda_i \chi_{s_i})(s)$ is equal to $\lambda_{\overline{s}}$ if $\overline{s} \leq n$, and 0 if not. Therefore

$$\begin{aligned} \|\sum_{s\in I} (\sum_{i=0}^n \lambda_i \chi_{s_i})(s) \ u_{|s|} \|_{\mathcal{U}} &= \|\sum_{\substack{s\in I\\\overline{s} \leq n}} \lambda_{\overline{s}} u_{|s|} \|_{\mathcal{U}} \leq c_{\underline{u}} \|\sum_{\substack{s\in I\\\overline{s} \leq n+m}} \lambda_{\overline{s}} u_{|s|} \|_{\mathcal{U}} \\ &= c_{\underline{u}} \|\sum_{s\in I} (\sum_{i=0}^{n+m} \lambda_i \chi_{s_i})(s) \ u_{|s|} \|_{\mathcal{U}} \end{aligned}$$

since for $s, t \in I$, then $t \supseteq s$ if and only if $\overline{t} \geq \overline{s}$.

Let $\{I_j : 0 \le j \le k\}$ be an admissible choice of intervals. We have

$$\sum_{j=0}^{k} \|\sum_{s \in I_{j}} (\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}})(s) \ u_{|s|}\|_{\mathcal{U}}^{p} \leq c_{\underline{u}}^{p} \ \sum_{j=0}^{k} \|\sum_{s \in I} (\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}})(s) \ u_{|s|}\|_{\mathcal{U}}^{p}$$

Thus $\|\sum_{i=0}^{n} \lambda_i \chi_{s_i}\|_p \leq c_{\underline{u}} \|\sum_{i=0}^{n+m} \lambda_i \chi_{s_i}\|_p$ and $\{\chi_{s_i} : i \in \omega\}$ is a basic sequence.

Using the unconditionality of $(u_n)_n$, the same argument as above shows that $\{\chi_{s_i} : s_i \in \theta\}$ is actually an unconditional basis for $U_p(\theta)$.

Lemma 3.2. Let $(A_i)_{i \in \omega}$ be a sequence of subsets of θ such that every branch meets at most one of these subsets. Then the spaces

$$U_p(\bigcup_{i\in\omega}A_i)$$
 and $(\bigoplus_{i\in\omega}U_p(A_i))_{\ell_p}$ are isometric

Proof. Pick $y \in span \{\chi_s : s \in \bigcup_{i \in \omega} A_i\}$. We let $y_i = \sum_{s \in A_i} y(s)\chi_s$. Since the set $\{y_i : i \in \omega \text{ and } y_i \neq 0\}$ is finite, there is $m \in \omega$ such that $y = \sum_{i=0}^m y_i$. To finish the proof, it is enough to show the following $Claim \|y\|_p^p = \sum_{i=0}^m \|y_i\|_p^p$.

Indeed, let $\{I_j : 0 \leq j \leq k\}$ be an admissible choice of intervals. We set, for $0 \leq j \leq k$ and $0 \leq i \leq m$, $I_j(y) = \sum_{s \in I_j} y(s)u_{|S|}$ and $M_i = \{j \in \omega : 0 \leq j \leq k, I_j \cap A_i \neq \emptyset\}$. The largest interval with ends in $I_j \cap A_i$ is denoted by J_j^i . For any $i \in \omega$, $\{J_j^i : j \in M_i\}$ is an admissible choice of intervals, thus

$$\sum_{j=0}^{k} \|I_j(y)\|^p = \sum_{i=0}^{m} \sum_{j \in M_i} \|J_j^i(y_i)\|^p \le \sum_{i=0}^{m} \|y_i\|_p^p$$

It follows by taking the supremum over admissible choices of intervals that

$$||y||_p^p \le \sum_{i=0}^m ||y_i||_p^p$$

Now, for any $0 \leq i \leq m$, let $\{I_j^i : 0 \leq j \leq_i\}$ be an admissible choice of intervals. We denote by \tilde{I}_j^i the largest interval with ends in $I_j^i \cap A_i$. Then $\{\tilde{I}_j^i : 0 \leq i \leq m, 0 \leq j \leq k_i\}$ is an admissible choice of intervals, because every branch of T meets at most one of the A_i 's. For any i,

$$\sum_{j=0}^{k_i} \|I_j^i(y_i)\|^p = \sum_{j=0}^{k_i} \|\widetilde{I}_j^i(y_i)\|^p = \sum_{j=0}^{k_i} \|I_j^i(y)\|^p,$$

$$\sum_{i=0}^{m} \sum_{j=0}^{k_i} \|I_j^i(y_i)\|^p = \sum_{i=0}^{m} \sum_{j=0}^{k_i} \|\widetilde{I}_j^i(y)\|^p \le \|y\|_p^p$$

thus

$$\sum_{i=0}^{m} \|y_i\|_p^p \le \|y\|_p^p.$$

Theorem 3.3. Let $\theta \in \mathcal{T}$, and let $1 < q < p < \infty$.

- (i) If θ is ill founded, then $\mathcal{K}(U_p(\theta), U_q(\theta))$ is uncomplemented in $\mathcal{L}(U_p(\theta), U_q(\theta));$
- (ii) If θ is well founded, then $\mathcal{K}(U_p(\theta), U_q(\theta))$ is complemented in $\mathcal{L}(U_p(\theta), U_q(\theta))$.

Proof. (i) We actually show that if θ is ill founded, then $U_p(\theta)$ is isomorphic to \mathcal{U} . Since both spaces $U_p(\theta)$ and $U_q(\theta)$ are isomorphic, we get that $\mathcal{K}(U_p(\theta), U_q(\theta)) \neq \mathcal{L}(U_p(\theta), U_q(\theta))$. Since \mathcal{U} has an unconditional basis, the thesis follows by [19, Theorem 6].

Suppose θ is ill founded, and let $b \in [\theta]$ a branch of θ . Let

$$U_p(b) = U_p(\{s \in \theta : s \subseteq b\})$$

We show that actually, $U_p(b)$ is isomorphic to \mathcal{U} .

Indeed, it is enough to show that the elements $\{\chi_{b|j} : j \in \omega\}$ are equivalent to the basis of \mathcal{U} .

Note that, if $\lambda \in \ell_{\infty}$ then

$$\begin{split} \|\sum_{j=0}^n \lambda_j \chi_{b|j}\|_p &= \sup\left\{\|\sum_{s\in I} (\sum_{j=0}^n \lambda_j \chi_{b|j})(s) \ u_{|s|}\| : I \text{ interval}, \ I \subseteq \{s: s \subsetneqq b\}\right\}\\ &= \sup\{\|\sum_{j=l}^m \lambda_j u_j\| : 0 \le l \le m \le n\}. \end{split}$$

Thus

$$\|\sum_{j=0}^n \lambda_j u_j\|_{\mathcal{U}} \le \|\sum_{j=0}^n \lambda_j \chi_{b|j}\|_p \le 2c_{\underline{u}} \|\sum_{j=0}^n \lambda_j u_j\|_{\mathcal{U}},$$

where $c_{\underline{u}}$ is the unconditional basis constant of the basis of \mathcal{U} .

Thus $U_p(b)$ is isomorphic to \mathcal{U} .

Let $y = \sum_{i \in \omega} y(s_i) \chi_{s_i}$ be an element of $U_p(\theta)$. We have $\|\sum_{\substack{i \in \omega \\ s_i \in b}} y(s_i) \chi_{s_i}\|_p = \sup \left\{ \|\sum_{s \in I} y(s) \ u_{|s|}\| : I \text{ interval}, \ I \subseteq \{s : s \subsetneqq b\} \right\}$ $\leq \|y\|_p$

That means $U_p(b) \cong \mathcal{U}$ is complemented in $U_p(\theta)$. By properties of \mathcal{U} , we get that $U_p(\theta) \cong \mathcal{U}$.

(*ii*) Suppose that θ is well founded. Since $U_p(\theta)$ has an unconditional basis, by [19, Theorem 6], it is equivalent to show that

$$\mathcal{K}(U_p(\theta), U_q(\theta)) = \mathcal{L}(U_p(\theta), U_q(\theta))$$

For $s \in T$ and $i \in \omega$, we define

$$s \frown \theta = \{s \frown t : t \in \theta\}, \qquad \theta_i = \{t \in T : (i) \frown t \in \theta\}.$$

Since $U_p(\theta) = U_p(\emptyset \cap \theta)$, to prove the theorem, it is enough to show the following

Claim If θ is well founded, then for any $s \in T$,

$$\mathcal{K}(U_p(s \frown \theta), U_q(s \frown \theta)) = \mathcal{L}(U_p(s \frown \theta), U_q(s \frown \theta)).$$

Since θ is well founded and since the map $ht : \mathcal{WF} \longrightarrow \omega_1$ is a Π_1^1 -rank on \mathcal{WF} (see [15]), we will show the Claim using transfinite induction on $ht(\theta)$.

We assume that for every tree $\tau \in \mathcal{T}$ such that $ht(\tau) < \alpha < \omega_1$,

$$\mathcal{K}(U_p(s \frown \tau), U_q(s \frown \tau)) = \mathcal{L}(U_p(s \frown \tau), U_q(s \frown \tau)).$$

for any $s \in T$.

Let θ such that $ht(\theta) = \alpha$, and for $s \in T$ let

$$N_s = \{ i \in \omega : s \frown (i) \in \theta \}.$$

We let $A_i = s \frown (i) \frown \theta_i$ for $i \in N_s$, so that

$$\bigcup_{i \in N_s} A_i = s \frown (\theta \setminus \{s\})$$

and every branch of T meets at most one of the A_i 's. If $i \in N_s$ then $ht(A_i) < \alpha$, thus

$$\mathcal{K}(U_p(A_i), U_q(A_i)) = \mathcal{L}(U_p(A_i), U_q(A_i)).$$

By Lemma 3.2, we have

$$U_r(s \frown (\theta \setminus \{s\})) = U_r(\bigcup_{i \in N_s} A_i) = (\bigoplus_{i \in N_s} U_r(A_i))_{\ell_r}$$

for r = p, q respectively.

Since $\{\chi_{s_j} : j \in \omega, s_j \in s \frown \theta\}$ is a basis of $U_r(s \frown \theta)$ with the first element χ_s and the other element generate $U_r(s \frown (\theta \setminus \{s\}))$. Then, we have that $U_r(s \frown \theta) \cong \mathbb{R} \times U_r(s \frown (\theta \setminus \{s\}))$. Thus the theorem will be complete once we prove the next two Lemma's. \Box

Lemma 3.4. Let $1 . For every <math>\theta \in WF$, $U_p(\theta)$ is reflexive and it has property (m_p) .

Proof. Since θ is well-founded one can use transfinite induction on $ht(\theta)$. It is clear when $ht(\theta) = 1$. Suppose the lemma holds for all trees with highs less than $ht(\theta)$. As before, we can write

$$U_p(\theta) = (\bigoplus_{n \in \omega} U_p(A_n))_{\ell_p},$$

with $ht(A_n) < ht(\theta)$. By induction, since $U_p(A_n)$ has (m_p) , whenever we fix x and a weakly null sequence $(w_n)_n$ in $U_p(\theta)$ we get

$$\begin{split} \limsup_{n \to \infty} \|x + w_n\|_{U_p(\theta)}^p &= \limsup_{n \to \infty} \sum_{i \in \omega} \|x^i + w_n^i\|_{U_p(A_i)}^p \\ &= \sum_{i \in \omega} \limsup_{n \to \infty} \|x^i + w_n^i\|_{U_p(A_i)}^p \\ &= \sum_{i \in \omega} \|x^i\|_{U_p(A_i)}^p + \limsup_{n \to \infty} \sum_{i \in \omega} \|w_n^i\|_{U_p(A_i)}^p \\ &= \|x\|_{U_p(\theta)}^p + \limsup_{n \to \infty} \|w_n\|_{U_p(\theta)}^p. \end{split}$$

The reflexivity of $U_p(\theta)$ follows by standard argument.

The following Lemma slightly extends a classical Pitt's compactness theorem.

Lemma 3.5. Let $1 \leq q and let <math>(X_n)_n$ and $(Y_n)_n$ two sequences of Banach spaces such that

- X_n is reflexive and it has property (m_p) , for each $n \in \mathbb{N}$,
- Y_n has property (m_q) , for each $n \in \mathbb{N}$.

Then

$$\mathcal{K}\left((\bigoplus_{n} X_{n})_{\ell_{p}}, (\bigoplus_{n} Y_{n})_{\ell_{q}}\right) = \mathcal{L}\left((\bigoplus_{n} X_{n})_{\ell_{p}}, (\bigoplus_{n} Y_{n})_{\ell_{q}}\right)$$

Proof. The proof is similar to what of [7]. We give a sketch for sake of completeness.

Let

$$T: (\bigoplus_n X_n)_{\ell_p} \longrightarrow (\bigoplus_n Y_n)_{\ell_q}$$

be a norm one operator. Since $(\bigoplus_n X_n)_{\ell_p}$ is reflexive, any bounded sequence has a weak convergent subsequence. Thus, it is enough to show that T is weak-norm continuous.

Let $(h_n) \subseteq (\bigoplus_n X_n)_{\ell_p}$ be a weakly null sequence.

By hypothesis, since $(\bigoplus_n Z_n)_{\ell_r}$ has the property (m_r) , where $Z_n = X_n$ (resp. $Z_n = Y_n$) if r = p (resp. r = q), for every $x \in (\bigoplus_n Z_n)_{\ell_r}$ and every weakly null sequence $(w_n)_n$ in $(\bigoplus_n Z_n)_{\ell_r}$,

(3.1)
$$\limsup_{n \to \infty} \|x + w_n\|^r = \|x\|^r + \limsup_{n \to \infty} \|w_n\|^r.$$

For every $\varepsilon > 0$, let x_{ε} of norm one such that

$$1 - \varepsilon \le ||T(x_{\varepsilon})|| \le 1$$

For all $n \in \omega$ and t > 0

(3.2)
$$||T(x_{\varepsilon}) + T(th_n)|| \le ||x_{\varepsilon} + th_n||.$$

Now, applying (3.1) to the left hand side of (3.2) inequality for r = qand to the right hand side for r = p we get

$$\limsup_{n \to \infty} \|T(h_n)\|^q \le \frac{1}{t^q} [(1 + t^p M^p)^{\frac{q}{p}} - (1 - \varepsilon)^q],$$

where M > 0 is an upper bound for $(||h_n||)_n$.

Taking $t = \varepsilon^{\frac{1}{p}}$, we get

$$\limsup_{n \to \infty} \|T(h_n)\|^q \le \frac{1}{\varepsilon^{\frac{q}{p}}} [1 + \frac{q}{p} M^p \varepsilon - (1 - q\varepsilon) + o(\varepsilon)].$$

Letting $\varepsilon \to 0$ we get that $(T(h_n))_n$ norm converges to zero.

Remark 3.6. Notice that the above lemma extends Pitt compactness's theorem since we have spaces with property (m_p) which are not isomorphic to ℓ_p . For example, any space with Schur property has property (m_p) , for any $1 \leq p < \infty$. Then, in the above ℓ_q -sum, we can mix different kind of spaces.

Theorem 3.7. For $1 < q < p < \infty$, the map $\varphi_{p,q} : \mathcal{T} \longrightarrow S\mathcal{B} \times S\mathcal{B}$ defined by

$$\varphi_{p,q}(\theta) = U_p(\theta) \times U_q(\theta)$$

is Borel.

Proof. It is enough to show that the map

 $\theta \longmapsto U_p(\theta)$

is Borel.

Let O be open subsets of $C(2^{\omega})$. It is enough to show that $\Omega = \{\theta \in \mathcal{T} : U_p(\theta) \cap O \neq \emptyset\}$ is Borel.

Since $\{\chi_{s_i}: i \in \omega, s_i \in \theta\}$ defines a basis of $U_p(\theta)$, we have

$$U_{p}(\theta) \cap O \neq \emptyset \Leftrightarrow \exists \lambda \in \mathbb{Q}^{<\omega} \text{ such that } \sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O \text{ and if } \lambda_{i} \neq 0 \text{ then } s_{i} \in \theta.$$

Let $\Lambda = \{\lambda \in \mathbb{Q}^{<\omega} : \sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O\}.$ Then
$$\Omega = \bigcup_{\lambda \in \Lambda} \bigcap_{i \in supp(\lambda)} \{\theta \in \mathcal{T} : s_{i} \in \theta\}$$

thus Ω is Borel since $\{\theta \in \mathcal{T} : s_i \in \theta\}$ is an open and closed subset. \Box

Theorem 3.8. The family \mathcal{A} of all couple of separable Banach spaces (X, Y) such that

 $\mathcal{K}(X,Y)$ is complemented in $\mathcal{L}(X,Y)$

is not Borel in $SB \times SB$.

Proof. Suppose \mathcal{A} is even analytic. For $1 < q < p < \infty$, let $\varphi_{p,q}$ be the map defined in Theorem 3.7. Then $\varphi_{p,q}^{-1}(\mathcal{A})$ is analytic containing \mathcal{WF} . Since \mathcal{WF} is not analytic, there is some θ_0 in $\varphi_{p,q}^{-1}(\mathcal{A})$ which is ill founded. Therefore, by Theorem 3.3, $\varphi_{p,q}(\theta_0)$ doesn't lie in \mathcal{A} . A contradiction.

We would like to finish this note with the following

Question 3.9. Let \mathcal{B} be the family of all separable Banach space X such that $\mathcal{K}(X)$ is complemented in $\mathcal{L}(X)$. Is it \mathcal{B} Borel? Is it coanalytic?

Acknowledgement. The author wishes to thank G. Emmanuele for useful discussions.

References

- F. Albiac, N.J. Kalton; Topics in Banach space theory. Graduate Texts in Mathematics, 233. Springer, New York, (2006).
- 2. S.A. Argyros, R. G. Haydon; A hereditarily indecomposable \mathcal{L}_{∞} -space that solves the scalar-plus-compact problem. *Acta Math.* **206** (2011), no. 1, 1-54.
- D. Arterburn, R.J. Whitley; Projections in the space of bounded linear operators. *Pacific J. Math.* 15 (1965), 739–746.
- B. Bossard; A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces. *Fund. Math.* 172 (2002), no. 2, 117-152.
- 5. Jean Bourgain; New classes of \mathcal{L}_p -spaces. Lecture Notes in Mathematics, **889**. Springer-Verlag, Berlin-New York, (1981).
- 6. J. Bourgain, F. Delbaen; A class of special \mathcal{L}_{∞} spaces. Acta Math. 145 (1980), no. 3-4, 155-176.
- Sylvain Delpech; A short proof of Pitt's compactness theorem. Proc. Amer. Math. Soc. 137 (2009), no. 4, 1371-1372.

- 8. J. Diestel; Geometry of Banach spacesselected topics. Lecture Notes in Mathematics, Vol. 485. Springer-Verlag, Berlin-New York, (1975).
- P. Dodos; Banach spaces and descriptive set theory: selected topics. Lecture Notes in Mathematics, 1993, Springer-Verlag, Berlin, (2010).
- 10. G. Emmanuele; A remark on the containment of c_0 in spaces of compact operators. *Math. Proc. Cambridge Philos. Soc.* **111** (1992), no. 2, 331-335.
- 11. G. Emmanuele; Answer to a question by M. Feder about $\mathcal{K}(X, Y)$. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 2, 263-266.
- D. Freeman, E. Odell, Th. Schlumprecht, The universality of ℓ₁ as a dual space. Math. Ann. 351 (2011), no. 1, 149-186.
- 13. N.J. Kalton; Spaces of Compact Operators. Math. Ann. 208 (1974), 267–278.
- 14. N.J. Kalton, D. Werner; Property (M), M-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178.
- A. S.Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, (1995).
- J. Lindenstrauss, L. Tzafriri; Classical Banach spaces. Lecture Notes in Mathematics, Vol. 338. Springer-Verlag, Berlin-New York, (1973).
- 17. A. Pelczynski; Universal bases. Studia Math. 32 (1969) 247-268.
- E. Thorp; Projections onto the subspace of compact operators. *Pacific J. Math.* 10 (1960), 693–696.
- A. E. Tong, D. R. Wilken; The uncomplemented subspace K(E,F). Studia Math. 37 (1971), 227-236.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY OF CATANIA, CATANIA, 95125, ITALY (EU)

E-mail address: dpuglisi@dmi.unict.it