ORTHOGONALLY ADDITIVE HOLOMORPHIC FUNCTIONS ON C*-ALGEBRAS

Antonio M. Peralta and Daniele Puglisi

(Communicated by P. Šemrl)

Abstract

Let A be a C^{*}-algebra. We prove that a holomorphic function of bounded type f : $A \rightarrow \mathbb{C}$ is orthogonally additive on $A_{s a}$ if, and only if, it is additive on elements having zeroproduct if, and only if, there exist a positive functional φ in A^{*}, a sequence $\left(\psi_{n}\right)$ in $L_{1}\left(A^{* *}, \varphi\right)$ and a power series holomorphic function h in $\mathscr{H}_{b}\left(A, A^{*}\right)$ such that

$$
h(a)=\sum_{k=1}^{\infty} \psi_{k} \cdot a^{k} \text { and } f(a)=\left\langle 1_{A^{* *}}, h(a)\right\rangle=\int h(a) d \varphi,
$$

for every a in A, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$ and $L_{1}\left(A^{* *}, \varphi\right)$ is a noncommutative L_{1}-space.

1. Introduction

Let A be a C ${ }^{*}$-algebra whose self-adjoint part is denoted by $A_{s a}$. Two elements a and b in A are said to be orthogonal (denoted by $a \perp b$) if $a b^{*}=b^{*} a=0$. When $a b=0=b a$ we shall say that a and b have zero-product.

Let A be a C*-algebra and let X be a complex Banach space. A mapping $f: A \rightarrow$ X is said to be orthogonally additive (respectively, orthogonally additive on $A_{s a}$) if for every a, b in A (respectively, a, b in $A_{s a}$) with $a \perp b$ we have $f(a+b)=f(a)+f(b)$. We shall say that f is additive on elements having zero-product if for every a, b in A with $a b=0=b a$ we have $f(a+b)=f(a)+f(b)$.

Let X and Y be Banach spaces. A (continuous) m-homogeneous polynomial P from X to Y is a mapping $P: X \longrightarrow Y$ for which there is a (continuous) multilinear symmetric operator $A: X \times \ldots \times X \rightarrow Y$ such that $P(x)=A(x, \ldots, x)$, for every $x \in X$. All the polynomials considered in this paper are assumed to be continuous.

Orthogonally additive n-homogeneous polynomials over $C(K)$-spaces and Banach lattices have been independently studied by Y. Benyamini, S. Lassalle and J.G. Llavona (cf. [1]) and D. Pérez and I. Villanueva (cf. [9]); a short proof was published by

[^0]D. Carando, S. Lassalle and I. Zalduendo [3]. Orthogonally additive n-homogeneous polynomials over general C*-algebras were described by C. Palazuelos, I. Villanueva and the first author of this note in [8] (see also [2, §3]). These results extend the characterization given by K. Sundaresan for L^{p}-spaces [12]. In the setting of C^{*}-algebras we have:

Theorem 1. [8, Theorem 2.8 and Corollary 3.1] Let A be a C^{*}-algebra, X a Banach space, $n \in \mathbb{N}$, and P an n-homogeneous polynomial from A to X. The following are equivalent.
(a) There exists a bounded linear operator $T: A \rightarrow X$ satisfying

$$
P(x)=T\left(x^{n}\right)
$$

for every $x \in A$, and $\|P\| \leqslant\|T\| \leqslant 2\|P\|$.
(b) P is additive on elements having zero-products.
(c) P is orthogonally additive on $A_{s a}$.

A mapping f from a Banach space X to a Banach space Y is said to be holomorphic if for each $x \in X$ there exists a sequence of polynomials $P_{k}(x): X \rightarrow Y$, and a neighbourhood V_{x} of x such that the series

$$
\sum_{k=0}^{\infty} P_{k}(x)(y-x)
$$

converges uniformly to $f(y)$ for every $y \in V_{x}$. A holomorphic function $f: X \longrightarrow Y$ is said to be of bounded type if it is bounded on all bounded subsets of X, in this case its Taylor series at zero, $f=\sum_{k=0}^{\infty} P_{k}$, has infinite radius of uniform convergence, i.e. $\lim \sup _{k \rightarrow \infty}\left\|P_{k}\right\|^{\frac{1}{k}}=0$ (compare [5, $\S 6.2$]). We refer to [5] for the basic facts and definitions used in this paper.

Homogeneous polynomials on a C^{*}-algebra A are the simplest examples of holomorphic functions on A.

In a recent paper, D. Carando, S. Lassalle and I. Zalduendo considered orthogonally additive holomorphic functions of bounded type from $C(K)$ to \mathbb{C} (cf. [4]). These authors noticed that the characterizations obtained for orthogonally additive n homogeneous polynomial can not be expected for orthogonally additive holomorphic functions of bounded type from $C(K)$ to \mathbb{C}. They actually show that there is no entire function $\Phi: \mathbb{C} \rightarrow \mathbb{C}$ such that the mapping $h: C(K) \rightarrow C(K), h(f)=\Phi \circ f$ factors all degree-2 orthogonally additive scalar polynomials over $C(K)$. In the same paper, the authors quoted above gave an alternative characterization of all orthogonally additive scalar holomorphic functions of bounded type over $C(K)$-spaces.

We recall that, given a Borel regular measure μ on a compact Hausdorff space K, a holomorphic function h in $\mathscr{H}_{b}\left(C(K), L_{1}(\mu)\right)$ is a power series function if there exists a sequence $\left(g_{k}\right)_{k} \subseteq L_{1}(\mu)$ such that

$$
h(x)=\sum_{k=0}^{\infty} g_{k} x^{k},(x \in C(K))
$$

The following theorem is due to D. Carando, S. Lassalle and I. Zalduendo.

THEOREM 2. [4, Theorem 3.3] Let K be a compact Hausdorff space. A holomorphic function of bounded type $f: C(K) \rightarrow \mathbb{C}$ is orthogonally additive if and only if there exist a Borel regular measure μ on K and a power series function $h \in \mathscr{H}_{b}\left(C(K), L_{1}(\mu)\right)$ such that

$$
f(x)=\int_{K} h(x) d \mu
$$

for every $x \in C(K)$.
The above theorem can be read as follows: A holomorphic function of bounded type $f: C(K) \longrightarrow \mathbb{C}$ is orthogonally additive if and only if there exist a Borel regular measure μ on K and a power series function $h \in \mathscr{H}_{b}\left(C(K), L_{1}(\mu)\right)$ such that

$$
f(x)=\left\langle 1_{C(K)}, h(x)\right\rangle, \quad x \in C(K)
$$

Recently, J.A. Jaramillo, A. Prieto and I. Zalduendo introduced and studied "locally" orthogonally additive holomorphic functions defined on an open subset of $C(K)$ (see [6]).

In this note we study orthogonally additive scalar holomorphic functions of bounded type on a general C*-algebra. In our main result (see Theorem 5) we prove that a scalar holomorphic function of bounded type f from a C^{*}-algebra A is orthogonally additive on $A_{s a}$ if and only if there exist a positive functional φ in A^{*}, a sequence $\left(\psi_{n}\right)$ in $L_{1}\left(A^{* *}, \varphi\right)$ and a power series holomorphic function h in $\mathscr{H}_{b}\left(A, A^{*}\right)$ such that

$$
h(a)=\sum_{k=1}^{\infty} \psi_{k} \cdot a^{k} \text { and } f(a)=\left\langle 1_{A^{* *}}, h(a)\right\rangle=\int h(a) d \varphi,
$$

for every a in A, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$ and $L_{1}\left(A^{* *}, \varphi\right)$ is one of the non-commutative L_{1}-spaces studied, for example, by H. Kosaki in [7].

2. Holomorphic mappings on general \mathbf{C}^{*}-algebras

In this section we shall study orthogonally additive complex-valued holomorphic functions of bounded type on a general C^{*}-algebra.

The following lemma was essentially obtained in [4].

Lemma 3. Let $f: A \longrightarrow X$ be a holomorphic function of bounded type from a C^{*}-algebra to a complex Banach space and let $f=\sum_{k=0}^{\infty} P_{k}$ be its Taylor series at zero. Then, f is orthogonally additive (respectively, orthogonally additive on $A_{\text {sa }}$ or additive on elements having zero-product) if, and only if, all the P_{k} 's satisfy the same property. In such a case, $P_{0}=0$.

Proof. The proof of [4, Lemma 1.1] remains valid here.

Before dealing with the main theorem of this section, we shall recall some technical results on non-commutative $L_{p}(\varphi)$ spaces which are needed later. The construction presented here is inspired by those results established by H. Kosaki and G. Pisier in [7, §3] and [10, §3], respectively.

For each element x in a C^{*}-algebra, A, the (Jordan) modulus of x is defined by

$$
|x|:=\left(\frac{x^{*} x+x x^{*}}{2}\right)^{\frac{1}{2}}
$$

We shall denoted by A_{+}the set of all positive elements in A.
Let φ be a positive functional in A^{*}. We may equip A with a scalar product defined by

$$
(x, y)_{\varphi}=\varphi\left(\frac{x^{*} y+y x^{*}}{2}\right),(x, y \in A)
$$

Let $N=N_{\varphi}:=\left\{x \in A: \varphi\left(|x|^{2}\right)=0\right\}$. Then, N is a norm-closed subspace of A. Let A^{0} denote the Banach space A / N equipped with the quotient norm. The space $\left(A / N,(., .)_{\varphi}\right)$ is a prehilbert space. The completion of $\left(A / N,(., .)_{\varphi}\right)$ is a Hilbert space which shall be denoted by $L_{2}(A, \varphi)$ or simply by $L_{2}(\varphi)$.

Let $J_{\varphi}: A^{0} \hookrightarrow L_{2}(\varphi)$ denote the natural embedding. It is clear that J_{φ} is a continuous operator which has norm dense range and $\left\|J_{\varphi}\right\| \leqslant\|\varphi\|^{\frac{1}{2}}$. Considering the injection $l=J_{\varphi}^{*} \circ J_{\varphi}: A^{0} \longrightarrow\left(A^{0}\right)^{*} \subseteq A^{*}$, the space $L_{1}(A, \varphi)=L_{1}(\varphi)$ is defined as the norm closure of $l\left(A^{0}\right)$ in A^{*}.

It should be also mentioned here that, for each $x+N \in A^{0}$

$$
\begin{equation*}
\imath(x+N)=\frac{x \cdot \varphi+\varphi \cdot x}{2} \tag{1}
\end{equation*}
$$

where $x \cdot \varphi, \varphi \cdot x$ defined as elements in A^{*} are given by

$$
x \cdot \varphi(y)=\varphi(y x) \quad \text { and } \quad \varphi \cdot x(y)=\varphi(x y)
$$

(compare [10, page 124]).
When A is a von Neumann algebra and φ is a positive element in the predual of A, for each element $a+N$ in A^{0}, we have $t(a+N)=\frac{a \cdot \varphi+\varphi \cdot a}{2} \in A_{*}$. Since A_{*} is a norm closed subspace of A^{*}, we have $L_{1}(A, \varphi) \subseteq A_{*}$.
$L_{1}(\varphi)$ is a closed subspace of A^{*}, therefore given g in $L_{1}(\varphi)$, we can compute $g\left(1_{A^{* *}}\right)=\left\langle g, 1_{A^{* *}}\right\rangle$, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$. According to the notation employed in the abelian case, we shall write

$$
\int g d \varphi=\left\langle g, 1_{A^{* *}}\right\rangle
$$

In order to be consistent with the terminology used in the commutative setting, we shall say that a mapping $h: A \rightarrow A^{*}$ is a power series function if $h(a)=\sum_{k=0}^{\infty} g_{k} \cdot a^{k}$ or
$h(a)=\sum_{k=0}^{\infty} a^{k} \cdot g_{k}$, for every $a \in A$, where $\left(g_{k}\right)$ is a sequence in A^{*}. Clearly, every power series function h is a holomorphic function of bounded type.

The following generalisation of Radon-Nikodym theorem, due to S. Sakai, will be needed later.

Theorem 4. [11, Proposition 1.24.4] Let \mathscr{M} be a von Neumann algebra, and let φ, ψ be two normal positive linear functionals on \mathscr{M} such that $\psi \leqslant \varphi$. Then, there exists a positive element t_{0} in \mathscr{M}, with $0 \leqslant t_{0} \leqslant 1$, such that

$$
\psi(x)=\frac{t_{0} \cdot \varphi+\varphi \cdot t_{0}}{2}(x)=\frac{1}{2} \varphi\left(t_{0} x+x t_{0}\right), \text { for every } x \in \mathscr{M}
$$

Now, we are ready to state the main result of this section.
THEOREM 5. Let $f: A \longrightarrow \mathbb{C}$ be a holomorphic function of bounded type defined on a C^{*}-algebra. Then the following are equivalent:
(a) f is orthogonally additive on $A_{s a}$.
(b) f is additive on elements having zero-product.
(c) There exist a positive functional φ in A^{*} and a power series holomorphic function h in $\mathscr{H}_{b}\left(A, A^{*}\right)$ such that

$$
f(a)=\left\langle 1_{A^{* *}}, h(a)\right\rangle=\int h(a) d \varphi
$$

for every a in A, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$.
Proof. The implications $(c) \Rightarrow(b) \Rightarrow(a)$ are clear. We shall prove $(a) \Rightarrow(c)$.
Let $f=\sum_{k=1}^{\infty} P_{k}$ be the Taylor series expression of f at zero. Since f is orthogonally additive on $A_{s a}$, by Lemma 3, each k-homogeneous polynomial P_{k} is orthogonally additive on $A_{s a}$. Thus, by Theorem 1 (c.f. [8]), for each natural k, there exists $\varphi_{k} \in A^{*}$ such that

$$
P_{k}(a)=\varphi_{k}\left(a^{k}\right) \quad(a \in A)
$$

with

$$
\left\|P_{k}\right\| \leqslant\left\|\varphi_{k}\right\| \leqslant 2\left\|P_{k}\right\|, \quad \forall k \in \mathbb{N}
$$

Let us write each φ_{k} in the form

$$
\varphi_{k}=\left(\varphi_{k, 1}-\varphi_{k, 3}\right)+i\left(\varphi_{k, 2}-\varphi_{k, 4}\right)
$$

where $\varphi_{k, j} \in\left(A^{*}\right)^{+}$, for $j=1, \ldots, 4, k \in \mathbb{N}$.
Since $\left\|\varphi_{k, j}\right\| \leqslant\left\|\varphi_{k}\right\|$ for all $j=1, \ldots, 4$ and $k \in \mathbb{N}$, and the series $\sum_{k=0}^{\infty}\left\|P_{k}\right\| \lambda^{k}$ has infinite radius of convergence, the expression

$$
\varphi=\sum_{k=1}^{\infty} \sum_{j=1}^{4} \varphi_{k, j}
$$

defines a positive functional in A^{*}.
Since, trivially, $\varphi_{k, j} \leqslant \varphi$, for each $j=1, \ldots, 4$ and $k \in \mathbb{N}$, by Theorem 4 (c.f. [11, Theorem 1.24.4]) applied to the von Neumann algebra $A^{* *}$, for each $j=1, \ldots, 4$ and $k \in \mathbb{N}$, there exist $0 \leqslant t_{k, j} \leqslant 1$ in $A^{* *}$ such that

$$
\varphi_{k, j}(a)=\varphi\left(\frac{t_{k, j} a+a t_{k, j}}{2}\right),\left(a \in A^{* *}\right)
$$

Let us consider the space $L_{1}\left(A^{* *}, \varphi\right)$ and the natural embedding

$$
A / N \hookrightarrow A^{* *} / \bar{N}^{w^{*}} \xrightarrow{l} L_{1}\left(A^{* *}, \varphi\right),
$$

where $N=\left\{x \in A: \varphi\left(|x|^{2}\right)=0\right\}$ and $\bar{N}^{w^{*}}=\left\{x \in A^{* *}: \varphi\left(|x|^{2}\right)=0\right\}$. When (1) is applied to φ, considered as a functional on $A^{* *}$, gives

$$
t\left(a+\bar{N}^{w^{*}}\right)=\frac{a \cdot \varphi+\varphi \cdot a}{2}\left(a \in A^{* *}\right)
$$

For each $(j, k) \in\{1, \ldots, 4\} \times \mathbb{N}, l\left(t_{k, j}+\bar{N}^{\omega^{*}}\right)$ is positive in A^{*}, and we have

$$
\begin{aligned}
\left\|l\left(t_{k, j}+\bar{N}^{w^{*}}\right)\right\|_{L_{1}(\varphi)} & =\left\langle\iota\left(t_{k, j}+\bar{N}^{w^{*}}\right), 1_{A^{* *}}\right\rangle=\imath\left(t_{k, j}+\bar{N}^{w^{*}}\right)\left(1_{A^{* *}}\right) \\
& =\varphi\left(t_{k, j}\right)=\left\|\varphi_{k, j}\right\|_{A^{*}} .
\end{aligned}
$$

Let us define $h: A \longrightarrow L_{1}\left(A^{* *}, \varphi\right) \cdot A \subseteq A^{*}$ by

$$
h(a)=\sum_{k=1}^{\infty} l\left(t_{k}+\bar{N}^{w^{*}}\right) \cdot a^{k}
$$

where, for each natural $k, t_{k}=\left(t_{k, 1}-t_{k, 3}\right)+i\left(t_{k, 2}-t_{k, 4}\right)$ and for each element $x \in$ A and a functional $\psi \in A^{*}, \psi \cdot x$ denotes the element in A^{*} defined as $\psi \cdot x(y)=$ $\psi(x y)$. It should be noticed here that $L_{1}\left(A^{* *}, \varphi\right) \cdot A$ need not be, in general, a subset of $L_{1}\left(A^{* *}, \varphi\right)$; we can only guarantee that $L_{1}\left(A^{* *}, \varphi\right) \cdot A \subseteq A^{*}$.

In order to see that h is well defined, let us estimate

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left\|l\left(t_{k}+\bar{N}^{w^{*}}\right) \cdot a^{k}\right\|_{A^{*}} & \leqslant \sum_{k=1}^{\infty} \sum_{j=1}^{4}\left\|l\left(t_{k, j}+\bar{N}^{w^{*}}\right)\right\|_{L_{1}(\varphi)}\|a\|_{A}^{k} \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{4}\left\|\varphi_{k, j}\right\|_{A^{*}}\|a\|^{k} \\
& \leqslant 4 \sum_{k=1}^{\infty}\left\|\varphi_{k}\right\|_{A^{*}}\|a\|^{k} \leqslant 8 \sum_{k=1}^{\infty}\left\|P_{k}\right\|\|a\|^{k}<\infty
\end{aligned}
$$

for every a in A, where in the last inequality we applied that $\lim _{k \rightarrow \infty}\left\|P_{k}\right\|^{\frac{1}{k}}=0$.

This tell us that h is a well defined power series holomorphic function of bounded type. It follows from the construction that

$$
\begin{aligned}
f(a) & =\sum_{k=1}^{\infty} P_{k}(a)=\sum_{k=1}^{\infty} \varphi_{k}\left(a^{k}\right)=\sum_{k=1}^{\infty}\left[\left(\varphi_{k, 1}-\varphi_{k, 3}\right)+i\left(\varphi_{k, 2}-\varphi_{k, 4}\right)\right]\left(a^{k}\right) \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{4} i^{(j-1)} \varphi\left(\frac{t_{k, j} a^{k}+a^{k} t_{k, j}}{2}\right)=\sum_{k=1}^{\infty} \sum_{j=1}^{4} i^{(j-1)} \frac{t_{k, j} \cdot \varphi+\varphi \cdot t_{k, j}}{2}\left(a^{k}\right) \\
& =\sum_{k=1}^{\infty} \sum_{j=1}^{4} i^{(j-1)} l\left(t_{k, j}+\bar{N}^{w^{*}}\right)\left(a^{k}\right)=\sum_{k=1}^{\infty} l\left(t_{k}+\bar{N}^{w^{*}}\right)\left(a^{k}\right) \\
& =\left\langle 1_{A^{* *}}, \sum_{k=1}^{\infty} l\left(t_{k}+\bar{N}^{w^{*}}\right) \cdot a^{k}\right\rangle=\left\langle 1_{A^{* *}}, h(a)\right\rangle=\int h(a) d \varphi
\end{aligned}
$$

Let A be a C^{*}-algebra. We have proved that every scalar holomorphic function of bounded type on A which is orthogonally additive on $A_{s a}$ factors through the normclosure of $L_{1}\left(A^{* *}, \varphi\right) \cdot A$ in A^{*}, where φ is a suitable positive functional in A^{*}. Under some additional hypothesis, we shall prove that we can get a factorization through a non-commutative L_{1} space.

Let \mathscr{M} be a semi-finite von Neumann algebra with a faithful semi-finite normal trace τ (cf. [13, Theorem 2.15]). Let

$$
\mathfrak{m}_{\tau}=\left\{x y: \tau\left(|x|^{2}\right), \tau\left(|y|^{2}\right)<\infty\right\}
$$

then \mathfrak{m}_{τ} is a two-sided ideal of \mathscr{M}, called the definition ideal of the trace τ. The assignment $x \mapsto\|x\|_{1}:=\tau(|x|)$ defines a norm on \mathfrak{m}_{τ}. Actually, the space $\left(\mathfrak{m}_{\tau},\|x\|_{1}\right)$ can be identified with a subspace of \mathscr{M}_{*} via the following norm-one bilinear form

$$
\begin{gather*}
\mathscr{M} \times \mathfrak{m}_{\tau} \rightarrow \mathbb{C} \tag{2}\\
(a, x) \mapsto \tau(a x)
\end{gather*}
$$

For each $x \in \mathfrak{m}_{\tau}$, the symbol ω_{x} will denote the functional defined by $\omega_{x}(y):=\tau(x y)$. $L_{1}(\mathscr{M}, \tau)$ is defined as the completion of $\left(\mathfrak{m}_{\tau},\|\cdot\|_{1}\right)$. It is also known that, for each $x \in \mathfrak{m}_{\tau},\|x\|_{1}=\sup \{|\tau(y x)|: y \in \mathscr{M},\|y\| \leqslant 1\}$. The bilinear form defined in (2) extends to a norm-one bilinear form on $\mathscr{M} \times L_{1}(\mathscr{M}, \tau)$, and $L_{1}(\mathscr{M}, \tau)$ is isometrically isomorphic to the predual \mathscr{M}_{*} (cf. [13, Pages 319-321]). In the literature, the von Neumann algebra \mathscr{M} is usually denoted by $L_{\infty}(\mathscr{M}, \tau)$.

This notation is coherent with the one used before. When τ is a normal faithful finite trace on \mathscr{M} then there exists a central (i.e. $\varphi(x y)=\varphi(y x)$ for every $x, y \in M$), positive and faithful functional φ in \mathscr{M}_{*} such that $\tau=\left.\varphi\right|_{M^{+}}$. In this case, the spaces $L_{1}(\mathscr{M}, \tau)$ and $L_{1}(\mathscr{M}, \varphi)$ coincide.

THEOREM 6. Let A be a C^{*}-algebra such that $A^{* *}$ is a semi-finite von Neumann algebra and let $f: A \longrightarrow \mathbb{C}$ be a holomorphic function of bounded type. Suppose that τ is a faithful semi-finite normal trace on $A^{* *}$. Then f is orthogonally additive on $A_{\text {sa }}$
if, and only if, there exists a power series holomorphic function $h: A \rightarrow L_{1}\left(A^{* *}, \tau\right)$ such that

$$
f(a)=\left\langle h(a), 1_{A^{* *}}\right\rangle=\int h(a) d \tau
$$

for every a in A, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$.

Proof. Let $f=\sum_{k=1}^{\infty} P_{k}$ be the Taylor series of f at zero. Since f is orthogonally additive on $A_{s a}$, by Lemma 3, each k-homogeneous polynomial P_{k} is orthogonally additive on $A_{s a}$. Thus, by Theorem 1 (c.f. [8]), for each natural k, there exists $\varphi_{k} \in A^{*}$ such that

$$
P_{k}(a)=\varphi_{k}\left(a^{k}\right) \quad(a \in A)
$$

with

$$
\left\|P_{k}\right\| \leqslant\left\|\varphi_{k}\right\| \leqslant 2\left\|P_{k}\right\|, \quad \forall k \in \mathbb{N}
$$

We have already mentioned that $\left(A^{* *}\right)_{*}=A^{*}=L_{1}\left(A^{* *}, \tau\right)$. Since for each $k \in \mathbb{N}$, $\varphi_{k} \in A^{*}$, by construction, $\varphi_{k}=g_{k} \in L_{1}\left(A^{* *}, \tau\right)$, with $\left\|g_{k}\right\|_{1}=\left\|\varphi_{k}\right\|_{A^{*}}$.

Given $a \in A$ and $g \in L_{1}\left(A^{* *}, \tau\right)$, there exists a sequence $\left(y_{n}\right)_{n}$ in \mathfrak{m}_{τ} such that $\left\|\omega_{y_{n}}-g\right\|_{1} \rightarrow 0$, then the sequence $\left(\omega_{y_{n} a}\right)_{n}$ is Cauchy in $L_{1}\left(A^{* *}, \tau\right)$. The limit of $\left(\omega_{y_{n} a}\right)_{n}$ is denoted by $g \cdot a$. Further, it is not hard to see that $g \cdot a(x)=g(a x)$, for all $x \in A$. In particular $\|g \cdot a\|_{1} \leqslant\|g\|_{1}\|a\|_{A}$.

Let us define

$$
h: A \longrightarrow L_{1}\left(A^{* *}, \tau\right)
$$

the mapping given by

$$
h(a)=\sum_{k=1}^{\infty} g_{k} \cdot a^{k}
$$

Since

$$
\left\|\sum_{k=1}^{\infty} g_{k} \cdot a^{k}\right\|_{1} \leqslant \sum_{k=1}^{\infty}\left\|g_{k}\right\|_{1}\|a\|^{k}=\sum_{k=1}^{\infty}\left\|\varphi_{k}\right\|_{A^{*}}\|a\|^{k}<\infty
$$

we deduce that h is well defined and $f(a)=\left\langle h(a), 1_{A^{* *}}\right\rangle=\int h(a) d \tau$, for all $a \in A$, where $1_{A^{* *}}$ denotes the unit element in $A^{* *}$.

Acknowledgements

We would like to thank the Reviewer for his/her valuable comments which helped us to improve the manuscript.

REFERENCES

[1] Y. Benyamini, S. Lassalle, and J. G. Llavona, Homogeneous orthogonally additive polynomials on Banach lattices, Bull. London Math. Soc. 38, 3 (2006), 459-469.
[2] M. Burgos, F. J. Fernández-Polo, J. J. Garcé, and A. M. Peralta, Orthogonality preservers Revisited, Asian-European Journal of Mathematics 2, 3 (2009), 387-405.
[3] D. Carando, S. Lassalle, and I. Zalduendo, Orthogonally additive polynomials over $C(K)$ are measures - a short proof, Integr. equ. oper. theory 56 (2006), 597-602.
[4] D. Carando, S. Lassalle, and I. Zalduendo, Orthogonally Additive Holomorphic functions of Bounded Type over $C(K)$, Proc. of the Edinburgh Math. Soc. 53 (2010), 609-618.
[5] S. Dineen, Complex Analysis on infinite dimensional Spaces, Springer, 1999.
[6] J. A. Jaramillo, A. Prieto, I. Zalduendo, Orthogonally additive holomorphic functions on open subsets of $C(K)$, Rev. Mat. Complut. (2010), Pages 1-11. DOI: 10.1007/s13163-010-0055-2. Article in press.
[7] H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative L^{p}-spaces, J. Funct. Anal. 56, 1 (1984), 29-78.
[8] C. Palazuelos, A. M. Peralta, and I. Villanueva, Orthogonally Additive Polynomials on C^{*}-Algebras, Quart. J. Math. 59 (2008), 363-374.
[9] D. PÉrez, and I. Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306 (2005), 97-105.
[10] G. PISIER, Factorization of operators through $L_{p \infty}$ or $L_{p 1}$ and noncommutative generalizations, Math. Ann. 276, 1 (1986), 105-136.
[11] S. SaKAI, C ${ }^{*}$-algebras and W^{*}-algebras, Springer-Verlag, Berlin, 1971.
[12] K. Sundaresan, Geometry of spaces of homogeneous polynomials on Banach lattices, Ap plied geometry and discrete mathematics, 571-586, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Prov., RI, 1991.
[13] M. TAKESAKI, Theory of operator algebras, I, Springer-Verlag, New York-Heidelberg, 1979.

Antonio M. Peralta
Departamento de Análisis Matemático
Facultad de Ciencias
Universidad de Granada
18071 Granada, Spain
e-mail: aperalta@ugr.es
and
Department of Mathematics and Computer Sciences
University of Catania
Catania, 95125, Italy
e-mail: dpuglisi@dmi.unict.it
Daniele Puglisi
Departamento de Análisis Matemático
Facultad de Ciencias
Universidad de Granada
18071 Granada
Spain
e-mail: puglisi@math.kent.edu

[^0]: Mathematics subject classification (2010): Primary 46G20, 46L05; Secondary 46L51, 46E15, 46E50.
 Keywords and phrases: C^{*}-algebra, von Neumann algebra, orthogonally additive holomorphic functions, non-commutative L_{1}-spaces.

 The first author was partially supported by M.E.C., D.G.I. project no. MTM2008-02186, and Junta de Andalucía grants FQM0199 and FQM3737. The second author was supported by Grant GENIL-YTR program and by Grant Borsa di Studio per l'estero per l' a.a. 2010-2011, Istituto Nazionale di Alta Matematica "Francesco Severi", ROMA.

