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Abstract Elements a and b of a non-commutative Lp(M,τ) space associated to a
von Neumann algebra, M , equipped with a normal semi-finite faithful trace τ , are
called orthogonal if l(a)l(b) = r(a)r(b) = 0, where l(x) and r(x) denote the left and
right support projections of x. A linear map T from Lp(M,τ) to a normed space X is
said to be orthogonality-to-p-orthogonality preserving if ‖T (a) + T (b)‖p = ‖a‖p +
‖b‖p whenever a and b are orthogonal. In this paper, we prove that an orthogonality-
to-p-orthogonality preserving linear bijection from Lp(M,τ) to a Banach space is
automatically continuous if 1 ≤ p < ∞, and M is either an abelian von Neumann
algebra or a discrete von Neumann algebras. Furthermore, any complete p-additive
norm on such Lp(M,τ) is equivalent to the canonical norm.
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1 Introduction: orthogonality and p-orthogonality

Suppose a Banach space X is equipped with an algebraic structure (for instance, X is
a C∗-algebra). How are the metric and algebraic properties of X related? This paper
approaches this problem by examining different notions of orthogonality.

We define the “metric” orthogonalities first. Suppose 1 ≤ p < ∞. The elements
x, y of a normed space X are said to be p-orthogonal (and we write x ⊥p y)
if ‖x + y‖p = ‖x‖p + ‖y‖p , and semi-p-orthogonal (x ⊥p

S y) if ‖x + y‖p ≥
‖x‖p + ‖y‖p . It is customary to refer to 1-orthogonality as L-orthogonality,
and to use the notation ⊥L. When ‖x + y‖ = max{‖x‖,‖y‖} (resp., ‖x + y‖ ≥
max{‖x‖,‖y‖}) we say that x and y are M-orthogonal (resp., semi-M-orthogonal),
and we write x ⊥M y (resp., x ⊥SM y). Some “natural” pairs of p-orthogonal ele-
ments are presented below.

On the algebraic side, suppose first A is a C∗-algebra. The elements a, b in A

are said to be (algebraically) orthogonal (written a ⊥ b) if ab∗ = a∗b = 0. It is well
known that orthogonal elements in A are (geometrically) M-orthogonal, while the
converse is not, in general, true.

Now suppose M is a von Neumann algebra, equipped with a normal semi-finite
faithful trace τ , and acting on a Hilbert space H . Following [21] (see also [12, 25]),
we say that a closed densely defined (in general, unbounded) operator a is affiliated
with M if it commutes with M ′ (the commutant of M). The left and right support
projections of a (denoted by l(a) and r(a)) are defined as the orthogonal projections
onto the closure of the range of a, and the orthogonal complement of the kernel of a,
respectively. Equivalently, l(a) (resp., r(a)) is the smallest projection e (resp., f ) with
the property that ea = a (resp., af = a). These projections belong to M . Following
[26, Sect. 1], we say that two operators a and b, affiliated with M , are orthogonal
(a ⊥ b) if l(a)l(b) = r(a)r(b) = 0.

We denote by S the set of all linear combinations of positive elements a ∈ M , sat-
isfying τ(a) < ∞. If |x|p ∈ S (where |x| = (x∗x)1/2), define ‖x‖p = (τ (|x|p))1/p .
The space Lp(τ) (also denoted by Lp(M,τ)) is defined as the completion of S in
the norm ‖ · ‖p . By [26, Fact 1.3], the elements a, b ∈ Lp(τ) are orthogonal if and
only if ‖a + b‖p

p = ‖a − b‖p
p = ‖a‖p

p + ‖b‖p
p , that is, if and only if a is p-orthogonal

to both b and −b.
As an example, consider M = L∞(μ), where μ is a σ -finite measure. Define a

trace via τ(f ) = ∫
f dμ. Then Lp(τ) is the classical space Lp(μ).

If τ is the canonical trace on B(H), the construction described above produces
the Schatten space S p(H). To describe it more explicitly, consider a compact op-
erator a in B(H). Following the terminology of [30, Sect. 1.2], denote by s1(a) ≥
s2(a) ≥ · · · ≥ 0 the singular numbers or values of a. Then a can be written (essen-
tially uniquely) in the form

a =
∞∑

n=1

sn(a)hn ⊗ kn,

where (hn) and (kn) are orthonormal systems in H . Here and below, we use the
notation h ⊗ k to denote the rank one operator ξ �→ (ξ |k)h. Then S p(H) is the space
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of all compact operators a with
∑

i si (a)p < ∞. The norm ‖ · ‖p is defined by

‖a‖p =
(∑

i

si (a)p
)1/p

(cf. [30, Sect. 2]).

A detailed description of Schatten spaces can be found, for instance, in [14, 30].
Now suppose A is either a C∗-algebra, or a non-commutative Lp space. As in [22],

we say that a norm ‖ · ‖ on A is a (semi-)M-norm if ‖a ± b‖ = max{‖a‖,‖b‖}
(resp., ‖a ± b‖ ≥ max{‖a‖,‖b‖}) whenever a ⊥ b in A. When a ⊥ b in A implies
‖a ± b‖p = ‖a‖p + ‖b‖p , we shall say that ‖ · ‖ is a p-norm (or a p-additive
norm) on A. As noted above, the canonical norm on a C∗-algebra (resp., on a non-
commutative Lp space) is an M-norm (resp., a p-norm). Due to the connections to
the theory of L-ideals, 1-norms are sometimes referred to as L-norms.

In [22], M. Ramírez and the first two authors study the (isomorphic) uniqueness
of a complete M-norm on a C∗-algebra (we call a norm ‖ · ‖ on a vector space X

complete if the pair (X,‖ · ‖) is complete as a normed space).

Conjecture 1.1 Every complete (semi-)M-norm on a C∗-algebra A is equivalent to
its original C∗-norm.

In [22], this conjecture is proved in several cases—for instance, when A is a von
Neumann algebra, or a compact C∗-algebra. The general case still open.

This paper is devoted to a related question.

Conjecture 1.2 Every complete p-norm on a non-commutative Lp space is equiva-
lent to the original norm of that space.

This conjecture can be thought of as an automatic continuity question. In func-
tional analysis, the term “automatic continuity” refers to the situation when the con-
tinuity of a map T follows from a different (ostensibly weaker) condition on T . For
instance, in many cases, a homomorphism between Banach algebras is automatically
continuous (see e.g. [10]). On the other hand, the maps preserving some metric prop-
erties, such as the Birkhoff-James orthogonality, are automatically continuous [6].

In this paper, we investigate the continuity of linear maps T : A → X, for which
the images of “disjoint” elements of A satisfy certain metric conditions. More
specifically, suppose A is a C∗-algebra or a non-commutative Lp space, and X

is a normed space. We say that a linear map T : A → X is orthogonality-to-p-
orthogonality (O-p-O for short) preserving if T (x) ⊥p T (y) whenever x ⊥ y (equiv-
alently, ‖T (x) ± T (y)‖p = ‖T (x)‖p + ‖T (y)‖p whenever x ⊥ y).

Conjecture 1.3 Every orthogonality-to-p-orthogonality preserving linear bijection
from a non-commutative Lp space to a Banach space is continuous.

It is easy to see that Conjectures 1.2 and 1.3 are equivalent. Henceforth, denote
by ‖ · ‖p the canonical norm on Lp(τ). Suppose ‖ · ‖′ is a complete p-norm on
Lp(τ). If Conjecture 1.3 holds, then the formal identity map from (Lp(τ),‖ · ‖p) to
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(Lp(τ),‖ · ‖′) is continuous. By Banach Isomorphism Principle, its inverse is also
continuous. Thus, the norms ‖ · ‖p and ‖ · ‖′ are equivalent, and Conjecture 1.2 is
true. Conversely, suppose X is a Banach space, and T : Lp(τ) → X is a O-p-O
preserving linear bijection. Then ‖ · ‖′ = ‖T (·)‖ is a complete p-norm on Lp(τ). If
Conjecture 1.2 is true, then the norms ‖ · ‖p and ‖ · ‖′ are equivalent, hence T is
continuous.

In this paper, we prove Conjecture 1.2 for non-commutative Lp spaces arising
from commutative von Neumann algebras (Proposition 3.3), and from discrete von
Neumann algebras (Theorem 4.1).

We also consider linear maps on Banach lattices. Recall that elements x and y

in a Banach lattice E are disjoint if |x| ∧ |y| = 0. As noted above, x, y ∈ Lp(μ)

(1 ≤ p < ∞) are disjoint if and only if they are p-orthogonal. We say that a map
T from a Banach lattice E to a normed space X is called disjointness to semi-M-
orthogonality preserving (DSMO preserving for short) if T (x) ⊥SM T (y) whenever
x and y are disjoint. The class of disjointness to p-orthogonality preserving maps is
defined similarly. Theorem 3.1 shows that any DSMO preserving bijection from an
order continuous Banach lattice E to a Banach space is automatically continuous.
Theorem 3.2 describes the general form of such bijections between function spaces,
satisfying certain conditions.

The notion of orthogonality also makes sense in the predual of a general (not
necessarily tracial) von Neumann algebra N . Following [31, Page 140], define the
left support projection of φ ∈ N∗ (denoted by l(φ)) as the projection l ∈ N with the
property that φN = lN∗. Note that φN is a right invariant subspace of N∗, hence such
an l exists. One can see that l(φ) is the smallest projection e ∈ N satisfying eφ = φ.
Therefore, in the tracial case, we obtain the same left support projection. The right
support projection is defined similarly.

As before, we say that the elements φ and ψ of N∗ are orthogonal (φ ⊥ ψ ) if
l(φ)l(ψ) = r(φ)r(ψ) = 0. By [11, Theorem 5.4] (where a more general result is es-
tablished) or [24, Lemma 2.1], φ and ψ are orthogonal if and only if ‖φ + ψ‖ =
‖φ − ψ‖ = ‖φ‖ + ‖ψ‖. We can similarly define the notion of orthogonality-to-p-
orthogonality (O-p-O for short) preserving linear mapping from the predual of a von
Neumann algebra to a Banach space and the concepts of M-norm and p-additive
norm on the predual of a von Neumann algebra. In this general context we can con-
sider the following conjecture:

Conjecture 1.4 Every complete 1-norm on the predual M∗ of a von Neumann algebra
M is equivalent to the original norm of M∗. Equivalently, every orthogonality-to-1-
orthogonality preserving linear bijection from M∗ to a Banach space is continuous.

In Sect. 2 we collect a variety of technical results, to be used throughout the pa-
per. There, we show that the original norm on Lp(M,τ) is not equivalent to any
q-norm, for q �= p, unless M is finite dimensional (Proposition 2.5). Similar results
are obtained for complete q-norms on C∗-algebras (Proposition 2.4) and for complete
M-norms on the predual of a von Neumann algebra (Proposition 2.6). We investigate
the automatic continuity of DSMO and O-p-O preserving bijections on Banach lat-
tices and von Neumann algebras in Sects. 3 and 4, respectively. Section 5 is devoted
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to describing orthogonality preserving maps for special co-domains. In particular, we
characterize these type of maps on S p(H) (Theorem 5.1), and on non-commutative
Lp spaces arising from discrete von Neumann algebras (Theorems 5.10 and 5.14,
Remark 5.15). Conjecture 1.4 is proved for preduals of commutative von Neumann
algebras (Theorem 3.11, Corollary 3.13) and preduals of atomic or discrete von Neu-
mann algebras (Theorem 5.10).

O-p-O preserving linear maps, and p-norms on non-commutative Lp spaces, have
not hitherto studied. By contrast, the related topic of orthogonally preserving opera-
tors between C∗-algebras and JB∗-triples, and automatic continuity of M-norms on
C∗-algebras, have been widely investigated (see e.g. [5, 7–9, 16, 22, 32]).

2 Preliminaries

We deal now with some technical results which are needed later. For a sequence
of Banach spaces (Zi), and 1 ≤ p < ∞, consider the projections Pk on (

⊕
i Zi)�p ,

defined by Pk(z1, z2, . . .) = (0, . . . ,0, zk, zk+1, . . .). We shall say that two elements
(xi) and (yi) in (

⊕
i Zi)�p have disjoint supports if ‖xi‖ ‖yi‖ = 0 for every i. Our

next proposition is inspired by [22, Proposition 3.6]. The same proof given in the just
quoted paper remains valid here.

Proposition 2.1 Let (Zn)n∈N be a sequence of Banach spaces. Suppose 1 ≤ p < ∞,
and T is a bijective linear map from (

⊕
n Zn)�p to a Banach space X such that

‖T (x) + T (y)‖ ≥ max{‖T (x)‖,‖T (y)‖} whenever x and y have disjoint supports.
Then there exists k ∈ N such that T Pk is bounded. In particular, if for each natu-
ral n, the mapping T |Zn is continuous (for example when the spaces Zn are finite
dimensional), then T is bounded.

Proof The arguments given in the proof of [22, Proposition 3.6] remains valid here
line by line. We sketch the proof for the sake of completeness. Note first that there

exists k ∈ N such that T is bounded on Pk((
⊕�p

n Zn)00) = (
⊕�p

n≥k Zn)00, where

( �p⊕

n≥1

Zn

)

00

=
{

(zn) ∈
(

⊕

n≥1

Zn

)

�p

: {n : zn �= 0} is finite

}

.

Indeed, otherwise there exist positive integers k1 < k2 < · · · , and vectors xi ∈
(
⊕ki+1−1

n=ki
Zn)�p , so that ‖xi‖ < 2−i , and ‖T (xi)‖ > 2i (i ∈ N). Consider x =

∑
i xi ∈ (

⊕
n Zn)�p . Then, for every i, xi and x − xi have disjoint supports, hence

‖T (x)‖ ≥ ‖T (xi)‖ > 2i , which is impossible.
By scaling, we can assume that, for some k ∈ N, ‖T |

Pk((
⊕�p

n≥1 Zn)00)
‖ ≤ 1.

We shall show that ‖T Pk‖ ≤ 1, or equivalently, ‖T (x)‖ ≤ ‖x‖, for every x in
Pk((

⊕
n Zn)�p ). Let us fix x ∈ Pk((

⊕
n Zn)�p ) with ‖x‖ ≤ 1. From now on, we

denote P ⊥
i = I − Pi . The sequence (T P ⊥

m (x))m≥k is Cauchy, hence it converges
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in norm to some x0 ∈ X. Moreover, ‖x0‖ ≤ lim inf‖T P ⊥
m x‖ ≤ 1. By the surjec-

tivity of T , there exists y ∈ (
⊕

n Zn)�p so that limm T P ⊥
m (x) = T (y), for some

y ∈ (
⊕

n Zn)�p . We shall prove that y = x. For m ≥ n ≥ k, write

P ⊥
m x − y = Pn(P

⊥
m x − y) + P ⊥

n (x − y).

The two summands in the right hand side are disjointly supported, so ‖T P ⊥
m (x) −

T (y)‖ ≥ ‖T P ⊥
n (x) − T P ⊥

n (y)‖. Since limm(T P ⊥
m (x) − T (y)) = 0, the injectivity of

T implies that P ⊥
n x = P ⊥

n y for every n ≥ k, which gives x = y. �

If the spaces Zi in the previous proposition are 1-dimensional, we obtain:

Corollary 2.2 Every orthogonality to semi-M-orthogonality preserving linear bijec-
tion from �p to a Banach space is continuous.

This result is generalized below (see Theorem 3.1).
The following result is a version of [22, Proposition 3.8], the same proof given in

the just quoted result works here. The details of the proof are left for the reader.

Proposition 2.3 Let (Zi)i∈I be a family of Banach spaces. Suppose T is a bijective
linear map from (

⊕
i Zi)�p to a Banach space X such that

‖T (x) + T (y)‖p = ‖T (x)‖p + ‖T (y)‖p,

whenever x and y have disjoint supports. Then for each i, Xi = T (Zi) is closed.
Further,

∥
∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥
∥

p

=
n∑

k=1

‖xk‖p,

whenever x1 ∈ Xi1, . . . , xn ∈ Xin .

Proposition 2.4 Any C∗-algebra admitting a continuous and complete q-norm
(1 ≤ q < ∞) is finite dimensional.

Proof Suppose that ‖ · ‖ is a continuous and complete q-norm on a C∗-algebra A

with dim(A) = ∞. Denote the original C∗-norm of A by ‖·‖∞. The identity mapping
from (A,‖·‖∞) to (A,‖·‖) is a continuous linear bijection, hence, by Open Mapping
Theorem, the norms ‖·‖ and ‖·‖∞ are equivalent. Thus, there exist positive constants
m1,m2 such that

m1‖ · ‖∞ ≤ ‖ · ‖ ≤ m2‖ · ‖∞.

By [17, Exercise 4.6.13] we can find a sequence (an) of mutually orthogonal
norm-one (positive) elements in A. The series

∑∞
n=1 n−1/qan is ‖ · ‖∞-convergent

in A (compare [9, Remark 7]). For each natural n, a1,2−1/qa2, . . . , n
−1/qaN , and
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∑∞
k=N+1 k−1/qak are mutually orthogonal elements in A. It follows from the as-

sumptions that

m
q

2

∥
∥
∥
∥
∥

∞∑

n=1

n−1/qan

∥
∥
∥
∥
∥

q

∞
≥

∥
∥
∥
∥
∥

∞∑

n=1

n−1/q an

∥
∥
∥
∥
∥

q

≥
N∑

n=1

1

n
‖an‖q ≥ m

q

1

N∑

n=1

1

n

for every natural N , which is impossible. �

In a similar fashion, one can prove:

Proposition 2.5 Suppose p ∈ [1,∞), q ∈ [1,∞], M is an infinite dimensional von
Neumann algebra with a faithful normal semi-finite trace τ , and Lp(τ) admits a
continuous complete q-norm. Then p = q .

Proof Denote the original norm of Lp(τ), and the q-norm, by ‖ · ‖p and ‖ · ‖, re-
spectively. These norms must be equivalent—that is, there exists m1,m2 ∈ (0,∞) so
that m1‖ · ‖p ≤ ‖ · ‖ ≤ m2‖ · ‖p . Find a sequence of mutually orthogonal projections

ri ∈ M (i ∈ N), with finite trace. Let αi = τ(ri), and ai = α
−1/p
i ri . Then ‖ai‖p = 1.

First rule out the possibility of q < p. Pick γ ∈ (1/p,1/q), and consider a =∑∞
k=1 k−γ ak (this series converges in ‖ · ‖p . As in Proposition 2.4, we conclude that,

for every N ∈ N,

‖a‖q ≥
N∑

k=1

‖k−γ ak‖q ≥ m
q

1

N∑

k=1

k−γ q .

This, however, is impossible, as
∑∞

k=1 k−γ q = ∞.
The possibility of q > p is ruled out in a similar manner. Pick γ ∈ (1/q,1/p), and

consider the sequence bN = ∑N
k=1 k−γ ak . This sequence is Cauchy in ‖ · ‖. Indeed,

for M > N ,

‖bM − bN‖q =
M∑

k=N+1

‖k−γ ak‖q ≤ m
q

2

M∑

k=N+1

k−γ q .

The convergence of
∑

k k−γ q yields limN,M→∞ ‖bN − bM‖ = 0. As the norms ‖ · ‖
and ‖ · ‖p are equivalent, we must also have limN,M→∞ ‖bN − bM‖p = 0. However,
‖bM − bN‖p

p = ∑M
k=N+1 k−γp , and the divergence of

∑
k k−γp leads to a contradic-

tion. �

Our next result shows that the predual of an infinite dimensional von Neumann
algebra does not admit a complete q-norm, unless q = 1.

Proposition 2.6 Suppose 1 < q ≤ ∞, and there exists a continuous and complete
q-norm on the predual M∗ of a von Neumann algebra M . Then M is finite dimen-
sional.
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Proof Suppose, for the sake of contradiction, that M is an infinite dimensional von
Neumann algebra, and ‖ · ‖ is a continuous and complete q-norm on M∗. Let ‖ · ‖0
and ‖ · ‖∗

0 denote the canonical (C∗) norm on M , and the canonical norm on M∗,
respectively. Arguing as in the proof of above propositions, we deduce the existence
of two positive constants m1,m2 such that m1‖ · ‖∗

0 ≤ ‖ · ‖ ≤ m2‖ · ‖∗
0.

Since M is infinite-dimensional, we can find a sequence (pn) of mutually orthog-
onal projections in M . For each natural n, we define a positive norm-one weak∗-
continuous functional φn : Cpn → C by the assignment φn(λ pn) := λ. Observing
that Cpn is a von Neumann subalgebra of M , it follows from [28, Proposition 1.24.5]
that, for each natural n, there exists a positive norm-one weak∗-continuous functional
ϕn ∈ M∗ satisfying ϕn|Cpn

= φn. Furthermore, by [31, Lemma III.4.1], pnϕnpn = ϕn

for every n. For n �= m we have

2 = ‖ϕn‖ + ‖ϕm‖ ≥ ‖ϕn − ϕm‖ ≥ 〈ϕn − ϕm,pn − pm〉 = 2.

Therefore, by [31, Theorem III.4.2(ii)], the functionals (ϕn) are mutually orthogonal
in M∗. Since ‖ · ‖ is an q-norm, the series

∑∞
n=1

1
n

ϕn converges with respect to the
norm ‖ · ‖, and hence with respect to ‖ · ‖∗

0, which gives the desired contradiction. �

3 Disjointness preserving maps on Banach lattices

In this section we investigate automatic continuity of maps on Banach lattices. It
is known [2] that, if T : E → F is a linear bijection between two Banach lattices,
such that both T and T −1 preserve disjointness, then T and T −1 are continuous. We
consider DSMO preserving maps from a Banach lattice to a Banach space, partially
generalizing the result quoted above (note that a disjointness preserving map between
Banach lattices is DSMO preserving).

Recall that a Banach lattice E is called order continuous if, for any downward
directed net (xα)α∈A with

∧
α∈A xα = 0, we have limα ‖x‖α = 0. We refer the reader

to, for instance, [19, Sect. 1.a], [20, Sect. 2.4], or [29, Chap. II] for more informa-
tion on such lattices. Note that any reflexive Banach lattice is order continuous, as is
L1(μ). On the other hand, C(K) is not order continuous, unless K is a finite set. The
main result of this section is the following:

Theorem 3.1 Any linear DSMO preserving bijection from an order continuous Ba-
nach lattice to a Banach space is continuous.

DSMO preserving bijections between certain Köthe function spaces must be
weighted composition operators. Below, we deal with spaces of (equivalence classes
of) functions on measure spaces (Ω,Σ,μ). Throughout, we assume that Ω is Polish,
and μ is a σ -finite complete Borel measure. Recall that a measure μ on a Polish space
Ω is called complete (or standard) Borel if any Borel set is measurable, any subset
of a null set is measurable, and, for any measurable set S, there exists a Borel set S′
satisfying μ(S�S′) = 0 (here and throughout the section, � stands for the symmet-
ric difference of sets). If all these conditions are satisfied, we say that our measure
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space is appropriate. Examples of appropriate measure spaces include the Lebesgue
measure, as well as the counting measure on a countable set.

Now suppose (Ω,Σ,μ) is a complete Borel measure space, and (E,‖ · ‖) is a
Banach space of equivalence classes (modulo equality μ-a.e.) of μ-measurable func-
tions. E is called a Köthe function space if the following two conditions hold:

1. If g ∈ E, and |f | ≤ |g| μ-a.e., then f ∈ E, and ‖f ‖ ≤ ‖g‖.
2. If S ⊂ Ω satisfies μ(S) < ∞, then χ

S
∈ E.

We refer the reader to [19, Sect. 1.b] for more information on the topic.

Theorem 3.2 Suppose E1 and E2 are Köthe function spaces on appropriate measure
spaces (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2), respectively, such that E1 is order continu-
ous, and μ1 is finite. Then, for any disjointness preserving linear bijection T : E1 →
E2, there exists a measurable map φ : Ω1 → Ω2, such that T (f )(t) = F(t)f (φ(t))

μ-almost everywhere (here, F = T (1), where 1 = χΩ1
).

We can describe all complete p-norms on Lp(μ), in a manner similar to Kaku-
tani’s description of p-additive Banach lattices.

Proposition 3.3 For any complete p-norm ‖·‖ on Lp(Ω,μ) (where 1 ≤ p < ∞, and
μ is σ -finite), there exists a function φ ∈ L∞(Ω,μ), such that φ−1 ∈ L∞(Ω,μ), and
‖f ‖ = ‖φf ‖Lp(Ω,μ) for every f ∈ Lp(Ω,μ). Conversely, any function φ such that
both it and its inverse are essentially bounded gives rise to a complete p-norm on
Lp(Ω,μ).

Proof Clearly, any function φ with the above properties produces a p-norm. To prove
the converse, suppose ‖ · ‖ is another complete p-norm on Lp(μ). Denote the space
Lp(μ), equipped with this norm, by X. The formal identity T from Lp(Ω,μ) to X

is bounded, by Theorem 3.1 (it is well known that Lp(μ) is order continuous). By
Open Mapping Principle, T −1 is bounded. Thus, there exists C ≥ 1 such that

C−1‖f ‖Lp(Ω,μ) ≤ ‖T (f )‖ ≤ C‖f ‖Lp(Ω,μ),

for every f ∈ Lp(μ).
For any measurable A ⊆ Ω , define ν(A) = ‖T (χ

A
)‖p . The preservation of p-

orthogonality ensures that ν is finitely additive. Furthermore, C−pμ(A) ≤ ν(A) ≤
Cpμ(A), hence ν is countably additive. Finally, ν is absolutely continuous with re-
spect to μ. By Radon-Nikodym Theorem, there exists a measurable function ψ , such
that C−p ≤ ψ ≤ Cp almost everywhere, and ν(A) = ∫

A
ψ dμ. By the density of sim-

ple functions in Lp(Ω,μ),

‖T (f )‖p =
∫

ψ |f |p dμ = ‖φf ‖p

Lp(Ω,μ),

where φ = ψ1/p . �

Theorem 3.2 can be viewed as a particular case of [1]. There it is shown that
large classes of disjointness preserving mappings between Banach lattices can be
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represented as weighted composition operators, provided the lattices involved are
represented as spaces of continuous extended real valued functions on extremally
disconnected compact Hausdorff spaces. For Köthe function spaces, an appropriate
representation can be obtained, if one follows [33, Chap. II]. Below we present a
self-contained proof, for the benefit of the reader.

Proof of Theorem 3.2 By Theorem 3.1, we can assume that T is continuous. Note
first that simple functions are dense in E1. Indeed, it suffices to show that simple
functions are dense in the positive cone. For f ≥ 0, there exists a sequence of non-
negative simple functions (fn) so that fn ↗ f everywhere. By the order continuity,
limn ‖fn − f ‖ = 0.

Thus, it suffices to prove the existence of φ so that

T (χ
S
)(t) = F(t)χ

φ−1(S)
(t)

almost everywhere, whenever S ∈ B(Ω1) (the family of all Borel subsets of Ω1).
To this end, find a Borel set Ω ⊂ supp(F ), such that supp(F )�Ω has measure 0.
Clearly, it suffices to construct φ on Ω . On Ω2\Ω , we can define φ in an arbitrary
fashion, since F vanishes there.

For S ∈ B(Ω1), set Φ(S) := Ω ∩ supp(T (χ
S
)). Note that Φ maps B(Ω1) into

M/I , where M is the family of measurable subsets of Ω , and I is the σ -ideal of
null sets. We show that Φ is a σ -homomorphism—that is, it preserves complements
and countable unions.

For simplicity of notation, we identify a measurable set with its equivalence class
in M/I (that is, we write S instead of [S]). By definition Φ(Ω1) = Ω . As T is
disjointness preserving, Φ(S) ∩ Φ(Sc) has measure 0. Furthermore, T (χ

S
) = F ·

χ
Φ(S)

. Indeed, F = T (χ
S
+ χ

Sc ), hence

F · χ
Φ(S)

= (
T (χ

S
) + T (χ

Sc )
) · χ

Φ(S)
= T (χ

S
) · χ

Φ(S)
.

We claim that Φ(Sc) = Ω\Φ(S). Indeed, as noted above, Φ(Sc) and Φ(S) are
disjoint (up to a null set). On the other hand,

F = T (1) = T (χ
S
) + T (χ

Sc ) = Fχ
Φ(S)

+ Fχ
Φ(Sc)

,

hence Φ(S) ∪ Φ(Sc) = Ω (once again, up to a null set).
In the same fashion, one shows that Φ(S1 ∪S2) = Φ(S1)∪Φ(S2) provided S1 and

S2 are disjoint. Thus, Φ preserves finite unions. To tackle countable unions, consider
a sequence S1, S2, . . . ∈ B(Ω1). Let G = ⋃

n Sn, and G̃ = Φ(G). For m ∈ N, let
Gm = ⋃m

n=1 Sn, and G̃m = Φ(Gm). Clearly, G̃1 ⊂ G̃2 ⊂ · · · ⊂ G̃. We have to show
that set H = G̃\(⋃m G̃m) has measure 0.

Suppose, for the sake of contradiction, that μ(H) > 0. For � ∈ N set H� = {ω ∈
H : |F(ω)| > 1/�}. Then

⋃
� H� = H (recall that H ⊂ Ω , and |F | > 0 on Ω), hence

there exists � ∈ N such that μ(H�) > 0. Then

‖Fχ
H
‖ ≥ ‖Fχ

H�
‖ ≥ �−1‖χ

H�
‖ > 0.
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On the other hand, χG\Gm ↘ 0, hence, by the order continuity of E1,
limm ‖χ

G\Gm
‖ = 0. The continuity of T implies limm ‖T (χ

G\Gm
)‖ = 0. Furthermore,

Φ(G\Gm) = G̃\G̃m, hence, for any m ∈ N,

‖T (χ
G\Gm

)‖ = ‖F · χ
G̃\G̃m

‖ ≥ ∥
∥(

F · χ
G̃\G̃m

)
χ

H

∥
∥ = ‖Fχ

H
‖ > 0,

leading to a contradiction.
Therefore, Φ is σ -homomorphism. By [18, Theorem 15.9], there exists a measur-

able φ : Ω → Ω1, so that Φ(S) = φ−1(S), for any S ∈ B(Ω1). �

Remark 3.4 It is not clear to what extent the order continuity of E1 is essential. By
[13] and [16], any disjointness preserving bijection between C(K) or C0(K) spaces
is a weighted composition operator.

The proof of Theorem 3.1 is more involved. Recall that a subspace F of a Banach
lattice E is called an ideal if y ∈ F whenever x ∈ F , and |y| ≤ |x|. An ideal F is a
band if

∨
α∈A xα ∈ F whenever (xα)α∈A ⊂ F , and

∨
α∈A xα exists in E.

Suppose E is a Banach lattice. We say that a family of non-trivial mutually disjoint
(with respect to the lattice order of E) ideals (Eα)α∈A forms a convenient decompo-
sition of E if any x ∈ E can has a unique representation as x = ∑

xα , with xα ∈ Eα ,
{α : xα �= 0} is at most countable, and the series for x converges unconditionally, with
‖∑

α∈A′ xα‖ ≤ ‖x‖ for any set A′ ⊂ A.

Lemma 3.5 Suppose (Eα)α∈A is a convenient decomposition of a Banach lattice E,
X is a Banach space, and T : E → X is a DSMO preserving linear bijection. Then,
for any α, T (Eα) is closed.

Proof Suppose (en) is sequence in Eα , such that (T (en)) converges to x ∈ X. By
the surjectivity of T , there exists e ∈ E for which T (e) = x = limk T (ek). Denote by
Pα the canonical projection on Eα . More precisely, any f ∈ E has a unique repre-
sentation f = ∑

β∈A fβ , with fβ ∈ Eβ . We define Pα(f ) = fα . Let P ⊥
α = I − Pα .

Clearly, Pα(f ) is disjoint from P ⊥
α (f ). We shall show that P ⊥

α (e) = 0. To this end,
note that, due to the DSMO preservation,

‖T P ⊥
α (e)‖ = ‖T P ⊥

α (e − ek)‖ ≤ ‖T (e) − T (ek)‖,
for every k. Passing to the limit in the right hand side, we obtain ‖T P ⊥

α (e)‖ = 0. To
complete the proof, we invoke the injectivity of T . �

Lemma 3.6 Suppose (Eα)α∈A is a convenient decomposition of a Banach lattice E,
X is a Banach space, and T : E → X is a DSMO preserving linear bijection. Then
there exists A′ ⊂ A, such that A\A′ is finite, T |Eα is continuous for every α in A′
and supα∈A′ ‖T |Eα‖ is finite.

Proof Suppose otherwise. Then there exists a sequence (αn) of distinct elements of
A, and en ∈ Eαn , such that ‖en‖ < 2−n, yet ‖T (en)‖ > 2n for every n. Let e = ∑

n en.
Then, for every j , ‖T (e)‖ ≥ ‖T Pαj

(e)‖ ≥ 2j , a contradiction. �
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Lemma 3.7 Suppose (Eα)α∈A is a convenient decomposition of a Banach lattice
E, X is a Banach space, and T : E → X is a DSMO preserving linear bijection.
Suppose, furthermore, that A′ is a subset of A, such that T |Eα is bounded for any
α ∈ A′. Then

sup
F⊂A′, |F |<∞

‖T |span[Eα :α∈F ]‖

is finite.

Proof Suppose otherwise. Then there exists a sequence (Fn) of finite subsets of A′,
such that ‖T |span[Eα :α∈F1]‖ > 5, and

‖T |span[Eα :α∈Fn]‖ > 10‖T |span[Eα :α∈Fn−1]‖,

for n > 1. Let G1 = F1, and Gn = Fn\(⋃j<n Fj ). Then the sets (Gn) are finite and
disjoint. By induction, we show that

‖T |span[Eα :α∈Gn]‖ > 5n (3.1)

for any n ∈ N. The base (n = 1) is clear from the definition. To deal with the induc-
tive step, suppose (3.1) holds for n = k − 1, and prove it for n = k. Pick a norm 1
f ∈ span[Eα : α ∈ Fk], so that ‖T (f )‖ > 10‖T |span[Eα :α∈Fk−1]‖ > 5 · 10k−1. Write f

can be represented, in a unique way, as f = ∑k
j=1 gj , with gj ∈ span[Eα : α ∈ Gj ].

Then ‖gj‖ ≤ 1 for every j . Moreover, Gj ⊂ Fj , hence, for j < k,

‖T (gj )‖ ≤ ‖T |span[Eα :α∈Fj ]‖ ≤ 5−(k−j−1)‖T |span[Eα :α∈Fk−1]‖ <
5−(k−j−1)

10
‖T (f )‖.

Then

‖T (gk)‖ ≥ ‖Tf ‖ −
k−1∑

j=1

‖T (gj )‖ >

(

1 − 1

10

k−1∑

j=1

5−(k−j−1)

)

‖Tf ‖

>
1

2
· 5 · 10k−1 ≥ 5k,

yielding (3.1) holds for n = k.
Thus, we can construct a sequence (en) such that, for any n, en ∈ span[Eα : α ∈

Gn], ‖en‖ < 2−n, and ‖T en‖ > 2n.
To complete the proof, suppose F is a subset of A, not necessarily finite. Any

f ∈ E has a unique representation f = ∑
β∈A fβ , with fβ ∈ Eβ . We define PF (f ) =∑

β∈F fβ (the right hand side makes sense, due to the unconditional convergence

of the series
∑

β fβ ). Set P ⊥
F = I − PF = PA\F . Clearly, PF (f ) and P ⊥

F (f ) have
disjoint supports.

In our case, taking e = ∑∞
n=1 en, we have ‖T (e)‖ ≥ ‖T PGj

(e)‖ ≥ 2j , for every j ,
yielding a contradiction. �
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Lemma 3.8 In the notation of Lemma 3.7, T is bounded on

span[Eα : α ∈ A′].

Proof Clearly, E0 = span[Eα : α ∈ A′] is an ideal in E. Together with (Eα)α∈A\A′ ,
it forms a convenient decomposition of E. Thus, T (E0) is closed.

Denote by F the set of all finite subsets of A′. For any F ⊂ A′, we denote by EF

the closed linear span of the ideals Eα , for α ∈ F . Applying Lemma 3.7, and scaling
T if necessary, we can assume that ‖T |EF

‖ < 1 for any F ∈ F . We shall show that
‖T e‖ ≤ ‖e‖ for any e ∈ E0. To this end, we view F as a net (ordered by inclusion).
Then (PF (e))F∈F is a Cauchy net, hence so is (T PF (e))F∈F . As T (E0) is closed,
there exists f ∈ E0 such that limF ‖T (f ) − T PF (e)‖ = 0. More explicitly, for any
ε > 0 there exists a set G ∈ F so that ‖T (f ) − T PF (e)‖ < ε, whenever G ⊂ F .

It suffices to show that f = e. Once this is accomplished, we are done, since
‖T (f )‖ = limF ‖T PF (e)‖ ≤ supF ‖PF (e)‖ ≤ ‖e‖. Furthermore, to show f = e, it
suffices to prove that PF (f ) = PF (e) for any F ∈ F . To this end, fix ε > 0, and pick
a set G ∈ F , such that F ⊂ G, and ‖T (f − PG(e))‖ < ε. Since PF (f − PG(e)) =
PF (f ) − PF (e) and P ⊥

F (f − PG(e)) are disjointly supported, we have ‖T (PF (f ) −
PF (e))‖ ≤ ‖T (f − PG(e))‖ < ε. As ε is arbitrary, we conclude that ‖T (PF (f ) −
PF (e))‖ = 0, and complete the proof using the injectivity of T . �

Next we prove Theorem 3.1 in a particular setting.

Lemma 3.9 Suppose E is an order continuous Köthe function space on (Ω,Σ,μ),
where μ is a σ -finite measure. Then any DSMO preserving linear bijection T from E

to a Banach space X is continuous.

Proof For any S ∈ Σ , denote by ES the set of all f ∈ E, vanishing outside of S.
The “canonical” projection, PS , of E onto ES is defined by setting PS(f ) := f χ

S
.

Note that, if the sets Sα ∈ Σ (α ∈ A) are disjoint, then at most countably many of
them have positive measure. Furthermore, if Ω = ⋃

α∈A Sα , then the ideals (in fact,
bands) ESα form a convenient decomposition of E. For convenience of notation, we
denote by Σ+ the set of all S ∈ Σ with μ(S) > 0.

First show that

∀S ∈ Σ+, ∃S′ ⊆ S such that μ(S′) > 0 and T is bounded on ES′ . (3.2)

Indeed, if S has an atom, we can take S′ to be this atom (then ES′ is 1-dimensional).
Otherwise, write S as an infinite disjoint union of sets Sk ∈ Σ+. By Lemma 3.6, T is
bounded on ESk

, for all but finitely many values of k.
Next observe that, if the sets Sk ∈ Σ+ (k ∈ N) are such that T is bounded on ESk

for every k, then T is bounded on E⋃
k Sk

. Indeed, by passing from Sk to Sk\⋃
j<k Sj

if necessary, we can assume that the sets Sk are disjoint. Then apply Lemma 3.8. This
proves (3.2).

Denote by Σ ′ the set of equivalence classes of sets from S ∈ Σ+ (modulo sets of
measure 0). Denote by S the set of all equivalence classes [S] ∈ Σ ′ for which T is
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bounded on ES (clearly, this definition does not depend on the choice of a represen-
tative of an equivalence class). We shall show that [Ω] ∈ S .

Define the relation ≺ on S by writing [S1] ≺ [S2] if μ(S2\S1) ≥ 0, and
μ(S1\S2) = 0. Note that ≺ is a partial order. Furthermore, any chain in S has an
upper bound. Indeed, any such chain can have at most countably many distinct ele-
ments, due to the σ -finiteness of μ. We have observed above that [⋃k Sk] ∈ S when-
ever [Sk] ∈ S for every k (cf. Lemmas 3.6, 3.7 and 3.8). Thus, by Zorn’s Lemma, S
has at least one maximal element. But, by (3.2), [Ω] is the only possible maximal
element. �

Proof of Theorem 3.1 Suppose E is an order continuous Banach lattice. By [19,
Proposition 1.a.9], E admits a convenient decomposition into a direct sum of mutu-
ally disjoint ideals Eα , each one having its own weak order unit. By [19, Proposition
1.b.14 and p. 29], each Eα is order isometric to an order continuous Köthe function
space. Combining Lemmas 3.5 and 3.9, we conclude that T is bounded on each of
the ideals Eα . Finally, Lemma 3.8 implies that T is bounded on E. �

Remark 3.10 We do not know whether a disjointness preserving linear bijection be-
tween general Banach lattices must be continuous. It is known that any band preserv-
ing linear map is continuous [20, Theorem 3.1.12].

We shall conclude this section exploring the automatic continuity of every L-norm
on the predual of a commutative von Neumann algebra. We have already commented
that L1(μ) is an order continuous Banach lattice. Since every orthogonality-to-1-
orthogonality preserving linear mapping T from L1(μ) to a Banach space is DSMO
the following corollary derives from Theorem 3.1, or directly from Proposition 3.3.

Corollary 3.11 Let (Ω,Σ,μ) be a measure space where μ is finite and positive, and
let X be a Banach space. Then every O-1-O preserving linear bijection T : L1(μ) →
X is automatically continuous.

Theorem 3.12 Let M be a commutative von Neumann algebra and let X be a Banach
space. Then, every O-1-O preserving linear bijection T : M∗ → X is continuous.
Equivalently, every complete L-norm on the predual space of a commutative von
Neumann algebra is equivalent to the original norm.

Proof By [28, Proposition 1.18.1] we have

M =
�∞⊕

α∈I

L∞(Ωα,Σα,μα)

for a family (μα)α∈I of positive finite measures. Therefore,

M∗ =
�1⊕

α∈I

L1(Ωα,Σα,μα).
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Proposition 2.3 implies that, for each α ∈ I , T (L1(Ωα,Σα,μα)) is norm closed
and the restriction

T |L1(Ωα,Σα,μα) : L1(Ωα,Σα,μα) → T (L1(Ωα,Σα,μα))

is an orthogonality-to-1-orthogonality preserving linear bijection. Corollary 3.11 as-
sures that the mapping Tα := T |L1(Ωα,Σα,μα) is continuous.

The argument given in the proof of Proposition 2.1, shows that K := sup{‖Tα‖ :
α ∈ I } < ∞, and since for each ϕ = (ϕα)α in M∗, there exists a countable subset
I0 ⊂ I such that ϕα = 0, for every α ∈ I\I0 and ‖ϕ‖ = ∑

α∈I0
‖ϕα‖. Propositions 2.3

and 2.1 show that T |⊕�1
α∈I0

L1(Ωα,Σα,μα)
, is continuous and

‖T ((ϕα)α)‖ =
∥
∥
∥
∥
∑

α∈I0

T (ϕα)

∥
∥
∥
∥ =

∑

α∈I0

‖T (ϕα)‖ ≤ K
∑

α∈I0

‖ϕα‖ = K ‖ϕ‖,

which proves that T is continuous with ‖T ‖ ≤ K . �

Corollary 3.13 Every complete L-norm on the dual space of an abelian C∗-algebra
is equivalent to the original norm.

Proof If A is a commutative C∗-algebra, then A∗∗ is a commutative von Neumann
algebra. By Theorem 3.12, A∗ = (A∗∗)∗ has a unique (up to equivalence) complete
L-norm. �

Corollary 3.14 Let M and N be von Neumann algebras with N abelian. Then every
L-orthogonality preserving linear bijection T : N∗ → M∗ is continuous.

4 p-norms on Schatten spaces

Throughout this section, H denotes a complex Hilbert space, equipped with the inner
product (·|·). For a fixed p ∈ [1,∞), we consider the Schatten space S p(H) (defined
in Sect. 1), with its norm ‖ · ‖p . Our main result is:

Theorem 4.1 For 1 ≤ p < ∞, any O-p-O preserving linear surjection from S p(H)

to a Banach space is continuous.

Now consider a family of Hilbert spaces (Hi)i∈I . The von Neumann algebra
M = (

⊕
i∈I B(Hi))�∞ can be equipped with the faithful normal semi-finite trace

τ = ⊕
i∈I tri , where tri is the canonical trace on B(Hi). Then Lp(τ) can be iden-

tified with (
⊕

i∈I S p(Hi))�p , equipped with the norm

‖(φi)i∈I‖p =
(∑

i∈I

‖φi‖p

S p(Hi)

)1/p

.

The elements φ and ψ of Lp(τ) are orthogonal if and only if φi ⊥ ψi for every i ∈ I .
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It turns out that any atomic or discrete von Neumann algebra (that is, an algebra
where every projection has an atomic abelian subprojection) is of the form described
above. Moreover, these von Neumann algebras are the second duals of compact C∗-
algebras. Recall that a Banach algebra A is called compact (or dual) if, for any a ∈ A,
the map b �→ aba is compact. By [3], a C∗-algebra is compact if and only if it is of
the form (

⊕
i∈I K(Hi))c0 .

Corollary 4.2 Suppose τ is the canonical trace on the discrete von Neumann algebra
(
⊕

i∈I B(Hi))�∞ , X is a Banach space, and 1 ≤ p < ∞. Then any O-p-O preserving
linear bijection T : Lp(τ) → X is continuous.

Proof As explained above, we have Lp(τ) = (
⊕

i∈I S p(Hi))�p . By Proposition 2.3,
for each i ∈ I , T (S p(Hi)) is norm closed and the restriction

T |S p(Hi) : S p(Hi) → T
(

S p(Hi)
)

is an O-p-O preserving linear bijection. Theorem 4.1 implies that the mapping Ti :=
T |S p(Hi) is continuous.

It remains to show that sup{‖Ti‖ : i ∈ I } < ∞. Otherwise there exists a sequence
of distinct indices in ∈ I , and elements φn ∈ S p(Hin), so that ‖φn‖ < 2−n, and
‖T φn‖ > 2n. Define ψ = (ψj )j∈I ∈ Lp(A) by setting ψj = φn if j = in for some n,
and ψj = 0 otherwise. Note that ψ − φn is orthogonal to φn for every n, hence
‖T ψ‖ ≥ ‖T φn‖ > 2n, which is impossible. �

Theorem 4.1 will be proved following a series of auxiliary lemmas. Finite rank
operators play an important role. Note that any rank 1 operator on H has the form
ωξ,η = ξ ⊗ η, defined via ξ ⊗ η(h) = (h|η)ξ . Clearly, ‖ωξ,η‖ = ‖ωξ,η‖p = ‖ξ‖‖η‖,
where ‖ωξ,η‖ denotes the norm of ωξ,η in B(H). Moreover, ωξ1,η1 ⊥ ωξ2,η2 if, and
only if, (ξ1|ξ2) = (η1|η2) = 0. For the sake of brevity, we write ωξ = ωξ,ξ .

Our first lemma is a simple algebraic exercise.

Lemma 4.3 Suppose ξ and η are mutually orthogonal norm-one elements of H .
Then:

(1) ωξ+η ⊥ ωξ−η and ωξ,η ⊥ ωη,ξ .
(2) ωξ+η + ωξ−η = 2(ωξ + ωη), and ωξ+η − ωξ−η = 2(ωξ,η + ωη,ξ ).

Corollary 4.4 Suppose ξ and η are mutually orthogonal norm-one elements of H ,
and a linear map T : S p(H) → X is O-p-O preserving. Then

‖T (ωξ,η)‖p + ‖T (ωη,ξ )‖p = ‖T (ωξ )‖p + ‖T (ωη)‖p.

Proof By Lemma 4.3(2),

2p
(‖T (ωξ )‖p + ‖T (ωη)‖p

) = ‖2T (ωξ + ωη)‖p = ‖T (ωξ+η + ωξ−η)‖p,

and

2p
(‖T (ωξ,η)‖p + ‖T (ωη,ξ )‖p

) = ‖2T (ωξ,η + ωη,ξ )‖p = ‖T (ωξ+η − ωξ−η)‖p.
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By Lemma 4.3(1), ‖T (ωξ+η + ωξ−η)‖ = ‖T (ωξ+η − ωξ−η)‖, hence

2p
(‖T (ωξ )‖p + ‖T (ωη)‖p

) = ‖T (ωξ+η − ωξ−η)‖p = ‖2T (ωξ,η + ωη,ξ )‖p

= 2p
(‖T (ωξ,η)‖p + ‖T (ωη,ξ )‖p

)
. �

Lemma 4.5 Suppose the linear map T : S p(H) → X is O-p-O preserving. Then

sup
{‖T (ωξ )‖ : ξ ∈ H, ‖ξ‖ = 1

}
< ∞.

Proof Suppose, for the sake of contradiction, that the supremum above is infinite.
Construct recursively an orthonormal sequence (ξn), such that ‖T (ωξn)‖ > 4n. Start
by selecting ξ1 ∈ H with ‖ξ1‖ = 1, and ‖T (ωξ1)‖ > 4.

Now suppose the orthonormal vectors ξ1, . . . , ξn have already been chosen, so that
‖T (ωξk

)‖ > 4k for 1 ≤ k ≤ n. Let Hn = span[ξ1, . . . , ξn], and C = sup{‖T (ωξ )‖ :
‖ξ‖ = 1, ξ ∈ Hn}. Pick η ∈ H so that ‖η‖ = 1, and ‖T (ωη)‖ > 3(4n+1 +C). Clearly,
η /∈ Hn. Write η = αξ + βξn+1, where ‖ξ‖ = ‖ξn+1‖ = 1, ξn+1 is orthogonal to Hn,
ξ belongs to Hn, and |α|2 + |β|2 = 1. We claim that ‖T (ωξn+1)‖ > 4n+1. Indeed,

ωη = |α|2ωξ + |β|2ωξn+1 + αβωξ,ξn+1 + αβωξn+1,ξ ,

hence

‖T (ωη)‖ ≤ ‖T (ωξ )‖ + ‖T (ωξn+1)‖ + ‖T (ωξ,ξn+1)‖ + ‖T (ωξn+1,ξ )‖.

However, by Corollary 4.4, ‖T (ωξ,ξn+1)‖ and ‖T (ωξn+1,ξ )‖ do not exceed ‖T (ωξ )‖+
‖T (ωξn+1)‖. Thus, ‖T (ωη)‖ ≤ 3(C + ‖T (ωξn+1)‖), and therefore, ‖T (ωξn+1)‖ ≥
‖T (ωη)‖/3 − C > 4n+1.

Now consider φ = ∑∞
n=1 2−nωξn ∈ S p(H). Then, for any natural n, ωξn ⊥

(φ − 2−nωξn), hence

‖T (φ)‖ ≥ 2−n‖T (ωξn)‖ > 2−n · 4n = 2n,

which is impossible. �

Corollary 4.6 Suppose the linear map T : S p(H) → X is O-p-O preserving. Then
the set {‖T (ωξ,η)‖ : ξ, η ∈ H,‖ξ‖ = ‖η‖ = 1} is bounded.

Proof By Lemma 4.5, K = sup‖ξ‖=1 ‖T (ωξ )‖ is finite. We show that ‖T (ωξ,η)‖ ≤ 3K

whenever ‖ξ‖ = ‖η‖ = 1. If η ∈ span[ξ ], we are done. Otherwise, write
η = αξ + βζ , where ‖ζ‖ = 1, (ξ |ζ ) = 0, and |α|2 + |β|2 = 1. Then ωξ,η =
αωξ + βωξ,ζ . But ‖T (ωξ )‖ ≤ K . Furthermore, by Corollary 4.4,

‖T (ωξ,ζ )‖ ≤ (‖T (ωξ )‖p + ‖T (ωζ )‖p
)1/p ≤ 2K.

Therefore, ‖T (ωξ,η)‖ ≤ |α|‖T (ωξ )‖ + |β|‖T (ωξ,ζ )‖ ≤ √
5K < 3K . �
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Remark 4.7 Using similar methods, one can prove the following statement: suppose
ξ1, . . . , ξn is an orthonormal family in H , and λ1, . . . , λn a complex numbers. Then,
for any O-1-O preserving linear map T : S 1(H) → X, we have

∥
∥T (ωλ1ξ1+···+λnξn)

∥
∥ ≤ 1

2

n∑

i,j=1

|λi | |λj |
(‖T (ωξi

)‖ + ‖T (ωξj
)‖) .

We denote by F (H) the space of finite rank operators on H . When equipped with
the norm inherited from S p(H), this space is denoted by F p(H).

Corollary 4.8 Suppose T : S p(H) → X is an O-p-O preserving linear map. Then
T is bounded on F p(H).

Proof By Corollary 4.6,

K = sup
‖ξ‖≤1,‖η‖≤1

‖T (ωξ,η)‖

is finite. Any φ ∈ F p(H) admits a polar decomposition φ = ∑n
k=1 αkωξk,ηk

, where
the systems (ξk) and (ηk) are orthonormal, and (αk) ⊂ R

+ are the singular numbers
of φ (with ‖φ‖p

p = ∑
k α

p
k ). Then, since T is O-p-O preserving,

‖T (φ)‖p =
n∑

k=1

|αk|p‖T (ωξk,ηk
)‖p ≤ Kp

n∑

k=1

|αk|p = Kp‖φ‖p
p,

and hence ‖T |F p(H)‖ ≤ K . �

It is easy to see that, for any φ ∈ S p(H), there exists a projection p0 in B(H) with
separable range, such that p0φp0 = φ. Here and below, the word “projection” refers
to a self-adjoint idempotent on a Hilbert space.

Proposition 4.9 Suppose φ is an element of S p(H), and p0 is a projection with
separable range, such that p0φp0 = φ. Suppose, furthermore, that X is a Banach
space, and the linear map T : S p(H) → X is O-p-O preserving. Then there exists
x ∈ X such that

lim
i

‖x − T (liφri)‖ = 0

whenever (li) and (ri) are increasing sequences of projections, converging strongly
to p0.

The proof relies on an easy

Lemma 4.10 Suppose φ, p0, (li), and (ri) are as in the previous proposition. Then

lim‖φ − liφ‖p = lim‖φ − φri‖p = lim‖φ − liφri‖p = 0.
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Proof Finite rank operators are dense in S p(H), hence it suffices to consider the
case of φ = ωξ,η. We shall show that limi ‖φ − liφri‖p = 0 (the other equalities are
handled similarly). An easy computation shows that

φ − liφri = ωξ, (p0−ri )η + ω(p0−li )ξ, riη.

Therefore, ‖φ − liφri‖p ≤ ‖ξ‖‖(p0 − ri)η‖ + ‖(p0 − li )ξ‖‖η‖. To complete the
proof, recall that limi ‖(p0 − ri)η‖ = limi ‖(p0 − li )ξ‖ = 0. �

Proof of Proposition 4.9 Let K = ‖T |F p(H)‖ (cf. Corollary 4.8). Suppose first that
(li) and (ri) are sequences of projections as above. Let φi = liφri . Then (φi) is
a Cauchy sequence in F p(H). Indeed, for j > i, φj − φi = lj (φ − φi)rj , hence
‖φj − φi‖p ≤ ‖φ − φi‖p , and the right hand side tends to 0, by Lemma 4.10. Thus,
limi,j ‖φj − φi‖p = 0. The operator T is bounded on F p(H), hence the image of
the Cauchy sequence (φi)

∞
i=1 is again Cauchy. Since X is complete, the sequence

(T (φi))
∞
i=1 converges to some x ∈ X.

Now suppose (l′j ) and (r ′
j ) are two other sequences of projections, increasing

to p0. As above, we see that φ′
i = l′iφr ′

i form a Cauchy sequence in F p(H). For any
ε > 0, we can find N ∈ N such that ‖φ − φi‖p < ε/2 and ‖φ − φ′

i‖p < ε/2 when-
ever i > N . By the triangle inequality, ‖φj −φ′

i‖p < ε whenever i, j > N . Moreover,
φj and φ′

i have finite rank, hence ‖T (φj ) − T (φ′
i )‖ < Kε. Letting j grow without a

bound, we conclude that ‖x −T (φ′
i )‖ ≤ Kε for i > N . As ε is arbitrary, we conclude

that limi ‖x − T (φ′
i )‖ = 0. �

Proof of Theorem 4.1 Suppose T : S p(H) → X is linear bijection (X is a Banach
space). By Corollary 4.8 and scaling if necessary, we can assume ‖T |F p(H)‖ = 1.
Suppose φ is a norm-one element of S p(H). We can always find two increasing
sequences of finite rank projections (pi) and (qi), such that their strong limits satisfy
limi pi = limi qi = p0, where p0 is a projection with separable range, and p0φp0 =
φ. By Proposition 4.9, there exists x ∈ X such that x = limi T (eiφfi) whenever (ei)

and (fi) are increasing sequences of finite rank projections, such that their strong
limits satisfy limi ei = limi fi = p0, p0 is a projection with separable range, and
p0φp0 = φ. We shall show that T (φ) = x. Once this is established, observe that

‖x‖ = ‖T (φ)‖ = lim
i

‖T (eiφfi)‖ ≤ ‖T |F p(H)‖ lim
i

‖eiφfi‖p = 1,

which implies ‖T ‖ ≤ 1.
By the bijectivity of T , there exists ψ ∈ S p(H) such that T (ψ) = x. We have

to show that ψ − φ = 0. To this end, use polar decomposition to write ψ − φ =∑∞
i=1 ciωξi ,ηi

, where c1 ≥ c2 ≥ · · · ≥ 0 are the singular values of ψ −φ, while (ξi)i∈N

and (ηi)i∈N are orthonormal systems in H . Find a projection p0 with separable range
such that p0φp0 = φ, and p0ψp0 = ψ . Pick the vectors (ξ ′

i )i∈N and (η′
i )i∈N in p0(H),

such that:

1. p0(H) = span[ξ1, ξ
′
1, ξ2, ξ

′
2, . . .] = span[η1, η

′
1, η2, η

′
2, . . .].

2. For every i, either ξ ′
i = 0, or ‖ξ ′

i‖ = 1. Similarly, either η′
i = 0, or ‖η′

i‖ = 1.
3. For i �= j , (ξ ′

i |ξ ′
j ) = (η′

i |η′
j ) = 0. For any i and j , (ξ ′

i |ξj ) = (η′
i |ηj ) = 0.
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Let rm and lm be the projections onto span[ηi, η
′
i : 1 ≤ i ≤ m] and span[ξi, ξ

′
i : 1 ≤

i ≤ m], respectively. Then (lm) and (rm) form sequences of finite rank projections,
increasing toward p0. Moreover, lm(ψ − φ)rm = ∑m

i=1 ciωξi ,ηi
, and

lm(ψ − φ)rm = ls(ψ − φ)rs + (lm − ls)(ψ − φ)(rm − rs) (4.1)

for s < m (the terms in the right hand side are orthogonal).
We have to show that, for any ε > 0, there exists M ∈ N such that ‖T (lm(ψ −

φ)rm)‖ ≤ ε for any m ≥ M . Once this is accomplished, (4.1) establishes that, for
any s,

‖T (ls(ψ − φ)rs)‖ ≤ lim
m

‖T (lm(ψ − φ)rm)‖ = 0.

The injectivity of T implies ls(ψ − φ)rs = 0. As s is arbitrary, we conclude that
ψ − φ = 0.

For the sake of brevity, we use the notation q⊥ = p0 − q whenever q is a subpro-
jection of p0. Note that, for n > m, lmln = lm, and rnrm = rm, and therefore,

lnφrn − ψ = (l⊥m + lm)(lnφrn − ψ)(r⊥
m + rm)

= l⊥m(lnφrn − ψ)r⊥
m + l⊥m(lnφrn − ψ)rm

+ lm(lnφrn − ψ)r⊥
m + lm(lnφrn − ψ)rm. (4.2)

Note that lm(lnφrn −ψ)rm = lm(φ −ψ)rm, and furthermore, lm(φ −ψ)rm is orthog-
onal to l⊥m(lnφrn − ψ)r⊥

m . As T is O-p-O preserving, we have

‖T (lm(φ − ψ)rm)‖ ≤ ‖T (lm(φ − ψ)rm + l⊥m(lnφrn − ψ)r⊥
m)‖.

By (4.2),

lm(φ − ψ)rm + l⊥m(lnφrn − ψ)r⊥
m

= (lnφrn − ψ) − l⊥m(lnφrn − ψ)rm − lm(lnφrn − ψ)r⊥
m,

hence, by the triangle inequality,

‖T (lm(φ − ψ)rm)‖ ≤ ‖T (lm(φ − ψ)rm + l⊥m(lnφrn − ψ)r⊥
m)‖

≤ ‖T (lnφrn − ψ)‖ + ‖T (l⊥m(lnφrn − ψ)rm)‖
+ ‖T (lm(lnφrn − ψ)r⊥

m)‖. (4.3)

Recall that limn T (lnφrn) = T (ψ), hence there exists N0 ∈ N such that ‖T (lnφrn −
ψ)‖ < ε/3 for n > N0. Note also that

l⊥m(lnφrn − ψ)rm = lnl
⊥
mφrm − l⊥mψrm,

hence

‖l⊥m(lnφrn − ψ)rm‖p ≤ ‖l⊥mφ‖p + ‖l⊥mψ‖p.
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By Lemma 4.10, there exists N1 ∈ N such that ‖l⊥mφ‖p +‖l⊥mψ‖p < ε/3, for m > N1.
Moreover,

rank
(
l⊥m(lnφrn − ψ)rm

) ≤ rank rm < ∞,

hence

‖T (l⊥m(lnφrn − ψ)rm)‖ ≤ ‖l⊥m(lnφrn − ψ)rm‖p <
ε

3

for n > m ≥ N1. Similarly, there exists N2 ∈ N such that

‖T (lm(lnφrn − ψ)r⊥
m)‖ < ε/3,

for n > m > N2. By (4.3), we conclude that ‖T (lm(φ − ψ)rm)‖ < ε for m >

max{N0,N1,N2}. This completes the proof. �

5 Orthogonality preserving maps between non-commutative Lp spaces

This section is devoted to the structure of orthogonality (equivalently, O-p-O) pre-
serving maps between non-commutative Lp spaces. We begin by describing or-
thogonality preserving bijections between Schatten spaces. Throughout this section,
H and K stand for Hilbert spaces.

Theorem 5.1 Suppose 1 ≤ p < ∞, and T : Sp(H) → Sp(K) is an orthogonal-
ity preserving linear bijection. Then there exists a scalar γ , and unitary operators
U ∈ B(H,K), V ∈ B(K,H), Ũ ∈ B(H ∗,K) and Ṽ ∈ B(K,H ∗), such that either
T (φ) = γUφV , or T (φ) = γ Ũφt Ṽ , for every φ in S p(H) (where φt stands for the
transpose of φ). In particular, T is a scalar multiple of an isometry.

The proof relies on several auxiliary results. As in Sect. 4, ωh,k (h, k ∈ H ) stands
for the rank 1 operator, defined by ωh,k(ξ) = (ξ |k)h. First, we express the rank of an
operator a (denoted by rank(a)) in terms of mutually orthogonal summands. Here,
rank(a) is defined as dim(ran(a)), if ran(a) is finite dimensional, and rank(a) = ∞
otherwise. Thus, rank(a) takes values in the set Z+ ∪ {∞}, where Z+ = {0,1, . . .}.
For S ⊂ Z+, supS is defined (in the standard manner) to be either a non-negative
integer, or ∞.

Note that our definition doesn’t distinguish between different types of “infinite
cardinals”: rank(a) = ∞ when ran(a) is either separable infinite dimensional, or non-
separable. However, in this paper, we mostly work with operators in S p(H), which
are compact. Employing a standard singular value decomposition technique (as used
in the proof below), one can show that any compact operator a ∈ B(H) has separable
range.

Lemma 5.2 Suppose A denotes either B(H), or S p(H) (1 ≤ p < ∞). Let a be an
element in A. When a has finite rank, then rank(a) equals the supremum of all n ∈ Z+
for which a can be represented as a sum of n non-zero mutually orthogonal elements
of A. Moreover, rank(a) = ∞ if, and only if, a can be represented as a sum of n

non-zero mutually orthogonal elements of A for any n ≥ 1.
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Proof First, we show that rank(a) ≥ n if there exist mutually orthogonal non-zero op-
erators (ai)

n
i=1, satisfying a = ∑n

i=1 ai . Indeed, there exist non-zero projections (pi)

and (qi), so that pipj = qiqj = 0 if i �= j , and piaiqi = ai for any i. For 1 ≤ i ≤ n,
pick a norm 1 vector ξi ∈ qi(H), so that ηi = aiξi �= 0. It is easy to see that the
range of

∑
i ai contains the linear span of the vectors ηi . Moreover, the vectors ηi

are linearly independent. Therefore, rank(a) ≥ n. Taking the supremum, we obtain
rank(a) ≥ n.

Now suppose a ∈ A has rank n ∈ Z+. Note that n = 0 if and only if a = 0. If n ≥ 1,
then, by [30, Theorem 1.4] or [14, Sect. II.2], a admits a singular value decomposition
a = ∑n

i=1 si (a)ωξi ,ηi
, where (ξi) and (ηi) are orthonormal systems in H , and the

singular numbers si (a) are positive. It is easy to see that the operators ai = si (a)ωξi ,ηi

(1 ≤ i ≤ n) are mutually orthogonal, and therefore, a can be represented as a sum of
n mutually orthogonal non-zero elements of A. This establishes the statement of the
lemma for finite rank a.

It remains to show that, whenever a ∈ A has infinite rank, then, for any n ∈ N,
there exist mutually orthogonal, non-zero members of to A, satisfying a = ∑n

i=1 ai .
If a is compact, the singular value decomposition yields a = ∑∞

i=1 si (a)ωξi ,ηi
. Set

ai = si (a)ωξi ,ηi
(1 ≤ i ≤ n−1), and an = ∑∞

i=n si (a)ωξi ,ηi
. The operators (ai)

n
i=1 are

mutually orthogonal, non-zero, belong to A, and satisfy a = ∑n
i=1 ai .

Now suppose a is not compact (this can only happen if A = B(H)). Write a = ub,
where b = (a∗a)1/2 is positive, u is an isometry from the range of b to the range of
a (see e.g. [30, Sect. 1.1]). If σ(b) (the spectrum of b) is infinite, we can repre-
sent σ(b) as a disjoint union of non-empty Borel subsets (Si)

n
i=1. Then the operators

ai = uχ
Si

(b)b are mutually orthogonal, non-zero, and satisfy
∑n

i=1 ai = a.
If σ(b) is finite, then it contains an eigenvalue β > 0 with infinite multiplicity. Let

p = χ{β}(b) be the corresponding spectral projection. For n ≥ 2, we can write p =
p1 + · · · + pn, where the non-zero projections p1, . . . , pn are mutually orthogonal.
Let ai = βupi (1 ≤ i ≤ n − 1), and an = a − ∑n−1

i=1 ai = u(1 − βp)b + βupn. Once
again, the operators (ai)

n
i=1 have the required properties. �

Remark 5.3 For a ∈ A, denote by rankA,orth(a) the supremum of all n ∈ Z+ for
which a can be represented as a sum of n non-zero mutually orthogonal elements of A
(we set rankA,orth(a) = 0 if no such representation exists). As we do not distinguish
between different types of “infinite cardinals” when computing rank(a), we conclude
that the proof above shows that rank(a) = rankA,orth(a) for any a ∈ A.

From Lemma 5.2 we obtain:

Corollary 5.4 For 1 ≤ p < ∞, any orthogonality preserving T linear bijection from
S p(H) to S p(K) is rank-nondecreasing. That is, rank(T (φ)) ≥ rank(φ), for any
φ ∈ S p(H). In particular, the preimage of any rank 1 operator also has rank 1. �

The following result may be of independent interest. Here and below, we use the
notation S p(H1,H2) (H1 and H2 are Hilbert spaces) for the set of all compact opera-
tors φ from H1 to H2, whose sequence of singular values (si (φ))i∈N is p-summable.
Equipping it with the norm ‖φ‖p = (

∑
i si (φ)p)1/p , we turn S p(H2,H1) into a Ba-

nach space. One easily observes that S p(H,H) = S p(H). Furthermore, if H1 and H2
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are subspaces of K1 and K2, we can view S p(H1,H2) as a subspace of S p(K1,K2).
More precisely, the canonical isometric embedding I : S p(H1,H2) → S p(K1,K2)

is defined via Iφ = Jφp, where p and J denote the orthogonal projection from K1

onto H1, and the canonical injection of H2 into K2, respectively.

Proposition 5.5 Suppose 1 ≤ p < ∞, and S is an isomorphism of S p(K) onto a
subspace A of S p(H), which takes rank 1 maps to rank 1 maps. Then one of the
following statements is true:

(a) There exists ζ0 ∈ H , and a subspace H0 of H , so that A = ζ0 ⊗ H0.
(b) There exists ζ0 ∈ H , and a subspace H0 of H , so that A = H0 ⊗ ζ0.
(c) A = S p(H1,H2), where H1 and H2 are subspaces of H , isomorphic to K . There

exist invertible operators U ∈ B(H1,K) and V ∈ B(K,H2), such that S(φ) =
J2V φUp1 for every φ in S p(K).

(d) A = S p(H1,H2), where H1 and H2 are subspaces of H , isomorphic to K . There
exist invertible operators Ũ ∈ B(H1,K

∗) and Ṽ ∈ B(K∗,H2), such that S(φ) =
J2Ṽ φt Ũp1 for every φ in S p(K), where φt denotes the transpose of φ.

In (c) and (d), p1 and J2 denote the orthogonal projection from H onto H1, and the
canonical injection of H2 into H , respectively.

Clearly, (a) or (b) in the above Proposition can occur if and only if K is finite
dimensional.

The proof depends on several lemmas, and will be completed once Lemma 5.9
is established. Throughout our reasoning, the letters H , K , A, and S have the same
meaning as in Proposition 5.5. We assume (without loss of generality) that S−1 is a
contraction. We let C = ‖S‖.

First, introduce some notation. As before, we denote by ωh,k (h, k ∈ H ) the rank
1 operator, defined by ωh,k(ξ) = (ξ |k)h. As S takes rank 1 map to rank 1 maps, for
every ξ, η ∈ K\{0} there exist h, k ∈ H\{0} so that S(ωξ,η) = ωh,k . Let

Γ (ξ, η) := {
(h, k) ∈ H × H : S(ωξ,η) = ωh,k

}
. (5.1)

Note that, if both (h, k) and (h′, k′) belong to Γ (ξ, η), then ωh,k = ωh′,k′ , and
therefore, there exists λ ∈ C\{0} so that h′ = λh and k′ = λ−1k. Conversely, if
(h, k) ∈ Γ (ξ, η), then also (λh,λ−1k) ∈ Γ (ξ, η) for any λ ∈ C\{0}. Thus, Φ(ξ,η) =
span[h : (h, k) ∈ Γ (ξ, η)] and Ψ (ξ, η) = span[k : (h, k) ∈ Γ (ξ, η)] are 1-dimensional
subspaces of H .

As an illustration, consider the case of S : S p(K) → S p(H) : φ �→ UφV , with
U ∈ B(K,H) and V ∈ B(H,K). Then S(ωξ,η) = ωU(ξ),V ∗(η), hence Γ (ξ, η) =
{(λU(ξ), λ−1V ∗(η)) : λ ∈ C\{0}}, Φ(ξ,η) = span[U(ξ)], and Ψ (ξ, η) =
span[V ∗(η)].

Below, we use the symbol ∼ to indicate the collinearity of non-zero vectors: we
write ξ ∼ η if span[ξ ] = span[η], and ξ � η otherwise.

The following basic observation will be used several times.

Lemma 5.6 The following statements hold:
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(i) Suppose ξ , η1, and η2 are non-zero vectors in K , with η1 � η2. Then exactly one
of the two following statements is true:
(1) Φ(ξ,η1) = Φ(ξ,η2), and Ψ (ξ, η1) �= Ψ (ξ, η2).
(2) Φ(ξ,η1) �= Φ(ξ,η2), and Ψ (ξ, η1) = Ψ (ξ, η2).

(ii) Suppose ξ1, ξ2 and η are non-zero vectors in K , with ξ1 � ξ2. Then exactly one
of the two following statements is true:
(1) Φ(ξ1, η) = Φ(ξ2, η), and Ψ (ξ1, η) �= Ψ (ξ2, η).
(2) Φ(ξ1, η) �= Φ(ξ2, η), and Ψ (ξ1, η) = Ψ (ξ2, η).

Proof (i) Note that, for any (α1, α2) ∈ C
2\{(0,0)},

S(ωξ,α1η1+α2η2) = α1S(ωξ,η1) + α2S(ωξ,η2)

must be a rank 1 operator.
Suppose first Φ(ξ,η1) = Φ(ξ,η2) and Ψ (ξ, η1) = Ψ (ξ, η2). Then there exists

h, k1, k2 ∈ H so that (h, k1) ∈ Γ (ξ, η1), (h, k2) ∈ Γ (ξ, η2), and span[k1] = span[k2].
Find non-zero α1 and α2 so that α1k1 + α2k2 = 0, hence S(ωξ,α1η1+α2η2) = 0, which
is impossible.

If, on the other hand, Φ(ξ,η1) �= Φ(ξ,η2) and Ψ (ξ, η1) �= Ψ (ξ, η2), then u =
S(ωξ,η1+η2) has rank 2, which contradicts our hypothesis. To verify the last statement,
pick h1, h2, k1, k2 ∈ H , with the property that (hi, ki) ∈ Γ (ξ, ηi) (i = 1,2). Find
ζ ∈ H , which is orthogonal to k2, but not to k1. Note that u = ωh1,k1 + ωh2,k2 , hence
h1 belongs to the range of u. Similarly, this range contains h2.

Statement (ii) follows similarly. �

Lemma 5.7 Suppose ξ , η1, and η2 are non-zero vectors in K , with η1 � η2.

(1) If Φ(ξ,η1) = Φ(ξ,η2), and Ψ (ξ, η1) �= Ψ (ξ, η2), then, for any η ∈ K ,
Φ(ξ,η1) = Φ(ξ,η).

(2) If Φ(ξ,η1) �= Φ(ξ,η2), and Ψ (ξ, η1) = Ψ (ξ, η2), then, for any η ∈ K ,
Ψ (ξ, η1) = Ψ (ξ, η).

Proof We prove (1), since (2) is established in a similar manner. It suffices to consider
the case when η is not a scalar multiple of either η1 or η2. By Lemma 5.6(i), one of
the following holds:

(1) Φ(ξ, η1) = Φ(ξ,η), and Ψ (ξ, η1) �= Ψ (ξ, η),

(2) Φ(ξ, η1) �= Φ(ξ,η), and Ψ (ξ, η1) = Ψ (ξ, η).
(5.2)

Similarly, one of the statements below holds:

(1) Φ(ξ, η2) = Φ(ξ,η), and Ψ (ξ, η2) �= Ψ (ξ, η),

(2) Φ(ξ, η2) �= Φ(ξ,η), and Ψ (ξ, η2) = Ψ (ξ, η).
(5.3)

We show that, if (5.2)(i) and (5.3)(j ) hold at the same time, then i = j = 1. Sup-
pose first that (5.2)(1) and (5.3)(2) hold. Then Φ(ξ,η1) = Φ(ξ,η) �= Φ(ξ,η2), which
contradicts Φ(ξ,η1) = Φ(ξ,η2). The combination of (5.2)(2) and (5.3)(1) is ruled
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out similarly. Furthermore, if (5.2)(2) and (5.3)(2) hold at the same time, then
Ψ (ξ, η1) = Ψ (ξ, η) = Ψ (ξ, η2), which contradicts Ψ (ξ, η1) �= Ψ (ξ, η2). �

Now fix ξ0, η1, η2 ∈ K\{0}, such that ‖ξ0‖ = 1, and η1 � η2. Suppose, without
loss of generality, that Φ(ξ0, η1) = Φ(ξ0, η2). By Lemma 5.7, for every η ∈ K\{0},
Φ(ξ0, η1) = Φ(ξ0, η), and Ψ (ξ0, η1) �= Ψ (ξ0, η) whenever η � η1. Find a norm
1 vector ζ0 ∈ H ∈ Φ(ξ0, η1). By (5.1) and the discussion following it, for every
η ∈ K\{0} there exists a unique ψ(η) ∈ H , so that (ζ0,ψ(η)) ∈ Γ (ξ0, η) (hence
Φ(ξ0, η) = span[ζ0]). Define ψ(0) = 0. Then, for any η ∈ K , ψ(η) is the unique ele-
ment k ∈ H , satisfying ωζ0,k = S(ωξ0,η). Note that the maps η �→ S(ωξ0,η) and k �→
ωh,k (defined on K and H , respectively) are anti-linear, hence the map ψ : K → H

is linear. Furthermore, for η �= 0,

‖ψ(η)‖ = ‖ωζ0,ψ(η)‖p = ‖S(ωξ0,η)‖p ∈ [‖η‖,C‖η‖]

(recall that S−1 is a contraction, and C = ‖S‖). In particular, ψ is an isomorphism
from K to a closed subspace of H . Note also that, for η �= 0, Ψ (ξ0, η) = span[ψ(η)].

Lemma 5.8 In the above notation, suppose ξ ∈ K is not collinear to ξ0. Then exactly
one of the two following statements is true:

(1) Φ(ξ,η) = Φ(ξ0, η), and Ψ (ξ, η) �= Ψ (ξ0, η) for any η ∈ K\{0}.
(2) Φ(ξ,η) �= Φ(ξ0, η), and Ψ (ξ, η) = Ψ (ξ0, η) for any η ∈ K\{0}.

Proof First fix η0 ∈ K\{0}. Applying Lemma 5.6(ii) to ξ0, ξ and η0, we see that
exactly one of the two following statements holds.

(1) Φ(ξ, η0) = Φ(ξ0, η0) = span[ζ0], and

Ψ (ξ, η0) �= Ψ (ξ0, η0) = span[ψ(η0)],
(2) Φ(ξ, η0) �= Φ(ξ0, η0) = span[ζ0], and

Ψ (ξ, η0) = Ψ (ξ0, η0) = span[ψ(η0)].

(5.4)

Similarly, for any η ∈ K\{0}, we have one of the two:

(1) Φ(ξ, η) = Φ(ξ0, η) = span[ζ0], and

Ψ (ξ, η) �= Ψ (ξ0, η) = span[ψ(η)],
(2) Φ(ξ, η) �= Φ(ξ0, η) = span[ζ0], and

Ψ (ξ, η) = Ψ (ξ0, η) = span[ψ(η)].

(5.5)

We show that (5.4)(1) ⇔ (5.5)(1), and (5.4)(2) ⇔ (5.5)(2). Indeed, suppose (5.4)(1)
and (5.5)(2) hold. Then Φ(ξ,η0) �= Φ(ξ,η), and Ψ (ξ, η0) �= Ψ (ξ, η), which contra-
dicts Lemma 5.6. Similarly, (5.4)(2) is incompatible with (5.5)(1). �

Lemma 5.9 Suppose there exist norm-one vectors ξ0 ∈ K , ζ0 ∈ H , and a linear iso-
morphism ψ from K into H , so that, for every η ∈ K , S(ωξ0,η) = ωζ0,ψ(η). Then
exactly one of the two statements holds:
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(A) For any ξ, η ∈ K , with ξ0 � ξ , Φ(ξ,η) = span[ζ0], and Ψ (ξ, η) �= span[ψ(η)].
(B) For any ξ, η ∈ K , with ξ0 � ξ , Φ(ξ,η) �= span[ζ0], and Ψ (ξ, η) = span[ψ(η)].

Proof Pick ξ1 ∈ K , not collinear to ξ0. By the dichotomy from Lemma 5.8, one of
the following two statements holds:

(A′) For any η ∈ K , Φ(ξ1, η) = span[ζ0], and Ψ (ξ1, η) �= span[ψ(η)].
(B′) For any η ∈ K , Φ(ξ1, η) �= span[ζ0], and Ψ (ξ1, η) = span[ψ(η)].

We shall prove first that (A′) implies (A). Suppose, for the sake of contradiction,
that the statement of (A) is false for some non-zero ξ and η in K , with ξ0 � ξ . That
is, Φ(ξ,η) �= span[ζ0], or Ψ (ξ, η) = span[ψ(η)]. Under these conditions, we may
assume that ξ � ξ1 and ξ � ξ0.

Having in mind our assumptions and applying Lemma 5.6(ii) to ξ0, ξ , and η, we
obtain

Φ(ξ,η) �= span[ζ0], and Ψ (ξ, η) = span[ψ(η)].
Doing the same for ξ1, ξ , and η, we see that

Φ(ξ,η) �= Φ(ξ1, η) = span[ζ0], and Ψ (ξ, η) = Ψ (ξ1, η).

Thus, Ψ (ξ1, η) = span[ψ(η)], which contradicts (A′).
Similarly, (B ′) implies (B). If, for some ξ and η in K , (B) is false, then

Φ(ξ,η) = span[ζ0], and Ψ (ξ, η) �= span[ψ(η)].
Therefore Φ(ξ,η) �= Φ(ξ1, η), and Ψ (ξ, η) �= Ψ (ξ1, η). This is ruled out by
Lemma 5.6(i). �

Below, we denote by F(k)(H1,H2) the set of operators from H1 to H2, of rank not
exceeding k.

Proof of Proposition 5.5 Pick norm 1 vectors ξ0, η0 ∈ K . By Lemma 5.6, Lemma 5.7
and the comments following the latter, there exists a norm one ζ0 ∈ H for which one
of the following two statement holds:

(1) Φ(ξ0, η) = span[ζ0] for any η ∈ K , and Ψ (ξ0, η1) �= Ψ (ξ0, η2) whenever
η1 � η2.

(2) Ψ (ξ0, η) = span[ζ0] for any η ∈ K , and Φ(ξ0, η1) �= Φ(ξ0, η2) whenever
η1 � η2.

We consider (1), as (2) is dealt with in the same manner. We shall show that, in this
case, either (a) or (c) of Proposition 5.5 holds. Note that S(ωξ0,η) = ωζ0,ψ(η), where
ψ : K → H is a (well defined) linear map, with

‖η‖ ≤ ‖ψ(η)‖ ≤ C‖η‖.
Lemma 5.9 provides us with the following dichotomy:
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(1.1) For any ξ, η ∈ K , Φ(ξ,η) = span[ζ0].
(1.2) For any ξ, η ∈ K , Φ(ξ,η) �= span[ζ0] unless ξ ∼ ξ0, and Ψ (ξ, η) = span[ψ(η)].

If (1.1) holds, clearly S maps F(1)(K) into ζ0 ⊗ H0, where H0 = ψ(K) is a
closed subspace of H . By the density of the linear span of F(1)(K) in S p(K),
A = S(S p(K)) = ζ0 ⊗ H0, and Statement (a) of the proposition is true.

Now suppose (1.2) holds. In this case, write S(ωξ0,η) = ωζ0,ψ(η). Combining
Lemma 5.6 and Lemma 5.7 (applied to ξ � ξ0, η1, and η2 with η1 � η2), we have

Φ(ξ,η1) = Φ(ξ,η), for every η ∈ K

or

Ψ (ξ, η1) = Ψ (ξ, η), for every η ∈ K.

When the second statement holds, it follows, by (1.2), that ψ(η1) ∼ ψ(η) for every
η ∈ K . We deduce that ψ is a rank-one operator, and hence K is one dimensional,
this is covered by case (1.1). Therefore, we may assume that

Φ(ξ,η1) = Φ(ξ,η2), for every η1, η2 and ξ in K\{0}. (5.6)

We have to show that, in this situation, (c) is true.
First, we define a linear isomorphism φ : K → H2 (where H2 is a closed subspace

of H ) with the property that

span[S(ωξ,η)] = span[ωφ(ξ),ψ(η)] for any ξ, η ∈ K. (5.7)

Set φ(0) = 0. For ξ ∈ K\{0}, there exists a unique φ(ξ) ∈ H so that (φ(ξ),ψ(η0)) ∈
Γ (ξ, η0) (see (5.1) and the remarks following it). In other words, φ(ξ) is the unique
element h ∈ H with the property that S(ωξ,η0) = ωh,ψ(η0). Note that the map ξ �→
S(ωξ,η0) is linear, hence φ is also linear. Furthermore, ‖ψ(η0)‖ ∈ [1,C], and

‖φ(ξ)‖‖ψ(η0)‖ = ‖S(ωξ,η0)‖ ∈ [‖ξ‖,C‖ξ‖],
hence C−1‖ξ‖ ≤ ‖φ(ξ)‖ ≤ C‖ξ‖. In particular, H2 = φ(K) is a closed subspace of
H , and φ : K → H2 is a linear isomorphism.

Now consider arbitrary non-zero ξ, η ∈ K . By (5.6) and Condition (1.2),

Φ(ξ,η) = Φ(ξ,η0) = span[φ(ξ)], and

Ψ (ξ, η) = span[ψ(η)] for every η, ξ ∈ K.

Then, for every (h, k) ∈ Γ (ξ, η), there exist non-zero λ,μ ∈ C so that h = λφ(ξ),
and k = μψ(η). Therefore,

S(ωξ,η) = ωh,k = λμωφ(ξ),φ(η).

This establishes (5.7). Thus, for any ξ, η ∈ K\{0}, there exists a unique γ (ξ, η) ∈
C\{0} satisfying

S(ωξ,η) = γ (ξ, η)ωφ(ξ),ψ(η).
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We define γ (0, η) = γ (ξ,0) = 0. For ξ, η ∈ K\{0}, we have

|γ (ξ, η)| = ‖S(ωξ,η)‖p

‖φ(ξ)‖‖ψ(η)‖ .

As noted above, ‖φ(ξ)‖ ∈ [C−1‖ξ‖,C‖ξ‖], and ‖φ(ξ)‖ ∈ [‖η‖,C‖η‖], while
‖S(ωξ,η)‖p ∈ [‖ξ‖‖η‖,C‖ξ‖‖η‖]. Therefore,

C−2‖ξ‖‖η‖ ≤ |γ (ξ, η)|‖φ(ξ)‖‖ψ(η)‖ ≤ C2‖ξ‖‖η‖.
Thus, S maps F(1)(K) onto F(1)(H1,H2), where H1 = ψ(K) and H2 = φ(K).

Thus, A = S p(H1,H2). By [23, Theorem 3.3], there exist invertible operators
U ∈ B(H2,K), V ∈ B(K,H1), Ũ ∈ B(H2,K

∗) and Ṽ ∈ B(K∗,H1), such that ei-
ther S(φ) = J1V φUp2 for every φ in S p(K), or S(φ) = J1Ṽ φt Ũp2 for every
φ ∈ S p(H). Here, φt denotes the transpose of φ, p2 is the orthogonal projection
of H onto H2, and J1 denotes the canonical injection of H1 into H . �

Proof of Theorem 5.1 Suppose T : S p(H) → S p(K) is an orthogonality preserv-
ing linear bijection. By Theorem 4.1, T is an isomorphism. By Corollary 5.4,
T −1 : S p(K) → S p(H) takes rank 1 operators to rank 1 operators. By Proposi-
tion 5.5, there exist invertible S,R ∈ B(H,K), S̃, R̃ ∈ B(H ∗,K), such that either
T (φ) = RφS∗ for every φ ∈ S p(H), or T (φ) = R̃φt S̃∗ for every φ ∈ S p(H).

We have to show that R and S (resp., S̃, R̃) are multiples of unitaries. By the
famous theorem of U. Uhlhorn (see [6] for a recent generalization), it suffices to show
that (R(ξ)|R(η)) = (S∗(ξ)|S∗(η)) = 0 whenever (ξ |η) = 0. We consider the case of
T (φ) = RφS∗ (the other possibility is handled in a similar manner). If ξ ⊥ η, then
φ = ωξ and ψ = ωη are orthogonal in S p(H). Then T (φ) = ωR(ξ),S∗(ξ) and T (ψ) =
ωR(η),S∗(η) are also orthogonal, which leads to the desired conclusion concerning R

and S. �

We have already seen that the notion of orthogonality can be also considered in the
predual of a general (non necessarily tracial) von Neumann algebra. We shall explore
now the automatic continuity of those linear bijections between von Neumann algebra
preduals which are orthogonality preserving.

Theorem 5.10 Let A be a compact C∗-algebra, and N a von Neumann algebra.
Then every orthogonality preserving linear bijection T : A∗ → N∗ is continuous. In
this situation, N is isometric to the second dual of A (as a von Neumann algebra).

We start by showing that orthogonality preserving maps between preduals of von
Neumann algebras “respect” central projections. For the sake of brevity, we use the
notation e⊥ for 1 − e.

Lemma 5.11 Suppose T is a orthogonality preserving linear bijection from N∗ to
M∗, where N and M are von Neumann algebras. Then, for any central projection e

in N , there exists a central projection f in M , so that T maps N∗e and N∗e⊥ onto
M∗f and M∗f ⊥, respectively.



Automatic continuity of orthogonality or disjointness preserving bijections

Proof Let X1 = T (N∗e) and X2 = T (N∗e⊥). As T preserves orthogonality, x1 ⊥ x2
whenever x1 ∈ X1 and x2 ∈ X2. For k = 1,2, let lk = ∨

xk∈Xk
l(xk) and rk =∨

xk∈Xk
r(xk). By the above, l1 ⊥ l2, and r1 ⊥ r2. Furthermore, Xk = lkXkrk . By

the bijectivity of T , M∗ = X1 ⊕1 X2. Therefore, l1 + l2 = 1. Indeed, if l1 + l2 < 1,
then (l1 + l2)M∗ �= M∗ = X1 ⊕1 X2, a contradiction. Similarly, r1 + r2 = 1.

We shall show that l1 = r1, l2 = r2, and that these projections are central. Note that
we have l1M∗r2 = l2M∗r1 = 0, hence, by duality, l1Mr2 = l2Mr1 = 0. In particular,
no subprojection of l1 (resp., l2) is equivalent to a subprojection of r2 (resp., r1). By
[31, Lemma V.1.7], c(l1) ⊥ c(r2), and c(l2) ⊥ c(r1) (here and below, c(p) denotes
the central cover of a projection p). Thus,

2 · 1 = (
l1 + l2

) + (
r1 + r2

) ≤ (
c(l1) + c(r2)

) + (
c(l2) + c(r1)

) ≤ 2 · 1.

Thus, we have equality in the centered expression, which can only happen if lk = c(lk)
and rk = c(rk) for k = 1,2. We prove next that r1 ≤ l1. Indeed, by [31, Theo-
rem III.4.2(i)], l(x) ∼ r(x) for any x. Therefore, for any x ∈ X1, r(x) ≤ c(r(x)) =
c(l(x)) ≤ l1. Thus, r1 ≤ l1. But the converse inequality is also true, hence l1 = r1.
Similarly, l2 = r2. �

Corollary 5.12 Suppose T is a orthogonality preserving continuous linear bijection
from N∗ = (

⊕
i∈I S 1(Hi))�1 to M∗ = (

⊕
j∈J S 1(Kj ))�1 . Then, for any i ∈ I , there

exists a set J (i) ⊂ J so that T maps S 1(Hi) onto (
⊕

j∈J (i) S 1(Kj ))�1 .

Proof By Lemma 5.11, for every i ∈ I there exists a non-zero central projection fi ∈
M = (

⊕
j∈J (i) B(Kj ))�∞ so that T (S 1(Hi)) = fiM∗. Furthermore, the projections

{fi}i∈I are mutually orthogonal. We complete the proof by observing that the central
projections in M are precisely the “coordinate” projections. �

We need one more technical lemma.

Lemma 5.13 If 1 ≤ p < ∞, and φ,ψ ∈ S p(K) are such that, for every α > 0, αφ +
ψ is orthogonal to φ − αψ , then φ = ψ = 0.

Proof Suppose φ and ψ are as in the statement of the lemma—that is, for any α > 0,

(
αφ + ψ

)∗(
φ − αψ

) = ψ∗φ + α
(
φ∗φ − ψ∗ψ

) − α2φ∗ψ = 0,

(
αφ + ψ

)(
φ − αψ

)∗ = ψφ∗ + α
(
φφ∗ − ψψ∗) − α2φψ∗ = 0.

Comparing the coefficients of different powers of α, we conclude that ψ∗φ = ψφ∗ =
0 (that is, φ ⊥ ψ ), and φ∗φ = ψ∗ψ . Multiplying both sides of the last equality by
φ on the left, we obtain φφ∗φ = (φψ∗)ψ = 0. However, ‖φφ∗φ‖∞ = ‖φ‖3∞ (here,
‖ · ‖∞ denotes the usual operator norm), hence φ = 0. Similarly, ψ = 0. �

Proof of Theorem 5.10 As discussed above, T is O-1-O preserving. An application
of Corollary 4.2 shows that T is continuous. Thus, T is an isomorphism. If N is
not discrete, then, by [27, Lemma], it contains a subalgebra, isometric to L∞(0,1),
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which is the range of a weak∗ continuous conditional expectation. Thus, N∗ contains
an isometric copy of L1(0,1). However, since A∗ = (

⊕
i∈I S 1(Hi))�1 is isomorphic

to a complemented subspace of some S 1(K), for a suitable Hilbert space K , by the
comments preceding Theorem 6 in [4] (or by [15, Lemma 6.4]), A∗ does not contain
L1(0,1) isomorphically.

Thus, A∗ = (
⊕

i∈I S 1(Hi))�1 , and N∗ = (
⊕

j∈J S 1(Kj ))�1 . By Corollary 5.12,

for any i ∈ I there exists J (i) ⊂ J so that T maps S 1(Hi) onto (
⊕

j∈J (i) S 1(Kj ))1.
It remains to show that, for any i, J (i) is a singleton. Once this is established, we
conclude that dimHi = dimKj(i), where {j (i)} = J (i). Therefore, A∗∗ and N are
isomorphic as von Neumann algebras.

For the sake of brevity, write H instead of Hi , and U instead of J (i). Sup-
pose, for the sake of contradiction, that U is not a singleton. For j ∈ U , let Xj =
T −1(S 1(Kj )) ⊂ S 1(H). For a set V ⊂ U , denote by QV the “coordinate” projection
from (

⊕
j∈U S 1(Kj ))�1 onto (

⊕
j∈V S 1(Kj ))�1 . Then PV = T −1QV T is a projec-

tion from S 1(H) onto span[Xj : j ∈ V ]. For singletons, we use the notation Qj and
Pj instead of Q{j} and P{j}, respectively.

Now fix j ∈ U , and let V = U \{j}. By Corollary 5.4, T is rank-nondecreasing,
hence T −1|S 1(Kj ) preserves rank 1 elements. Applying Proposition 5.5 to T −1|S 1(Kj ),

we see that Xj = T −1(S 1(Kj )) = S 1(H2,H1), where H1 and H2 are closed sub-
spaces of H , at least one of them proper. Without loss of generality, assume that H1

is a proper subspace of H . Now, note that PV + Pj = I (the identity on S 1(H)),
hence kerPV = X1.

Pick norm one vectors ξ2 ∈ H1 and η2 ∈ H2. Furthermore, pick norm 1
ξ1 ∈ H\H1, and η1 ∈ H , so that (ξ1|ξ2) = (η1|η2) = 0. Let

φ1 = ωξ1,η1, φ2 = ωξ2,η2 , and φ0 = ωξ1,η2 + ωξ2,η1 .

A direct calculation shows that, for any α > 0,

α2φ1 + αφ0 + φ2 = ωαξ1+ξ2,αη1+η2

and

φ1 − αφ0 + α2φ2 = ωξ1−αξ2,η1−αη2 .

Note that (αξ1 + ξ2|ξ1 − αξ2) = (αη1 + η2|η1 − αη2) = 0, hence

(
α2φ1 + αφ0 + φ2

) ⊥ (
φ1 − αφ0 + α2φ2

)
.

Now note that QV T = T PV preserves orthogonality. Furthermore, φ2 lies in Xj =
kerPV , while φ1 /∈ kerPV . Therefore,

(
α2QV T (φ1) + αQV T (φ0)

) ⊥ (
QV T (φ1) − αQV T (φ0)

)

for any α > 0. Lemma 5.13 implies that QV T (φ1) = QV T (φ0) = 0. In particular,
T PV (φ1) = QV T (φ1) = 0, which, by the injectivity of T , gives PV (φ1) = 0 and we
get the desired contradiction. �
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In this paper, we do not consider Lp spaces arising from non-tracial von Neumann
algebras. In the tracial case, a version of Theorem 5.10 holds for p ∈ [1,∞).

Theorem 5.14 Suppose M1 and M2 are von Neumann algebras, equipped with nor-
mal faithful semi-finite traces τ1 and τ2, respectively. Suppose, furthermore, that M1
is discrete, p ∈ [1,∞), and T : Lp(τ1) → Lp(τ2) is an orthogonality preserving lin-
ear bijection. Then T is continuous, and M1 is isomorphic to M2 as a von Neumann
algebra.

Proof (Sketch) We proceed as in Theorem 5.10. The only difference is that, for p �= 1,
we use a different method of proving that M2 is discrete. If M2 is not discrete, we
can use e.g. [31, Proposition V.1.35] to show that Lp(τ2) contains a copy of Lp(0,1).
The latter space is not contained in Lp(τ1), by [4, Theorem 6]. �

Remark 5.15 Equip the von Neumann algebra M = (
⊕

i∈I B(Hi))�∞ with its canon-
ical trace τ = ⊕

i tri , where tri is the usual trace on B(Hi). Consider p ∈ [1,∞),
and a von Neumann algebra M ′. For p �= 1, we assume that M ′ is equipped with
a normal faithful semi-finite trace τ ′. Suppose T is an orthogonality preserving bi-
jection from Lp(τ) to Lp(τ ′) (to M ′∗, if p = 1). By Theorems 5.10 and 5.14, T is
an isomorphism. Moreover, M ′ can be identified with (

⊕
i∈I B(Hi))�∞ , and τ ′ =

⊕
i∈I ci tri , with ci > 0. Furthermore, there exist γi ∈ [c−1/p

i ‖T −1‖−1, c
−1/p
i ‖T ‖],

and unitaries Ui,Vi ∈ B(Hi) (i ∈ I ), and J ⊂ I , so that, for φ = (φi)i∈I ), we have
T (φ) = (γiUiφ̃iVi)i∈I . Here, φ̃i = φi for i ∈ J , and φ̃i = φt

i for i ∈ I\J . Thus,
T (φ) = γ · αp(φ), where γ = (γi1Hi

)i∈I is an invertible element of the center of
M ′, and αp arises from the triple isomorphism α : M → M ′, (φi)i∈I �→ (Uiφ̃iVi)i∈I .
Similar results for orthogonality preservers on C∗-algebras were obtained by the sec-
ond author and his co-authors in [7, 8].
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