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On the Range of a Vector Measure

M. de Kock and D. Puglisi

Abstract. Let C be a countable subset of c0 that lies in the range of an (c0)∗∗-
valued measure, then C lies in the range of a c0-valued measure. We extend
this result to C(K), where K is a compact Hausdorff space, i.e., we let C be a
countable subset of C(K) that lies in the range of a C(K)∗∗-valued measure,
then C lies in the range of a C(K)-valued measure. We will also see that in
any separable Banach space the result still holds.
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1. Introduction

In [10], Professor A. Sofi asks (Problem 6) to which Banach spaces X is it so
that if C is a countable subset of X that lies in the range of a countably additive
X∗∗-valued measure with a σ-field domain, then there is a countably additive X-
valued measure with a σ-field domain, whose range also contains C. Of course,
if X is complemented in X∗∗, then the answer is plain and easy. In this note we
show that if X is c0, X is a separable Banach space or X is a C(K)-space for a
compact Hausdorff space K, then any countable subset C of X that lies in the
range of an X∗∗-valued countably additive measure on a σ-field lies in the range
of an X-valued countably additive measure on the same σ-field. The “techniques”
are all Banach space techniques. We never called on a change of domain.

This problem is related to the following considered by F.J. Freniche (see [3]):
given a vector measure µ with values in the bidual X∗∗ of the Banach space X ,
under what conditions can we say µ actually takes its values inside X? The author
shows that if X is a Banach space such that its dual closed unit ball is weak-star
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sequentially compact and if the X∗∗ measure µ satisfies the Geitz’s condition, then
its range is contained in X . Therefore, if X is a Banach space whose dual unit ball
is weak-star sequentially compact and if C is a countable subset of X that lies in
the range of an X∗∗-valued measure that verifies the Geitz’s condition, then C lies
in the range of an X-valued measure on the same sigma algebra.

The closely related bounded variation version of the problem as treated in this
paper is already known to have been resolved in the negative. A counterexample
to this effect was constructed by B. Marchena and C. Pineiro (see [6]), and later
improved by M.A. Sofi (see [10]).

2. Preliminaries

We will denote the support of a function by supp(f) where

supp(f) = {γ ∈ Γ : f(γ) �= 0},
where Γ is any index set. Let X and Y denote Banach spaces, and let F : Σ → X
denote the vector measure defined on the σ-field Σ.

Let K denote a scalar field. Then we let c0(Γ) consist of all the functions
f : Γ → K, such that for every ε > 0,

{γ ∈ Γ : |f(γ)| ≥ ε}
is finite. Note that each f ∈ c0(Γ) has countable support and is bounded and that

‖f‖c0(Γ) = ‖f‖∞.

If Γ = N, we use the usual notation and write c0, which consists of all sequences
converging to zero. Likewise, l∞ consists of all bounded sequences of scalars.

We say that a set A lies in the range of a Y -valued measure if there is a
σ-field Σ and a countably additive measure F : Σ → Y so that A ⊆ F (Σ). A
set C is absolutely convex if and only if for any points x1 and x2 in C, and any
numbers λ1 and λ2 satisfying |λ1| + |λ2| ≤ 1, the sum λ1x1 + λ2x2 belongs to C.
Since the intersection of any collection of absolutely convex sets is a convex set,
then for any subset A we denote the absolutely convex hull to be the intersection
of all absolutely convex sets containing A. A space is injective if every isomorphic
embedding of it in an arbitrary Banach space Y is the range of a bounded linear
projection defined on Y . A topological space is zero-dimensional, if its topological
dimension is zero, or equivalently, if it has a base consisting of clopen sets. A
Banach space is weakly compactly generated whenever it is the closed linear span
of one of its weakly compact subsets. We use the same notation as in [2].

We will need the following theorems in order to prove the main results. The
proof of the first theorem can be found in [2], page 14.

Theorem 2.1 (Bartle-Dunford-Schwartz). Let F : Σ → X be a countably additive
vector measure on a σ-field Σ. Then the range of F is relatively weakly compact.

Theorem 2.2 (Rosenthal). Any weakly compact subset of �∞ is norm separable.
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Sobczyk (see [9]) proved the following theorem that states that c0 is com-
plemented in every separable space in which it resides, although the norm of the
projection does not need to be equal to one.

Theorem 2.3 (Sobczyk). If X is a separable Banach space and Y ⊆ X is a closed
subspace isometric to c0, then there is a continuous linear projection P from X
onto Y with ‖P‖ ≤ 2.

The proof of the following theorem can be found in [1].

Theorem 2.4 (Amir and Lindenstrauss). Let X be a weakly compactly generated
Banach space. If X0 is a separable subspace of X and Y0 is a separable subspace
of X∗, then there is a projection P : X → X whose range is separable such that
X0 ⊆ P (X) and Y0 ⊆ P ∗(X∗).

A proof of the following two theorems can be found in [8] and [7].

Theorem 2.5 (Miljutin). If K is an uncountable compact metric space, then the
space C(K) is isomorphic to C(∆), where ∆ denotes the Cantor discontinuum.

Theorem 2.6 (Pe�lczynski).

1. Let K be a zero-dimensional compact metric space. If a separable Banach
space X contains a subspace Y that is isometrically isomorphic to C(K),
then there are a subspace Z of Y and a projection P : X → Z (onto Z) such
that Z is isometrically isomorphic to C(K) and ‖P‖ = 1.

2. Let K be a compact metric space. If a separable Banach space X contains a
subspace Y that is isomorphic to C(K), then there is a subspace Z of Y such
that Z is isomorphic to C(K) and Z is complemented in X.

3. Main results

Section I

Theorem 3.1. If C is a countable subset of c0 that lies in the range of an c∗∗0 -valued
measure, then C lies in the range of a c0-valued measure.

Proof. Let F : Σ → �∞ be a countably additive measure defined on the σ-field Σ
such that C ⊆ F (Σ). By 2.1 we have that F (Σ) is a relatively weakly compact
subset of �∞. By 2.2 we have that F has a norm separable range. So F (Σ) generates
a separable closed linear subspace of �∞; we can enlarge our set by letting X be
the closed linear span (in �∞) of F (Σ) ∪ c0. In so doing, we obtain a separable
Banach space X that contains C, itself a subset of c0. Now we are in a position to
call on 2.3: The result is a bounded linear projection P from X onto c0. We also
have that C ⊆ P ◦ F (Σ) and P ◦ F : Σ → c0 is a c0-valued measure whose range
contains C. �

Theorem 3.2. If C is a countable subset of c0 and C ⊆ F (Σ), where F : Σ → X, for
F a countably additive vector measure mapping from a σ-field Σ to a Banach space
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X containing c0. Then there exists a countably additive vector measure G : Σ → c0

such that C ⊆ G(Σ).

Proof. Let W = span[F (Σ)∪c0]. Then W ⊂ X and is weakly compactly generated
containing c0. By Theorem 2.4 there exists a continuous projection P : W → W
such that c0 ⊂ P (W ) = S, with S separable. Now Theorem 2.3 yields a projection
Q : S → S with ‖Q‖ ≤ 2 so that Q ◦ S = c0. Finally, the set function

G = Q ◦ P ◦ F : Σ → c0

defines a vector measure such that C ⊂ range(G). �

Section II

Theorem 3.3. Let S be a separable Banach space, and suppose C is a countable
subset of S that lies in the range of an S∗∗-valued measure. Then C lies in the
range of a S-valued measure.

Proof. Let F : Σ −→ S∗∗ be a countable additive measure on the σ-field Σ such
that C ⊆ F (Σ). By Theorem 2.1 F (Σ) is weakly compact. Let K denote the
absolutely convex hull of F (Σ) in S∗∗; the set K is the unit ball of its linear
span YK , where YK is a Banach space, contained (as linear subspace) in S∗∗. By
Theorem 2.4 (see [1]) we can assume that YK is separable in the S∗∗ norm topology.
Moreover, the inclusion map

YK ↪→ S∗∗

is weakly compact and has separable range. A close look at the still marvelous
factorization scheme of Davis, Figiel, Johnson and Pelczynski tell us that there is
a separable reflexive Banach space R and bounded linear operators (with ‖a‖ ≤ 1)

a : YK −→ R , b : R −→ S∗∗

so that b ◦ a is the inclusion YK ↪→ S∗∗ of YK into S∗∗.
Since X is S is separable, let D = {x∗

n , n ∈ N} be a weak∗-dense sequence
consisting of linearly independent elements of S∗. Let F be a countable ‖ · ‖ dense
subset of YK (‖ · ‖ is the norm in S∗∗) and look at F ∪ C = {z∗∗n , n ∈ N}, which
lies inside YK . Let rn = a(z∗∗n ) for each n ∈ N. Since a : YK −→ R is a bounded
linear operator, a is also ‖ · ‖-continuous and so {rn , n ∈ N} is norm dense in R.
Let

Fn = span{z∗∗1 , . . . , z∗∗n } ⊆ S∗∗

and
F̃n = span{x∗

1, . . . , x
∗
n} ⊆ S∗

By the principle of Local reflexivity we can find for each n ∈ N an injective linear
map

Tn : Fn −→ X

such that
(A) Tn|Fn∩X = id|Fn∩S ,
(B) ‖Tn‖ ≤ 1 , ‖T−1

n ‖ ≤ 1 + 1
n ,
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(C) x∗( Tn (b(r) ) ) = x∗( b(r) ), x∗ ∈ F̃n and for r ∈ span{a(z∗∗1 ), . . . , a(z∗∗n )}
or, what is the same,

(C)′ x∗Tnz∗∗ = z∗∗(x∗), x∗ ∈ F̃n, z∗∗n ∈ Fn.
Let Rn = a(Fn).

Define Un : Rn −→ S by

Rn
b−→ Fn

Tn−→ X.
︸ ︷︷ ︸

Un

Let
Ũn : S∗ −→ R∗

be given by

Ũnx∗(r) =

{

x∗Un(r), if r ∈ Rn;
0, otherwise.

Ũn is homogeneous and it can be viewed as a point of (BR∗ , weak∗)D, a
compact metrizable space. (To be more precise, Ũn|D ∈ (BR∗ , weak∗)D).
Viewing (Ũn)n in this way we see that (Ũn)n has a limit point Ũ ∈ (BR∗ , weak∗)D

that can be extended to all S∗ with values still in BR∗ , by standard way (us-
ing the fact that D is linearly independent). The compact metrizable nature on
(BR∗ , weak∗)D tells us that Ũ is actually a pointwise limit (over D) of a sub-
sequence (Ũnk

)k of (Ũn)n; density of D in S∗ lets us extend Ũ to a map of S∗

to R∗.
Step 1. Now we note that Ũ is actually a bounded linear operator.

• Linearity: Indeed, let x∗, y∗ ∈ S∗, λ, µ ∈ K and r ∈ R. Let us consider n ∈ N

such that r ∈ Rn for each n ≥ n. Then

〈Ũ(λx∗ + µy∗), r〉 = lim
k→∞

〈Ũnk
(λx∗ + µy∗), r〉

= lim
k→∞

〈λx∗ + µy∗, Unk
(r)〉

= λ lim
k→∞

〈x∗, Unk
(r)〉 + µ lim

k→∞
〈y∗, Unk

(r)〉
= λ lim

k→∞
〈Ũnk

(x∗), r〉 + µ lim
k→∞

〈Ũnk
y∗, r〉

= λ〈Ũ(x∗), r〉 + µ〈Ũ(y∗), r〉.
• Continuity: Indeed, let x∗ ∈ S∗, and r ∈ BR. Let us consider n ∈ N such that

r ∈ Bn for each n ≥ n. Then

〈Ũ(x∗), r〉 = lim
k→∞

〈Ũnk
(x∗), r〉

= lim
k→∞

〈x∗, Unk
(r)〉

≤ lim
k→∞

‖x∗‖ ‖Unk
(r)‖

(since ‖Un‖ ≤ 1 ∀n ∈ N) ≤ ‖x∗‖
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Step 2. For all r ∈ ⋃

n∈N
Rn, {Un(r)}n∈N is relative weakly compact and from

this we see that {Un(r)}n∈N is relative weakly compact for each r ∈ R – simple
eps̆ilonuš argument.
This follow directly from (C) above and

x∗Un(r) = Tn(b(r))x∗ = b(r)x∗

for any r ∈ span{a(z∗∗1 ), . . . , a(z∗∗n )} and x∗ ∈ F̃n.

Step 3. Ũ is weak∗-weak∗ continuous.
Indeed, let (s∗n)n be a sequence in S∗ such that s∗n

weak∗−→ s∗ and let r ∈ R.
Then

lim
n→∞〈Ũ(s∗n), r〉 = lim

n→∞〈 lim
k→∞

Ũnk
(s∗n), r〉

= lim
n→∞ lim

k→∞
〈Ũnk

(s∗n), r〉
(since we are considering nk big enough) = lim

n→∞ lim
k→∞

〈s∗n, Unk
(r)〉

(∗) = lim
k→∞

lim
n→∞〈s∗n, Unk

(r)〉
= lim

k→∞
lim

n→∞〈Ũnk
(s∗n), r〉

= lim
k→∞

〈Ũnk
(s∗), r〉

= 〈Ũ(s∗), r〉

where in (∗) we used the double limit Grothendieck theorem (see [5] Corollaire 1
to the Théorème 7) and Step 2.

So S̃ is a weak∗-weak∗ bounded linear operator. That means there is a bounded
linear operator

V : R −→ X

such that

V ∗ = Ũ

Now consider the new σ-additive measure

F̃ : Σ F−→ FC

a↘
R

V−→ X

The last effort is to show that C ⊆ F̃ (Σ).
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Indeed, for all x ∈ C
〈V (a(x)), x∗〉 = 〈a(x), Ũ (x∗)〉

= lim
k→∞

〈a(x), Ũnk
(x∗)〉

= lim
k→∞

〈Unk
(a(x)), x∗〉

= lim
k→∞

〈Tnk
(b ◦ a(x)), x∗〉

= lim
k→∞

〈Tnk
(x), x∗〉

( by (A) above) = 〈x, x∗〉 �

Comment 3.4. The second author believes that, assuming that Martin’s axiom (see
[4]) is true and a transfinite induction instead of a natural induction, the separa-
bility hypothesis of the previous theorem can be avoided.

Section III

The reader might realize that when a Banach space X is complemented in X∗∗,
then the problem has a positive solution. In fact, consider the projection P :
X∗∗ → X and compose it with the vector measure F : Σ → X∗∗ to obtain the
countably additive X-valued measure

P ◦ F : Σ → X.

Theorem 3.5. Let C be a countable subset of C(K), where K is a compact Haus-
dorff space. If C lies in the range of a C(K)∗∗-valued measure, then C lies in the
range of a C(K)-valued measure.

Proof. First, we recall a construction due to Eilenberg: If k1, k2 ∈ K, then we say
k1 ∼ k2 if f(k1) = f(k2) for each f ∈ C; of course ∼ is an equivalence relation on
K and between equivalence classes [k1] and [k2], we can define a metric d([k1], [k2])
by

d([k1], [k2]) =
∑

fn∈C

|fn(k1) − fn(k2)|
(‖fn‖ + 1)2n

remembering that C = {fn : n ∈ N} is countable. Each f ∈ C “lifts” to an
f̃ ∈ C(K0), K0 the metric space of equivalence classes; the map q : K → K0

that takes k to [k] is a continuous surjection. So K0 is a compact metric space
and q : K � K0 is a surjective continuous map; q induces an isometric linear
embedding q◦ : C(K0) → C(K), where q◦(f̃)(k) = f̃([k]), for any f̃ ∈ C(K0). It
is important to realize that if C̃ is the result of lifting members of C in C(K) to
members of C(K0), then q◦(C̃) = C. Here is the setup.

C̃ ⊆ C(K0) ⊆ C(K) and C ⊆ F (Σ) ⊆ C(K)∗∗

for some countably additive F : Σ → C(K)∗∗ with a σ-field domain Σ. Because
C(K0)∗∗ is isometrically isomorphic to a subspace of C(K)∗∗; but C(K0)∗∗ is an
injective Banach space so there is a bounded linear projection P : C(K)∗∗ →
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C(K)∗∗ on C(K)∗∗ with range P (C(K)∗∗) = C(K0)∗∗. So we have a C(K0)∗∗

such that the countable set C̃ lies in P ◦F (Σ). The previous theorem tells us there
is a C(K0)-valued countably additive measure G on Σ so that C̃ ⊆ G(Σ). Look at:

C = q◦(C̃) ⊆ q◦(G(Σ)) ⊆ q◦(C(K0)) ⊆ C(K). �
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