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We continue the study of the w-right and strong™ topologies in general Banach spaces started in [36, 37] and
[35]. We show that in L; (u)-spaces the w-right convergence of sequences admits a simpler control. Some
considerations about these topologies will be contemplated in the particular cases of C*-algebras and JB*-triples
in connection with summing operators. We also study (sequential) w-right-norm and strong*-norm continuity
for holomorphic mappings.
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1 Preliminaries

L. Villanueva, J. D. M. Wright, K. Ylinen and the second author of the present note introduced in [36] two in-
teresting topologies: the strong® and the w-right topology in the following way: let X and Y be two Banach
spaces, for every bounded linear operator 7' : X — Y, we can consider a seminorm on X defined by
lzll7 := ||T(x)||. The strong*-topology is the topology generated by the family of seminorms || - |7, where
T : X — H is a bounded linear operator from X to some Hilbert space H (such a topology is denoted by
S*(X, X*)). Similarly, the w-right-topology is the topology generated by the family of seminorms || - ||z where
T runs in the set of all bounded linear operators from X to a reflexive space [36].

In Section 2, we establish new methods for controlling w-right convergent sequences in Li(u) spaces.
Section 3 is devoted to a more detailed study of strong*-norm continuous operators between Banach spaces. In
the particular cases of operators whose domain is a C*-algebra or a JB*-triple, we explore the connections with
p-C*-summing and p-JB*-triple-summing operators. We prove an extension property for 2-C*-summing and
2-JB*-triple-summing operators (see Theorems 3.6 and 3.9). In this section we shall also introduce and de-
velop p-JB*-triple-summing operators on JB*-triples as suitable generalizations of p-C*-summing operators on
C*-algebras in the sense introduced by Pisier in [39].

The last section of the paper is devoted to the study of those holomorphic mappings of bounded type which
are sequentially w-right-norm continuous. The main result in [35] establishes that a bounded linear operator
T : X — Y is weakly compact if and only if 7" is w-right-norm continuous. We shall provide examples
showing that none of these implications holds for continuous polynomials in general Banach spaces. In the linear
case, 1" is weakly compact if and only if 7** is Y -valued. In the setting of multilinear operators, this equivalence
has been recently studied in [37]. One of the main results in the just quoted paper proves that when X1,..., X;
are non zero sequentially right Banach spaces and 7' : Xy X --- X X — X is a multilinear operator, then 7" is
RQCC (i.e., T is jointly sequentially w-right-norm continuous) if and only if all of the Aron-Berner extensions
of T are X -valued if and only if 7" has an X -valued Aron-Berner extension. We shall consider here holomorphic
mappings of bounded type f between two Banach spaces X and Y with X being a sequentially right Banach
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space. We shall prove that such a mapping f is sequentially w-right-norm continuous if and only if its Aron-
Berner extension, AB(f) : X** — Y™**, is Y-valued.

1.1 Notation

Except otherwise stated, all the Banach spaces considered in this paper will be complex. Given a Banach space
X, S(X) and B(X) denote, respectively, the unit sphere and the closed unit ball of X . For any pair of Barbach
spaces ‘i( ,Y, L(X,Y) will stand for the space of all bounded linear operators between X and Y, while X ® YV
and X ® Y will denote the injective and projective tensor product of X and Y, respectively.

2  When the w-right-topology and the weak-topology coincide sequentially

In [36, Proposition 2.7] the authors remarked the following.

Proposition 2.1 Let X be a Banach space. If the w-right-topology coincides with the weak topology on X,
then X is finite dimensional.

Given a set X with two topologies 7; and 72, we say that 7; and 7 coincide sequentially if both topologies
define the same convergent sequences on X, that is, a sequence (x,, ),, in X is 71 -convergent to € X if and only
if (z,,),, converges to the same x in the 72 -topology.

We recall that a bounded linear operator 7' : X — Y is called completely continuous if it maps weakly
convergent sequences to norm convergent sequences. A Banach space X has the Dunford-Pettis property (DPP)
if, for every Banach space Y, every weakly compact operator from X to Y is completely continuous. X satisfies
the (weaker) alternative Dunford-Pettis property (DP1) if every weakly compact operator 7' : X — Y is a DP1
operator, that is, T'(z,,) converges in norm to 7'(z) whenever x,, — x weakly in X and ||z, || = ||z| = 1.

The following result was established in [36, Remark 4.5].

Proposition 2.2 Let X be a Banach space.

(a) The w-right and the weak topologies coincide sequentially if and only if X has the DPP.

(b) The w-right and the weak topologies coincide sequentially on the unit sphere of X if and only if X has the
DP1.

To formulate the next result we first recall a deep result due to Rieffel (see [27] for more details).

Theorem 2.3 (Rieffel) Let (), 32, i) be a finite measure space and let X be a Banach space. A vector measure
F : ¥ — X is Bochner-representable with respect to u (i.e., F'(B) = Bochner — fB fduforall B € ¥ and
some f € Ly(u, X)) if and only if F' is p-continuous, F is of bounded variation, and for each ¢ > 0 there exists
B, € X with u(Q2\ B.) < € such that

F(B)
{u(B) . BC B, Bey, M(B)>0}

is relatively weakly compact.

Remark 2.4 Note that we can reformulate Rieffel‘s theorem in terms of operators as follows: a bounded linear
operator T : Ly (u) — X is Bochner-representable (i.e., there is a ¢ € Lo (11, X) so that T'(f) = Bochner
— Jo f - gdpforevery f € Li(p)) if and only if for each e > 0 there exists 2, € X with (2 \ Q) < € so that
T : Ly (Qe, S0, , ptls,, ) — X is weakly compact, where ¥, denotes the o-field So, = {F € X : F C Q}.

Proposition 2.5 Let (2,3, i) be a finite measure space, and let (f,,), be a sequence in Ly(u). Then the
following are equivalent:

0) (fpn)n is weakly null.
0 (fn)n is w-right null.

(1) For every Banach space X, and every weakly compact operator T : Ly(n) — X, the sequence
(T(fn))n is norm null.

(2) For each Banach space X, and every representable operator T : L1 () — X, the sequence (T (f,))n
is norm null.

(3) For every Banach space X and every g € Lo (1, X), the sequence (f,, - g), is weakly null in Ly (u, X).
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Proof. Since L, () has the DPP, then (0) and (0") are equivalent by Proposition 2.2. The equivalence of (0')
and (1) follows directly from the definition of the w-right topology.

(1) = (2) Let X be a Banach space and let T : L (1) — X be a representable operator. Fixing € > 0, by the
previous remark, there exists 2, € ¥ with p(Q \ Q) < € so that

T:Li(Q,30,, pls,, ) — X is weakly compact.

Moreover, since (f, ), is weakly null in L; (2, X, 1), by a classical result of Dunford and Pettis (see [15]
Chapter IV.2) the sequence (f,, ), is uniformly integrable. We can then assume that H fn Xq \ @ H Li(9.50) < ”}”
uniformly in n € N. o

Now, since { fuxaq, },, is weakly null in Ly (Q, Xq, , uls,, ), then there is an ng € N so that || T(f, xa,)|| < €,
for all n > nyg. Therefore, for n > ng, we have

1Tl < NI T(fxa,)

(2) = (0) Fix g € Log(p); It’s enough to choose T' : Ly (1) — C defined by T'(f) = [, f g dp. T is trivially

representable and so (f,, , g) — O, thatis, (f,,), is weakly null in L, ().

(0) = (3) Fix a Banach space X and an element g € Lo (1, X). Let (f,,), be a weakly-null sequence in
Ly (u). Since (£2,%, p) is a finite measure space we can apply the Diestel-Ruess-Schachermayer Theorem (see
[14]) to the weakly relatively compact set { f,, }»,en. Then for each subsequence (f,, )i of (f,), there exists a
sequence (g ), With g, € co{f,, : nr > n} such that (g, (w)), is a null sequence of scalars for a.e. w € Q.
But the sequence (g, - g)i is such that g, - g € co{fn, - g : nrz > n} and so (g, (w) - g(w))x is norm null in
X for a.e. w € . By the Diestel-Ruess-Schachermayer’s Theorem the sequence (f,, - ¢)nen is weakly null in
Ly (N" X)

(3) = (0) It’s enough to choose X = K and g(w) = 1 for each w € Q. O

|+ 1T (faxore )l < e+ TN fn xare, Iz, @.5.0) < 2e

Corollary 2.6 (0),(0), (1), (2) of the proposition above are equivalent for any measure space (2,2, ).

Proof. Note that (0), (0’) and (1) are trivially equivalent because L; (1) has the DPP.
(0) = (2) Let (f, ), be a weakly null sequence in Ly (). It is well known that (see [18], I11.8.5) there exists a
set {27 in X, a sub o-field of X such that the restriction p; of i to X1 has the properties

(i) the measure space (€21, X1, j41) is o-finite;
(i) span{f, : n>1} C Li(4,%1, ).

Since Ly (94, X1, p1 ) is a closed subspace of Ly (2, X, 1), we can assume, without loss of generality that (Q, 33, i)
is a o-finite measure space. Thus there exists a sequence (A,, ) in 3 of pairwise disjoint sets with finite and positive
p-measure such that Q = J,, oy An-

Now, we define uo : ¥ — [0, +00) as

1
wo(E) = Z Ay w(A, NE) forevery FE € 3.
neN

It is easy to see that ug is a finite measure (it is a probability measure) and, if we consider the function
h = ZneN A M(AIL) XA, the map

T: Li(p) — Li(po)
fr—h-f

is a surjective isometry. Since p and fy have the same null sets, for each Banach space X the identity
id : Loo(pty X) — Loo(o, X)

is a surjective isometry.
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Fix a Banach space X and a representable operator S : Ly (u) — X. Then there is a g € Lo (1, X) so that
S(f) = [, f - gdu. By the last paragraph above, we can consider g as element of L (19, X). Then the operator

S:Li(o) — X
S(f) = Qf'gdﬂo foreach f € Li(uo)

is trivially representable. Since (T'(f,,)),, is w-right null in L; (1) (actually, every bounded linear operator maps
w-right null sequences into w-right null sequences), by the previous proposition we have

IS = I8(fu -h)|| — 0 as n — oo

because for each f € Ly (1, X) we have [, fdu = [, f - hdug, which gives (2).
The implication (2) = (0) follows similarly. O

3 Strong*-norm continuous operators

We recall a result established in [35]. We should note here that after the publication of the just quoted paper, we
were told about the significative papers [40] and [42], which are directly connected with the results obtained in
[35]. In fact, the main result in [35] follows as a consequence of [40, Proposition 2.6 and Theorems 3.1 and 3.2],
proved there in a more general setting. The equivalence of (i) and (iii) in [35, Corollary 5] can be also obtained
from [42, Lemmas 2.1 and 3.2].

Theorem 3.1 Let X and Y be two Banach spaces, and let T' : X — Y be a bounded linear operator. Then
the following are equivalent

(a) T is w-right-norm continuous.
(b) T is w-right-norm continuous on the closed unit ball of X.

(c) T is weakly compact.

Similarly we have:

Theorem 3.2 Let X and Y be two Banach spaces, and let T : X — Y be a bounded linear operator. Then
T is strong*-norm continuous if and only if T factors through a Hilbert space.

Proof. LetT : X — Y be a strong*-norm linear operator. The set
U={zeX:|T(x)] <1}

is a strong*-neighborhood of zero in X. Then there exist Hilbert spaces H1, ..., H,, and operators GG; : X —
H;, i = 1,...,n, satisfying that /_,{z € X : ||G;(z)|| < 1} C U. Consider H := (P!, Hi)lz’ and
G : X — H defined by G(x) = (G;(x))?_;. The inclusion

freX:G@I<1}cireX G@] <1}

i=1
implies that

IT(x)] < ||G(z)|] foreach z € X. (3.1)

The kernel of G is a closed subspace of X and the mapping « + ker(G) — |||z|||¢ = ||G(z)]| is a prehilbertian
norm on the quotient X/ ker(G). The inequality (3.1) guarantees that the law

R: X/ker(G) —Y

x + ker(G) — T'(x)
is a well-defined continuous operator on X/ ker(G) with || R|| < [|T'[|. If H¢; denotes the completion of X/ ker(G),

then Hg is a Hilbert space and R admits an extension R : H; — Y. If 7 denotes the canonical projection of

www.mn-journal.com © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



668 J. Diestel, A. M. Peralta, and D. Puglisi: Sequential w-right continuity and summing operators

X onto X/ker(G) and j¢ the inclusion of X/ ker(G) into Hg, then we have T = R j m, which shows that
T factors through a Hilbert space (i.e., T € I'z(X,Y)). Clearly every operator in I';(X,Y) is strong*-norm
continuous. O

Corollary 3.3 Every strong*-norm continuous operator between two Banach spaces is uniformly convexifying
in the sense of Beauzamy [7].

Corollary 3.4 Every strong®-norm continuous operator between two Banach spaces is a Banach-Saks
operator [8].

Corollary 3.5 The class of all strong*-norm continuous operators between Banach spaces is an injective
(closed) operator ideal in the Pietsch sense [38].

When the domain space is a C*-algebra (respectively, a JB*-triple) then strong*-norm continuous opera-
tors coincide with 2-C*-summing (respectively, 2-JB*-triple-summing) operators. p-C*-summing operators on
C*-algebras were introduced by Pisier in [39]. We recall that an operator 7" from a C*-algebra A to a Banach
space Y is said to be p-C*-summing (p > 0) if there exists a constant C' such that for every finite sequence of
self-adjoint elements (ay, ..., a, ) in A the next inequality holds

L

1
(Z ||T<ai>||p> <c (Z ja; |p> , (3.2)
1 1
where, for each z € A, we denote |z| = (”**#)%
denoted by C,(T)).

The following Pietsch’s factorization theorem for p-C*-summing operators was established by Pisier in [39]:
if T : A — Y is a bounded linear operator from a C*-algebra to a complex Banach space, then T is a
p-C*-summing operator if and only if there is a norm-one positive linear functional ¢ in A* and a positive
constant K, (T') such that

. The smallest constant C' verifying the above inequality is

I ()| < K, (T)(p(|2))

for every z in A. Every p-summing operator from a C*-algebra to a Banach space is p-C*-summing but the
converse is false in general (compare [39, Remark 1.2]). It follows from the little Grothendieck’s inequality for
C*-algebras (see [23, 39]) that an operator 7' : A — Y is 2-C*-summing if and only if it is strong*-norm
continuous.

The following result shows that 2-C*-summing operators enjoy an extension property which is the appropriate
version of [13, Theorem 4.15].

Theorem 3.6 Let A and B be two C*-algebras with B a C*-subalgebra of A and let Y be a Banach
space. Then every 2-C*-summing operator T' : B — Y admits a norm preserving 2-C*-summing extension
T:A—Y.

Proof. LetT : B — Y be a 2-C*-summing operator. According to the Pietsch factorisation theorem, there
is a norm-one positive linear functional ¢ in B* and a positive constant K, (7") such that

1
IT ()] < Ka(T)((|2]*))? (3.3)
for every x in B. Proposition 3.1.6 in [29] implies the existence of a positive functional ¢ € A* satisfying that

lloll = ll¢ll and ¢|p = ¢. The set N, = {x € A : ¢(xzax* + z*x) = 0} is a closed subspace of A and the
sesquilinear form

1 * *
(x+ Ny,y+ Ny) — §¢(xy +y )

defines a pre-inner product on the preHilbert space A/N,. The completion of the latter space is a Hilbert space
that will be denoted by Hy. Let j, : A — H denote the composition of the canonical projection and inclusion.
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The norm-closure of j,(B) = B/(N4 N B) is a closed subspace of H, which is denoted by K. Let 7 be the
orthogonal projection of H,; onto K.

The operator B/(Ny, N B) — Y, x + (Ny N B) — T'(z) is well-defined by (3.3). Therefore there exists a
unique operator R : K — Y satisfying R(x + (Ny N B)) = T'(z). Finally, T:A—Y,T=Romo Jg isa
norm preserving 2-C*-summing extension of 7. O

Proposition 3.7 Let X be a Banach space. Suppose that the w-right topology and the S*(X, X™*)-topology
coincide on bounded subsets of X. Then the following statements holds:

(a) X satisfies the DPP if and only if every strong*-norm continuous operator from X to a Banach space is
completely continuous.

(b) X satisfies the DP1 if and only if every strong*-norm continuous operator from X to a Banach space is a
DP1 operator.

Proof. (a) We prove only the if-implication, because the other implication follows easily. Suppose that every
strong*-norm continuous operator from X to a Banach space is completely continuous. Let (x,,) be a weakly-
null sequence in X and let 7' : X — Y be a weakly compact operator. Since the w-right topology and the
S*(X, X*)-topology coincide on bounded subsets of X, then there exist a bounded linear operator G from X to
a Hilbert space and a mapping N : (0, 00) — (0, o) satisfying

1T (@)l < NG @) +ell«]),

for all x € X and € > 0 (compare [36, Proposition 5.1]).
Let us fix § > 0. Since (z,,) is bounded, we can find an appropriate &) > 0 satisfying that &, ||z, || < 2, for
every natural n. By hypothesis, G(z,,) — 0 in norm. So there exists a natural m satisfying that

1)
N(e)||G(zn)| < 2 forall n >m,
which gives that ||T'(z,,)|| < 9, for all n > m.
The proof of statement (b) follows similarly. O

For each C*-algebra A, the w-right and the strong* topologies coincide on bounded sets of A (compare [2,
Theorem I1.7]). The extension property of 2-C*-summing operators proved in Theorem 3.6 together with the
above Proposition 3.7 give an alternative proof to [11, Corollary 2] and [19, Corollary 3.2].

Corollary 3.8 Every C*-subalgebra of a C*-algebra satisfying the DPP (respectively, the DP1) also satisfies
the same property.

Let u be a norm-one element in a Banach space X . The set of states of X relative to u, D(X, u), is defined as
the non empty, convex, and weak*-compact subset of X* given by

D(X,u) = {® e X*: ®u) =1=||®|}.

For x € X, the numerical range of z relative to u, V (X, u, x), is given by V/(X, u, z) := {®(x) : & € D(X,u)}.
The numerical radius of x relative to u, v(X, u, x), is given by

v(X,u,x) :=max{|\|: A € V(X,u,x)}.

It is well-known that a bounded linear operator 7" on a complex Banach space X is hermitian if and only if
V(L(X),Ix,T) C R (compare [9, Section 5, Lemma 2]). If T" is a bounded linear operator on X, then we have
V(L(X),Ix,T) =co W(T) where

W(T) = {2"(T(x)) : (,2") € T},

and T’ C {(z,2*) : v € Sx,z* € Sx~,x*(xr) = 1} verifies that its projection onto the first coordinate is norm
dense in the unit sphere of X [9, Section 9]. Moreover, the numerical radius of 7" can be calculated as follows

v(L(X),Ix,T) = sup{|z*(T(x))| : (x,z*) € T}.
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In particular if X = Y*, then by the Bishop-Phelps-Bollobdas theorem, it follows that
v(L(X),Ix,T) =sup{|z*(T'(x))| : x € Sx, 2" €Sy, z"(x)=1}

Originally introduced by Kaup in [26], the class of complex Banach spaces called JB*-triples includes all C*-
algebras, Hilbert spaces, spin factors and operators between complex Hilbert spaces. A JB*-triple is a complex
Banach space E with a continuous triple product {., .,.} : E x E x E — F which is bilinear and symmetric in
the outer variables and conjugate linear in the middle one, and satisfies:

(JB1) (Jordan Identity) L(a,b){z,y,2} = {L(a,b)z,y,2} — {z, L(b,a)y, 2z} + {z,y, L(a,b)z}, for all a, b,

¢, ¢, y, zin E, where L(a,b)x := {a,b,z};
(JB2) The map L(a,a) : E — E is an hermitian operator with non negative spectrum for all ¢ in E;
(IB3) |{a,a,a}|| = ||a|®, forall a in E.

For each element z in a JB*-triple F, we shall denote z!!! := =z, 2P .= {z,z,x}, and

g+l = {7, 2,22" =1} (n € N). Given a subset I’ C E, the symbol 'O F will denote the set
{L(z,y): z,y € F} C L(E).

Examples: every C*-algebra is a JB*-triple with respect to the product {a, b, c} := % (ab*c+ cb*a). The above
product remains valid for the space L(H, K) of all continuous operators between two complex Hilbert spaces
H K.

For each JB*-triple E and every state ® € D(L(E), Ig), the assignment z — ||z]|¢ := ®(L(z, x))% defines
a prehilbertian seminorm on E. Further, whenever ¢ is a norm-one element in E* and z € Sg« with p(2) = 1, the

mapping z — ||z||, = ¢ {z,z, z}% does not depend on the point of support z, and defines also a prehilbertian
seminorm on £ (compare [34, Section 1]).

In the more general setting of JB*-triples, only the notion of 2-C*-summing operator has been generalized in
[32]. An operator 7' from a JB*-triple E to a Banach space Y is said to be 2-JB*-triple-summing if there exists a
positive constant C' such that for every finite sequence (z1, ..., z;, ) of elements in E we have

n
Z L(xim $1)
i=1

The smallest constant C' for which (3.4) holds is denoted by C5(T').

The corresponding Pietsch factorization theorem for 2-JB*-triple-summing operators was established in [32,
Theorem 3.6]. Indeed: if T' : £ — Y is a 2-JB*-triple-summing operator then there are norm-one functionals
©1, 2 in E* and a positive constant C'(T) such that

S oIT@)|* <C (3.4)
i=1

1T ()] < C(T) ]y .0,

for all z € E. This result together with the little Grothendieck inequality for JB*-triples and the Hahn-Banach
theorem allow us to prove the following result with a verbatim adaptation of the proof of Theorem 3.6.

Theorem 3.9 Let E and F be two JB*-triples with F' a JB*-subtriple of E and letY be a Banach space. Then
every 2-JB*-triple-summing operator T' : F© — Y admits a norm preserving 2-JB*-triple-summing extension
T:F—Y.

Having in mind that for every JB*-triple F, the w-right and strong* topologies coincide on bounded subsets of
FE (compare [33, p. 621]), the results [12, Corollary 6] and [1, Corollary 1] follow now as a direct consequence.

Corollary 3.10 Every JB*-subtriple of a JB*-triple satisfying the DPP (respectively, the DP1) also satisfies
the same property.

Our next goal is to introduce a suitable variation of p-summing operators in JB*-triples.

Let  be an element in a (general) JB*-triple E and let £, denote the JB*-subtriple generated by z. It is known
that E, is a commutative JB*-triple. Therefore, the closed linear span of E, O E,|g, C L(E,) is an abelian
C*-algebra (compare [26, Proposition 1.5]). This structure allows to define L(x, x)'p? g, asan elementin L(E, ).
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However, this definition, based on “local theory,” does not satisfy our needs because L(z, x)% should be an
element in L(E).

We shall see how local theory, wisely applied, can help us to avoid this obstacle. Let = be an element in a
JB*-triple E. It is known that E, is JB*-triple isomorphic (and hence isometric) to Cy (§2) for some locally com-
pact Hausdorff space 2 contained in (0, ||«||], such that U {0} is compact and C; () denotes the Banach space
of all complex-valued continuous functions vanishing at 0. It is also known that there exists a triple isomorphism
VU from E, onto Cy(Q), U(x)(t) =t (t € Q) (cf. [25, 4.8], [26, 1.15] and [20]). The set Q@ = Sp(x) is called the
triple spectrum of x. We should note that C; (Sp(x)) = C'(Sp(«x)), whenever 0 ¢ Sp(z).

Local theory in JB*-triples gave rise to the so-called triple functional calculus. To avoid possible confusion
with the classical continuous functional calculus in C*-algebras, given a function f € Cy(Sp(x)), f(z) shall have
its usual meaning when E, is regarded as an abelian C*-algebra and f;(z) shall denote the same element of E,
when the latter is regarded as a JB*-subtriple of E. Thus, for any odd polynomial, P(\) = >} pe0 Ok AZEHL e
have P;(z) = > _, az¥*1. The symbol 2"} will stand for f; (z), where f(\) := A?, (\ € Sp(z)).

The general lack of order in JB*- triples of the same kind that exists for C*-algebras prevents us to affirm any
property on a finite sum of the form Z T J , where x, ...,z are arbitrary elements in a JB*-triple E. In order
to have a common order, not dependmg on the local structure, we make use of the space £(E). The following
definition does not require the existence of an order.

Definition 3.11 Let F be a JB*-triple, let Y be a Banach space and let p > 0. An operator T : E — Y is said
to be p-JB*-triple-summing if there exists a positive constant C' such that for every finite sequence (21, ..., 2;,)
of elements in E' we have

ZHT@ |p<C

'5’ %] H (3.5)

The smallest constant C' for which (3.5) holds is denoted by C, (T").

Let A be a C*-algebra. We recall that two elements a and b in A are said to be orthogonal if ab* = b*a = 0,
equivalently, L(a, b) = 0. When a and b belong to a JB*-triple F, we say that a and b are orthogonal whenever
L(a,b) = 0. When a C*-algebra is regarded as a JB*-triple, these two notions of orthogonality coincide on A.
We refer to [10, Lemma 1] for several reformulations of orthogonality in C*-algebras and JB*-triples.

C*-algebras have a dual structure as JB*-triples and C*-algebras. Our next result shows that, in the setting of
C*-algebras, p-C*-summing operators and p-JB*-triple-summing operators coincide.

Lemma 3.12 Let (x1,...,x,) be a finite sequence of elements in the C*-algebra A and let X be a Banach
space. The following statements hold:

@ Hzl 1|x7| H < ZL  L(zis i) Z?:l |x7|2H

(b) When x; ..., x, are assumed to be hermitian we have

L l
2 9

© If T € L(A X), then T is p-C*-summing whenever it is p-JB*-triple-summing. Moreover, if T is
p-C*-summing then there exists C' > 0 satisfying

ZL<Z ]

B

for every p > 0.

ZIIT zi)|[F < C

ore
r
v

for every finite sequence (x1, . .., x, ) of hermitian elements in A.
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Proof. (a)Let 1 denote the unit element in A**. For every finite sequence (z1, ..., z,) of elements in A we
have

>

> L(ai, ) > L, )(1) > al ||
i=1 i=1 i=1

To see the other inequality let us denote S := ) , L(x;, ;). Clearly S is a hermitian operator on A,
Sinclair’s theorem (compare [9, Remark in p. 54]) assures that

151 = sup{|¢(S(2))| : 2 € Sa, ¢ € Sa-, ¢(2) =1}

It is worth mentioning that ¢(S(z)) > 0 for any ¢ and z in the above setting. Let z € Sy and ¢ € Sy~ with
¢(z) = 1. We define ¢(z) := ¢(z o z), where the symbol o denotes the natural Jordan product in A. It can be
easily seen that ¢ € S+, (1) = ¢(z) = 1. Moreover,

YL, ) (1)) = (L)1) 0 2) = 56({a, 2,2} + {a*,0%,2)) = 30(L (2, 2)(2),

for all z € A. Furthermore, ¢(L(z, z)(z)) = (L(x,z)(1)), whenever x = z*. In particular ¢(S(z)) < 2¢(S(1)),
and hence

[S] < 2sup{p(S(1)) : ¢ € Sa-, (1) =1}
= ZSup{w <Z sz) 2 € Sy, (1) = 1} =2 Z|a:i|2

When 21,...,x, are hermitian elements, the constant 2 in the above inequality can be omitted, which in
particular gives: || S zil? H = || S L(xl,xz)H
(b) Every self-adjoint element z € A admits a decomposition in the form 2z = 2% — 2~, where 2" and a2~

P

are orthogonal positive elements in A. It is not hard to see that 2lf] = (x*)[%] - (x_)[%] Since (x*)[Z] and

(x‘)[%] are orthogonal, we have |x[€’] 2= (zt) + ()P = |z|P. Let xq, . . ., T, be self-adjoint elements in A.
The last paragraph in the proof of the previous statement shows that

ZL (xim,xl“) H _ 5= fate H _

i=1
(c) The formula stated in (b) proves the required statements. O

n

D lail

i=1

Let A be a C*-algebra and let X be a Banach space. The question is clearly whether p-JB*-triple-summing
and p-C*-summing operators coincide in £(A4, X). A strengthening of the inequality in Lemma 3.12, (b) seems
to be necessary.

Proposition 3.13 Let A be a C*-algebra and let p > 2. Then the formula

;L (x[]m[]> 1) > ; P

holds for every finite sequence of elements xi,...,x, in A. In particular p-JB*-triple-summing and
p-C*-summing operators on A coincide.

Proof. Considering A** instead of A, we may assume that A is a von Neumann algebra.

b
2

Let e be a partial isometry in A. It is easy to check that e[ I = e. Since
closed unit ball of A and p/2 > 1 we have

e F£€ is a positive element in the
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Let a be an algebraic element in A when the latter is regarded as a JBW*-triple. That is, a = Zk w;e;,
where a; € R and (e;) are mutually orthogonal partial isometries (tripotents) in A. Since the e;’s are mutually

orthogonal, we have al?! = Z a/ e;. Thus,

k k k 5
L (ol¥),al#) (1) = Y af Lere)(1) 2 Y af el = (Z a?|eﬁ> = fal". 3.6

It is known that the set of tripotents is norm-total in every JBW*-triple, i.e., for every element x in A there
ex1sts a sequence (ay) of algebraic elements in A converging in norm to = (compare [24, Lemma 3.11]). Since

(a;*') and (|ax|?) converge in norm to 2[5 and |z|?, respectively, inequality (3.6) proves the statement. O

From now on, given an element a in a C*-algebra A, o4 (a) will stand for the spectrum of a in A.

Remark 3.14 The inequality established in the above Proposition 3.13 does not hold for 0 < p < 2. Indeed,
let us consider A = C([0, 1], M2 (C)) the C*-algebra of all continuous functions on [0, 1] with values in M (C).

We define e = e(t) := (‘[ Vi") € A. In this case, we have

N AR H1—1)
(ee +ee)()—< o L )

Since for each ¢ € [0,1], the spectrum o, . (ee* +e*e(t)) = {1+ Vt,1—+/t}, it can be easily seen that
o, (%) = [0, 1]. We claim that, for 0 < p < 2, there is no posmve constant C' > 0 satisfying

C’L( (5] [%]) (1) > le]?.
Otherwise, we have

L —cte o oL (el @ 2 e = (C550)

which is impossible, since C't # 7 in C[0, 1].
However, for each 0 < p < 2, the question whether every p-C*-summing operator on a C*-algebra is
automatically p-JB*-triple-summing remains open.

Following standard arguments, a Pietsch factorisation theorem for p-JB*-triple- summing operators on
JB*-triples can be established now.

Theorem 3.15 Let T be a bounded operator from a JB*-triple E to a Banach space X. For each p > 0, the
following assertions are equivalent.

(a) T is p-JB*-triple-summing.
(b) Thereis a state UV € D(L(E), Ig) and a positive constant C(T') such that

IT @) < o) (L(alt,alH)),

foreveryx € E.

(c) There exist two norm-one functionals @1, ps € E* and a positive constant K (T') such that
Il§ )
)
P2
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Proof. (a) = (b) Let us denote K := D(L(F),Id, ). Clearly, K is a weak*-compact subset in L(E)*. For
every finite sequence 1, ...,z € E, we define the convex function f, ~, : K — Rby

P P

k k
Fopoony (@)= 3o IT @) = Cy(1) @ (ZL (””)) .
i=1 i=1

The set I' := {fl ey TLy e T € E} C C(K,R) is convex and hence concave in the terminology of

P

P L
[38, E.4]. Since foreach x1, ..., x; € FE, the operator S = Zle L (xy[z } , xl[z ]) is hermitian, Sinclair’s Theorem
(compare [9, Theorem 11.17]) assures that

= P = P . Vi
IS]l = sup |#(5)] = max|2(S) 37)

Thus, there exists ®g € K satisfying that $g(S) = ||.S]|, and hence

iL (xlf],x!“)

By the Ky Fan lemma (see [38, E.4]) there exists an element ¥ € K such that f, , (¥) < 0 for every
f.,., €T, which in particular implies that

<o0.

k
foro 2 (®5) = Z 1T ()l = Cp(T)

1T < o@ye (L (al*]lH)),

for every x € F.

(b) = (c) Let ¥ € D(L(E), Ig), satisfying the assumption (b). The map ||.||¢ is a prehilbertian seminorm on
E. Denoting N := {z € E : ||z||g = 0}, then the quotient E/N can be completed to a Hilbert space H. Let
us denote by () the natural quotient map from E to H. By [33, Corollary 1] (see also [34, Corollary 1.11]) there
exist two norm-one functionals ¢1, 2 € E* such that the inequality

lQ@)I* = llzll} = ¥(L(z,2)) < 4 (|l

2 2
o+l

holds for every x € E. We therefore have:

21112 1012
e < o) ([ + ] ).
P1 P2
forevery x € E.
(¢) = (a) Let ¢ € Sg» and z € S+« with ¢(z) = 1. Since for every finite sequence (x1,...,2,) in E we
have
2 2 P D IR o i L IR
S I =3 (2] o (L) 0 < 5 (L)
i @ i i i=1
and hence a) follows from c). O

4 w-right-norm continuous holomorphic mappings

Given Banach spaces X and Y, letting m = 1,2,..., we shall denote by £("™ X,Y") the Banach space of all
continuous m-linear mappings from X™ = X x ... x X (m times) to Y, with respect to the pointwise vector
operations and the norm defined by

A
||A|| _ sup || (‘Tla 7xm)||
21 #0,..., 2 #0 |- |z

where A € L("X,Y ) and x1,...,2, € X.
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Anelement A € L(" X,Y) is said to be symmetric if
A(Jﬁl, S 7xm) = A(xa(l)v s 7xa(m))

for any permutation o : {1,...,m} — {1,...,m}. The symbol L, (™ X, Y") will denote the closed subspace of
L(™X,Y) of all symmetric continuous m-linear mappings.

A continuous m-homogeneous polynomial P from X to Y is a mapping P : X — Y for which there is a
unique A € L,(™ X,Y") such that

P(z) = A(z,...,z) forany z € X.

The m-linear operator A is called the generating operator for P and in the sequel will be denoted by p. By a
0-homogeneous polynomial we mean a constant function. P(™ X, Y") will denote the Banach space of all con-
tinuous m-homogeneous polynomials from X to Y, with respect the pointwise vector operations and the norm
defined by

1P — sup 1P
o Tal

Every m-homogeneous polynomial P : X — Y satisfies the following polarization formula:

~ 1 L
Plan, i) = 5oy > oercem P(Zeixi>, (4.1)
Tei==1 i=1

Jointly w-right-norm continuous multilinear operators have been studied in [22, 30] and [37]. A multilinear
operator 7" : X X ... x X,, — X is jointly w-right-to-norm continuous if and only if it is jointly w-right-to-
norm continuous at 0 if and only if there exist reflexive Banach spaces Ry, ..., R, and bounded linear operators
T; : X; — R, satistying, for each z; in X;,

1Ty, szl < Mlzalllz, - Mzm I, -

(compare [22, Theorem 4] and [37, Proposition 3.11] or [30, Theorem 1]).

The polarization formula (4.1) guarantees that an m-homogeneous polynomial P is w-right-norm continuous
if and only if its generating multilinear operator is jointly w-right-norm continuous (at 0) if and only if P is
w-right-norm continuous at 0. The corresponding affirmation for the strong* topology is also true.

Arens [3, 4] was the first author in considering extensions of bilinear operators to the product of the biduals. For
multilinear operators, Aron and Berner introduced, in [5], a method to extend k-linear mappings to the product of
the biduals that can be described as follows: Let X1, ..., X, and X be Banach spacesand 7" : X7 x---x X}, —
X a k-linear operator. Let w : {1,...,k} — {1,...,k} (denoted i — ;) be a permutation. We define the
Aron-Berner extension of 7" associated to 7

AB(T); : Xi* x - x Xi* — X**
by

AB(T)x(z1,...,2,) = weak” —lim - - - weak” — lim T (2", ..., z}"),

Qry Q.

where (z1,...,2;) € X7 x .- x X" and, for 1 < i < k, (zf)a C X; is a net weak™ convergent to
zi. AB(T), is bounded and has the same norm as 7. For each k-linear 6perat0r there are k! possibly different
extensions. However, for each symmetric k-linear operator 7" the restriction of AB(T"), to the diagonal does not
depend on the permutation 7.

Given an m-homogeneous polynomial P : X — Y, the m-homogeneous polynomial AB(P) : X — Y,
AB(P)(z) := AB(P),(x,...,z) (where 7 is any permutation of the set {1, ..., k}), will be called the Aron-
Berner extension of P.
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A continuous polynomial P from X to Y is a finite sum of continuous homogeneous polynomials. We shall
denote by P(X,Y") the space of all continuous polynomials from X to Y with respect to pointwise vector opera-
tions. Following [31], a polynomial P : X — Y is said to be weakly compact if P maps bounded sets in X into
relatively weakly compact sets in Y.

We have already noticed that a bounded linear operator 7' : X — Y is weakly compact if and only if T’
is w-right-norm continuous. The following examples show that none of these implications holds for continuous
polynomials in general Banach spaces.

Example 4.1 Let P : {, — /; be the 2-homogeneous polynomial whose generating operator is defined by

ﬁ:fg sz —>£1,

P (.’II ) y) =Y,
where x - y denotes the pointwise multiplication. It follows by Holder’s inequality that P is well defined with
|IP|| < 1. Since /s is a reflexive Banach space, and for any reflexive Banach space the w-right topology coincides
with the norm topology, we trivially have that P is w-right-norm continuous. However, P cannot be weakly

compact because P maps the canonical basis of ¢ to the canonical basis of ¢; and the latter admits no weakly
convergent subsequences.

A weakly compact polynomial on a Banach space X need not be w-right-norm continuous, even when X
satisfies the Dunford-Pettis property.

Example 4.2 Since the interval [% 1] is not scattered, there is a continuous surjective linear map

q: C( [%, 1]) — {5 (compare [13, Corollary 4.16]). By the open mapping theorem, we can pick f,, € C( [%, 1])
with || f || = 1 such that ¢(f,,) = e,, for every n € N, where (e,,) denotes the canonical basis of ¢,. We can

define a sequence (g, ) in C([0, 1]) satisfying that g, | , L= fn and g, | =0.
L

[0, %)
On the other hand, the assignment f — (f () — f(0)), defines a linear operator p : C([0, 1]) — co.
Finally, we define a symmetric bilinear map

vV C([0,1) x C([0, 1)) —4

given by V(f,g) := p(f) - q(g|[$_l]) + p(g) - q(f\[“]), where for a € ¢y and b € {5, a - b € ¥, is defined
by (a - b), = a,b,. Itis clear that V is weakly corrfpact. We claim that V' is not jointly w-right-norm contin-
uous. Indeed, let us pick a sequence (x,,) of mutually orthogonal continuous functions in C([0, 1]) satisfying
|#n || = 2 (5) = 1. By definition, () is a w-right-null sequence in C([0,1]) (compare [35, Lemma 13]),
while (g,,) is a bounded sequence in C([0, 1]). Thus, if V' were jointly w-right-norm continuous, then Proposition

3.11 in [37], would imply that
L=llex|l = [IV(zn,g0)l| — 0,

which is impossible.

Let us recall that an operator is said to be pseudo weakly compact if it is sequentially w-right-norm continuous.
A Banach space X is called sequentially right if every pseudo weakly compact operator from X to another Banach
space is weakly compact. C*-algebras, JB*-triples and Banach spaces satisfying Pelczynski’s Property (V') are
examples of sequentially right spaces (compare [35]).

It is also known that a bounded linear operator 7' : X — Y is weakly compact if and only if its bitranspose
remains Y -valued. In the multilinear setting, a similar question has been recently considered in [37]. We first
recall the following definition introduced in [37]: Given Banach spaces X1, ..., X}, X, a multilinear operator
T: X, x---x X, — X is right quasi completely continuous (RQCC) if for arbitrary w-right Cauchy sequences
(z}), € Xi (1 <i < k), the sequence (T'(x7,...,z})), converges in norm, equivalently, for every sequence

(z') C X; which is w-right-convergent to z; € X; (1 < i < k) we have
lirgn”T(fo, conxy) =T(x1,...,z)|| =0,

that is 7" is jointly sequentially w-right-norm continuous. The following result follows from Proposition 3.3 and
Theorem 3.8 in [37]. Let X1, ..., X}, be non zero sequentially right Banach spaces andlet7": X7 x --- x X, — X
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be a multilinear operator. Then 7" is RQCC if and only if all of the Aron-Berner extensions of 71" are X -valued if
and only if 7" has an X -valued Aron-Berner extension. We shall study this equivalence in the case of holomorphic
mappings between complex Banach spaces.

We now consider weakly compact holomorphic mappings. Let X,Y be two Banach spaces, a mapping
f X — Y issaid to be a holomorphic map if for each © € X there exists a sequence of polynomials

d"f(z) e P("X,Y)

and a neighborhood V. of x such that the series

o0 1 An
L f@)y - o)
n!
n=0
converges uniformly to f(y) for every y € V.
A holomorphic function f : X — Y is said to be of bounded type if it is bounded on all bounded subsets of
X . The polynomial series at zero f(y) = >.°° , 2-d" f(0)(y) of such a function have infinite radius of uniform

n=0 n!
convergence, i.e.: limsup || 1;d" f(0) = 0 (compare [16, Section 6.2]).

If f: X — Y is a holomorphic function of bounded type and f(y) = S.°° , Ld" f(0)(y) (y € X) is its

n=0 n!

Taylor series at 0, it follows by [21, Section 2] or [16, Proposition 6.16] that the assignment

y— AB(f)(y) =) %AB(J”f(O))(y), (y € X™7)

n=0 """

defines a holomorphic function of bounded type, AB(f) : X** — Y **, called the Aron-Berner extension of f.
A holomorphic map f : X — Y is said to be weakly compact if for every x € X there exists a neighborhood
V.. of x such that f(V,,) is a relatively weakly compact set of Y. See [28] or [17] for details about holomorphic
maps. The Examples 4.1, and 4.2 show that weak compactness is not the correct property to guarantee Aron-
Berner extensions valued in the same codomain space.
We shall now show that w-right-norm continuity of a holomorphic mapping f implies w-right-norm continuity
of its derivatives at every point.

Proposition 4.3 Let f : X — Y be a holomorphic mapping between two Banach spaces. Then the following
statements hold:
(@) If f is w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial dr f(z)is
w-right-norm continuous (respectively, strong*-norm continuous) for everyn € N and every x € X.
(b) If f is sequentially w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial

dr f(zx) is sequentially w-right-norm continuous (respectively, strong*-norm continuous) for everyn € N
and every x € X.

Proof. We shall only include here the proof of the statements concerning the w-right topology, the proofs of
those affirmations concerning the strong* topology follow similarly.

(a) Let us fix z € X. By hypothesis, there exist reflexive spaces Ri,..., R, bounded linear operators 7; :
X — R; i €{1,...,k})and § > O satisfying that f(W) € f(z) + B(Y'), where

W={yeX:|z—-yl, <dVie{l,... ,k}}.

Since Wy = {y € X : [lyll,, <6,Vi € {1,...,k}} is a balanced set, it follows by [41, Lemma 3.1] (compare
also the proof of [6, Proposition 3.4]), that

L @) (W) Cf (o + Wo) € a0l () + B(Y))

where €6 A denotes the convex balanced hull of A. In particular there exists a constant M,, > 0 satisfying that

||cf"f(x)(y)|| <M,, forall yeW,.
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Taking R = @ R;and T : X — R, x +— (6/2)7'(T;(z)), it can be easily seen that, for each y € X with
T(y) # 0, we have —4— € W), and hence,

vl

Id" f ()W)l < Myl -

For each y € ker(T), and ¢ > 0, ty lies in Wy, thus ¢ ||d" f(z)(y)| = ||d" f(z)(ty)|| < M, , which implies that
d" f(z)(y) = 0. We have then shown that

ld" f () ()l < Mallylly

for all y € X. This proves that dn f () is w-right-norm continuous at 0, which gives the desired statement.

(b) We assume that f is sequentially w-right-norm continuous. Let (y;) be a sequence in X converging in the
w-right topology to y € X. Letus fix € X and ¢ in the closed unit ball of Y*. Defining g (A\) := ¢ f(z+ Ayx)
and g(A\) := ¢ f(x + Ay), it follows by Cauchy’s integral formula that

Sl 1) = &1 = (o0 - " 0) fnl

sup{|(gr — 9)(N)[ = [Al =1}
sup{|[f(z + Ayx) — f(z + Ay)[| : [A] = 1}

Taking supreme over all ¢ in the closed unit ball of Y*, we have

<
<

d" f (@) (y) — d" f(@) ()| < ntsup{||f(z + Ay) = f(z +Ay)] : [A] = 1}

Finally, since f is sequentially w-right-norm continuous, it can be easily seen that

i sup{[|f (@ 4 Ayr) = flz +Ay)l| = A =1} = 0. 0

Theorem 4.4 Let X be a sequentially right space, Y a Banach space and let f : X — Y be a holomorphic
function of bounded type. Then f is sequentially w-right-norm continuous if and only if AB(f) is Y -valued.

Proof. Let f(y) = 2207 57d" f(0)(y), (y € X) and AB(f)(y) = 327 ;7 AB(d" f(0))(y), (y € X*)
be the Taylor series of f and AB(f) at zero, respectively. If f is sequentially w-right-norm continuous, then
Proposition 4.3 b) implies that, for each natural n, dr f(0) is sequentially w-right-norm continuous. The polar-
ization formula (4.1) implies that, for each natural n, the generating multilinear operator of dr £(0) is jointly
sequentially w-right-norm continuous or RQCC. Theorem 3.8 in [37] guarantees that AB(d" £(0)) is Y -valued
for all natural n. The uniform convergence of the Taylor series at zero of the function AB(f) assures that
AB(f)(X™) C Y.

Assume now that AB(f)(X**) C Y. Since X** is a balanced set, it follows by [41, Lemma 3.1] (compare
also the proof of [6, Proposition 3.4]), that

%AB(cZ”f(O))(X**) C @WAB(f)(X™) C Y.

It follows again from Theorem 3.8 in [37] that dr f(0) is sequentially w-right-norm continuous. The desired
statement will finally follow from the uniform convergence of the Taylor series. O
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