MATHEMATISCHE

WWW.mn-journal.org

Founded in 1948 by Erhard Schmidt
Edited by R. Mennicken (Regensburg)
in co-operation with
F. Finster (Regensburg), F. Gesztesy (Columbia-Missouri),
K. Hulek (Hannover), F. Klopp (Villetaneuse),
R. Schilling (Dresden)

Sequential w-right continuity and summing operators

Joe Diestel ${ }^{* 1}$, Antonio M. Peralta ${ }^{* * 1,2}$, and Daniele Puglisi ${ }^{* * * 1}$
${ }^{1}$ Kent State University, Kent, OH 44242, USA
${ }^{2}$ Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received 13 July 2008, revised 30 July 2009, accepted 14 August 2009
Published online 8 March 2011

Key words W-right topology, strong* topology, sequential w-right-norm continuity, weakly compact mappings, summing operators
MSC (2010) Primary: 46G20, 46G25, 46L05, 47B07, 17C65; Secondary: 47A20
We continue the study of the w-right and strong* topologies in general Banach spaces started in $[36,37]$ and [35]. We show that in $L_{1}(\mu)$-spaces the w-right convergence of sequences admits a simpler control. Some considerations about these topologies will be contemplated in the particular cases of C^{*}-algebras and JB*-triples in connection with summing operators. We also study (sequential) w-right-norm and strong*-norm continuity for holomorphic mappings.
(c) 2011 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Preliminaries

I. Villanueva, J. D. M. Wright, K. Ylinen and the second author of the present note introduced in [36] two interesting topologies: the strong* and the w-right topology in the following way: let X and Y be two Banach spaces, for every bounded linear operator $T: X \longrightarrow Y$, we can consider a seminorm on X defined by $\|x\|_{T}:=\|T(x)\|$. The strong**topology is the topology generated by the family of seminorms $\|\cdot\|_{T}$, where $T: X \longrightarrow H$ is a bounded linear operator from X to some Hilbert space H (such a topology is denoted by $S^{*}\left(X, X^{*}\right)$). Similarly, the w-right-topology is the topology generated by the family of seminorms $\|\cdot\|_{T}$ where T runs in the set of all bounded linear operators from X to a reflexive space [36].

In Section 2, we establish new methods for controlling w-right convergent sequences in $L_{1}(\mu)$ spaces. Section 3 is devoted to a more detailed study of strong*-norm continuous operators between Banach spaces. In the particular cases of operators whose domain is a C^{*}-algebra or a JB^{*}-triple, we explore the connections with p - C^{*}-summing and p - JB^{*}-triple-summing operators. We prove an extension property for $2-\mathrm{C}^{*}$-summing and $2-\mathrm{JB} *$-triple-summing operators (see Theorems 3.6 and 3.9). In this section we shall also introduce and develop p - JB^{*}-triple-summing operators on JB^{*}-triples as suitable generalizations of p - C^{*}-summing operators on C^{*}-algebras in the sense introduced by Pisier in [39].

The last section of the paper is devoted to the study of those holomorphic mappings of bounded type which are sequentially w-right-norm continuous. The main result in [35] establishes that a bounded linear operator $T: X \longrightarrow Y$ is weakly compact if and only if T is w-right-norm continuous. We shall provide examples showing that none of these implications holds for continuous polynomials in general Banach spaces. In the linear case, T is weakly compact if and only if $T^{* *}$ is Y-valued. In the setting of multilinear operators, this equivalence has been recently studied in [37]. One of the main results in the just quoted paper proves that when X_{1}, \ldots, X_{k} are non zero sequentially right Banach spaces and $T: X_{1} \times \cdots \times X_{k} \longrightarrow X$ is a multilinear operator, then T is RQCC (i.e., T is jointly sequentially w-right-norm continuous) if and only if all of the Aron-Berner extensions of T are X-valued if and only if T has an X-valued Aron-Berner extension. We shall consider here holomorphic mappings of bounded type f between two Banach spaces X and Y with X being a sequentially right Banach

[^0]space. We shall prove that such a mapping f is sequentially w-right-norm continuous if and only if its AronBerner extension, $A B(f): X^{* *} \longrightarrow Y^{* *}$, is Y-valued.

1.1 Notation

Except otherwise stated, all the Banach spaces considered in this paper will be complex. Given a Banach space $X, S(X)$ and $B(X)$ denote, respectively, the unit sphere and the closed unit ball of X. For any pair of Banach spaces $X, Y, \mathcal{L}(X, Y)$ will stand for the space of all bounded linear operators between X and Y, while $X \stackrel{\vee}{\otimes} Y$ and $X \widehat{\otimes} Y$ will denote the injective and projective tensor product of X and Y, respectively.

2 When the w-right-topology and the weak-topology coincide sequentially

In [36, Proposition 2.7] the authors remarked the following.
Proposition 2.1 Let X be a Banach space. If the w-right-topology coincides with the weak topology on X, then X is finite dimensional.

Given a set X with two topologies τ_{1} and τ_{2}, we say that τ_{1} and τ_{2} coincide sequentially if both topologies define the same convergent sequences on X, that is, a sequence $\left(x_{n}\right)_{n}$ in X is τ_{1}-convergent to $x \in X$ if and only if $\left(x_{n}\right)_{n}$ converges to the same x in the τ_{2}-topology.

We recall that a bounded linear operator $T: X \longrightarrow Y$ is called completely continuous if it maps weakly convergent sequences to norm convergent sequences. A Banach space X has the Dunford-Pettis property (DPP) if, for every Banach space Y, every weakly compact operator from X to Y is completely continuous. X satisfies the (weaker) alternative Dunford-Pettis property (DP1) if every weakly compact operator $T: X \longrightarrow Y$ is a DP1 operator, that is, $T\left(x_{n}\right)$ converges in norm to $T(x)$ whenever $x_{n} \longrightarrow x$ weakly in X and $\left\|x_{n}\right\|=\|x\|=1$.

The following result was established in [36, Remark 4.5].
Proposition 2.2 Let X be a Banach space.
(a) The w-right and the weak topologies coincide sequentially if and only if X has the DPP.
(b) The w-right and the weak topologies coincide sequentially on the unit sphere of X if and only if X has the $D P 1$.
To formulate the next result we first recall a deep result due to Rieffel (see [27] for more details).
Theorem 2.3 (Rieffel) Let (Ω, Σ, μ) be a finite measure space and let X be a Banach space. A vector measure $F: \Sigma \longrightarrow X$ is Bochner-representable with respect to μ (i.e., $F(B)=$ Bochner $-\int_{B} f d \mu$ for all $B \in \Sigma$ and some $\left.f \in L_{1}(\mu, X)\right)$ if and only if F is μ-continuous, F is of bounded variation, and for each $\epsilon>0$ there exists $B_{\epsilon} \in \Sigma$ with $\mu\left(\Omega \backslash B_{\epsilon}\right)<\epsilon$ such that

$$
\left\{\frac{F(B)}{\mu(B)}: B \subseteq B_{\epsilon}, B \in \Sigma, \mu(B)>0\right\}
$$

is relatively weakly compact.
Remark 2.4 Note that we can reformulate Rieffel's theorem in terms of operators as follows: a bounded linear operator $T: L_{1}(\mu) \longrightarrow X$ is Bochner-representable (i.e., there is a $g \in L_{\infty}(\mu, X)$ so that $T(f)=$ Bochner $-\int_{\Omega} f \cdot g d \mu$ for every $\left.f \in L_{1}(\mu)\right)$ if and only if for each $\epsilon>0$ there exists $\Omega_{\epsilon} \in \Sigma$ with $\mu\left(\Omega \backslash \Omega_{\epsilon}\right)<\epsilon$ so that $T: L_{1}\left(\Omega_{\epsilon}, \Sigma_{\Omega_{\epsilon}},\left.\mu\right|_{\Omega_{\epsilon}}\right) \longrightarrow X$ is weakly compact, where $\Sigma_{\Omega_{\epsilon}}$ denotes the σ-field $\Sigma_{\Omega_{\epsilon}}=\left\{F \in \Sigma: F \subseteq \Omega_{\epsilon}\right\}$.

Proposition 2.5 Let (Ω, Σ, μ) be a finite measure space, and let $\left(f_{n}\right)_{n}$ be a sequence in $L_{1}(\mu)$. Then the following are equivalent:
(0) $\left(f_{n}\right)_{n}$ is weakly null.
$\left(0^{\prime}\right)\left(f_{n}\right)_{n}$ is w-right null.
(1) For every Banach space X, and every weakly compact operator $T: L_{1}(\mu) \longrightarrow X$, the sequence $\left(T\left(f_{n}\right)\right)_{n}$ is norm null.
(2) For each Banach space X, and every representable operator $T: L_{1}(\mu) \longrightarrow X$, the sequence $\left(T\left(f_{n}\right)\right)_{n}$ is norm null.
(3) For every Banach space X and every $g \in L_{\infty}(\mu, X)$, the sequence $\left(f_{n} \cdot g\right)_{n}$ is weakly null in $L_{1}(\mu, X)$.

Proof. Since $L_{1}(\mu)$ has the DPP, then (0) and $\left(0^{\prime}\right)$ are equivalent by Proposition 2.2. The equivalence of $\left(0^{\prime}\right)$ and (1) follows directly from the definition of the w-right topology.
(1) \Rightarrow (2) Let X be a Banach space and let $T: L_{1}(\mu) \longrightarrow X$ be a representable operator. Fixing $\epsilon>0$, by the previous remark, there exists $\Omega_{\epsilon} \in \Sigma$ with $\mu\left(\Omega \backslash \Omega_{\epsilon}\right)<\epsilon$ so that

$$
T: L_{1}\left(\Omega, \Sigma_{\Omega_{\epsilon}},\left.\mu\right|_{\Omega_{\epsilon}}\right) \longrightarrow X \quad \text { is weakly compact. }
$$

Moreover, since $\left(f_{n}\right)_{n}$ is weakly null in $L_{1}(\Omega, \Sigma, \mu)$, by a classical result of Dunford and Pettis (see [15] Chapter IV.2) the sequence $\left(f_{n}\right)_{n}$ is uniformly integrable. We can then assume that $\left\|f_{n} \chi_{\Omega \backslash \Omega_{\epsilon}}\right\|_{L_{1}(\Omega, \Sigma, \mu)}<\frac{\epsilon}{\|T\|}$ uniformly in $n \in \mathbb{N}$.

Now, since $\left\{f_{n} \chi_{\Omega_{\epsilon}}\right\}_{n}$ is weakly null in $L_{1}\left(\Omega, \Sigma_{\Omega_{\epsilon}},\left.\mu\right|_{\Sigma_{\Omega_{\epsilon}}}\right)$, then there is an $n_{0} \in \mathbb{N}$ so that $\left\|T\left(f_{n} \chi_{\Omega_{\epsilon}}\right)\right\|<\epsilon$, for all $n>n_{0}$. Therefore, for $n>n_{0}$, we have

$$
\left\|T\left(f_{n}\right)\right\| \leq\left\|T\left(f_{n} \chi_{\Omega_{\epsilon}}\right)\right\|+\left\|T\left(f_{n} \chi_{\Omega \backslash \Omega_{\epsilon}}\right)\right\|<\epsilon+\|T\|\left\|f_{n} \chi_{\Omega \backslash \Omega_{\epsilon}}\right\|_{L_{1}(\Omega, \Sigma, \mu)}<2 \epsilon
$$

(2) \Rightarrow (0) Fix $g \in L_{\infty}(\mu)$; It's enough to choose $T: L_{1}(\mu) \longrightarrow \mathbb{C}$ defined by $T(f)=\int_{\Omega} f g d \mu$. T is trivially representable and so $\left\langle f_{n}, g\right\rangle \xrightarrow{n \rightarrow \infty} 0$, that is, $\left(f_{n}\right)_{n}$ is weakly null in $L_{1}(\mu)$.
(0) \Rightarrow (3) Fix a Banach space X and an element $g \in L_{\infty}(\mu, X)$. Let $\left(f_{n}\right)_{n}$ be a weakly-null sequence in $L_{1}(\mu)$. Since (Ω, Σ, μ) is a finite measure space we can apply the Diestel-Ruess-Schachermayer Theorem (see [14]) to the weakly relatively compact set $\left\{f_{n}\right\}_{n \in \mathbb{N}}$. Then for each subsequence $\left(f_{n_{k}}\right)_{k}$ of $\left(f_{n}\right)_{n}$ there exists a sequence $\left(g_{n}\right)_{n}$ with $g_{n} \in \operatorname{co}\left\{f_{n_{k}}: n_{k} \geq n\right\}$ such that $\left(g_{n}(\omega)\right)_{n}$ is a null sequence of scalars for a.e. $\omega \in \Omega$. But the sequence $\left(g_{n} \cdot g\right)_{k}$ is such that $g_{n} \cdot g \in c o\left\{f_{n_{k}} \cdot g: n_{k} \geq n\right\}$ and so $\left(g_{n}(\omega) \cdot g(\omega)\right)_{k}$ is norm null in X for a.e. $\omega \in \Omega$. By the Diestel-Ruess-Schachermayer's Theorem the sequence $\left(f_{n} \cdot g\right)_{n \in \mathbb{N}}$ is weakly null in $L_{1}(\mu, X)$.
$(3) \Rightarrow(0)$ It's enough to choose $X=\mathbb{K}$ and $g(\omega)=1$ for each $\omega \in \Omega$.
Corollary 2.6 (0), ($\left.0^{\prime}\right),(1),(2)$ of the proposition above are equivalent for any measure space (Ω, Σ, μ).
Proof. Note that $(0),\left(0^{\prime}\right)$ and (1) are trivially equivalent because $L_{1}(\mu)$ has the DPP.
$(0) \Rightarrow(2)$ Let $\left(f_{n}\right)_{n}$ be a weakly null sequence in $L_{1}(\mu)$. It is well known that (see [18], III.8.5) there exists a set Ω_{1} in Σ, a sub σ-field of Σ such that the restriction μ_{1} of μ to Σ_{1} has the properties
(i) the measure space $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ is σ-finite;
(ii) $\overline{\operatorname{span}}\left\{f_{n}: n \geq 1\right\} \subseteq L_{1}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$.

Since $L_{1}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ is a closed subspace of $L_{1}(\Omega, \Sigma, \mu)$, we can assume, without loss of generality that (Ω, Σ, μ) is a σ-finite measure space. Thus there exists a sequence $\left(A_{n}\right)$ in Σ of pairwise disjoint sets with finite and positive μ-measure such that $\Omega=\bigcup_{n \in \mathbb{N}} A_{n}$.

Now, we define $\mu_{0}: \Sigma \longrightarrow[0,+\infty)$ as

$$
\mu_{0}(E)=\sum_{n \in \mathbb{N}} \frac{1}{2^{n} \mu\left(A_{n}\right)} \mu\left(A_{n} \cap E\right) \quad \text { for every } \quad E \in \Sigma
$$

It is easy to see that μ_{0} is a finite measure (it is a probability measure) and, if we consider the function $h=\sum_{n \in \mathbb{N}} 2^{n} \mu\left(A_{n}\right) \chi_{A_{n}}$, the map

$$
\begin{aligned}
& T: L_{1}(\mu) \longrightarrow L_{1}\left(\mu_{0}\right) \\
& f \longmapsto h \cdot f
\end{aligned}
$$

is a surjective isometry. Since μ and μ_{0} have the same null sets, for each Banach space X the identity

$$
i d: L_{\infty}(\mu, X) \longrightarrow L_{\infty}\left(\mu_{0}, X\right)
$$

is a surjective isometry.

Fix a Banach space X and a representable operator $S: L_{1}(\mu) \longrightarrow X$. Then there is a $g \in L_{\infty}(\mu, X)$ so that $S(f)=\int_{\Omega} f \cdot g d \mu$. By the last paragraph above, we can consider g as element of $L_{\infty}\left(\mu_{0}, X\right)$. Then the operator

$$
\begin{aligned}
& \widetilde{S}: L_{1}\left(\mu_{0}\right) \longrightarrow X \\
& \widetilde{S}(f)=\int_{\Omega} f \cdot g d \mu_{0} \quad \text { for each } \quad f \in L_{1}\left(\mu_{0}\right)
\end{aligned}
$$

is trivially representable. Since $\left(T\left(f_{n}\right)\right)_{n}$ is w-right null in $L_{1}\left(\mu_{0}\right)$ (actually, every bounded linear operator maps w-right null sequences into w-right null sequences), by the previous proposition we have

$$
\left\|S\left(f_{n}\right)\right\|=\left\|\widetilde{S}\left(f_{n} \cdot h\right)\right\| \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty
$$

because for each $f \in L_{1}(\mu, X)$ we have $\int_{\Omega} f d \mu=\int_{\Omega} f \cdot h d \mu_{0}$, which gives (2).
The implication $(2) \Rightarrow(0)$ follows similarly.

3 Strong*-norm continuous operators

We recall a result established in [35]. We should note here that after the publication of the just quoted paper, we were told about the significative papers [40] and [42], which are directly connected with the results obtained in [35]. In fact, the main result in [35] follows as a consequence of [40, Proposition 2.6 and Theorems 3.1 and 3.2], proved there in a more general setting. The equivalence of (i) and (iii) in [35, Corollary 5] can be also obtained from [42, Lemmas 2.1 and 3.2].

Theorem 3.1 Let X and Y be two Banach spaces, and let $T: X \longrightarrow Y$ be a bounded linear operator. Then the following are equivalent
(a) T is w-right-norm continuous.
(b) T is w-right-norm continuous on the closed unit ball of X.
(c) T is weakly compact.

Similarly we have:
Theorem 3.2 Let X and Y be two Banach spaces, and let $T: X \longrightarrow Y$ be a bounded linear operator. Then T is strong*-norm continuous if and only if T factors through a Hilbert space.

Proof. Let $T: X \longrightarrow Y$ be a strong*-norm linear operator. The set

$$
U:=\{x \in X:\|T(x)\| \leq 1\}
$$

is a strong*-neighborhood of zero in X. Then there exist Hilbert spaces H_{1}, \ldots, H_{n}, and operators $G_{i}: X \longrightarrow$ $H_{i}, i=1, \ldots, n$, satisfying that $\bigcap_{i=1}^{n}\left\{x \in X:\left\|G_{i}(x)\right\| \leq 1\right\} \subseteq U$. Consider $H:=\left(\bigoplus_{i=1}^{n} H_{i}\right)_{\ell_{2}}$, and $G: X \longrightarrow H$ defined by $G(x)=\left(G_{i}(x)\right)_{i=1}^{n}$. The inclusion

$$
\{x \in X:\|G(x)\| \leq 1\} \subseteq \bigcap_{i=1}^{n}\left\{x \in X:\left\|G_{i}(x)\right\| \leq 1\right\}
$$

implies that

$$
\begin{equation*}
\|T(x)\| \leq\|G(x)\| \quad \text { for each } \quad x \in X \tag{3.1}
\end{equation*}
$$

The kernel of G is a closed subspace of X and the mapping $x+\operatorname{ker}(G) \longmapsto\||x|\|_{G}=\|G(x)\|$ is a prehilbertian norm on the quotient $X / \operatorname{ker}(G)$. The inequality (3.1) guarantees that the law

$$
\begin{aligned}
& R: X / \operatorname{ker}(G) \longrightarrow Y \\
& x+\operatorname{ker}(G) \longmapsto T(x)
\end{aligned}
$$

is a well-defined continuous operator on $X / \operatorname{ker}(G)$ with $\|R\| \leq\|T\|$. If H_{G} denotes the completion of $X / \operatorname{ker}(G)$, then H_{G} is a Hilbert space and R admits an extension $\widehat{R}: H_{G} \longrightarrow Y$. If π denotes the canonical projection of
X onto $X / \operatorname{ker}(G)$ and j_{G} the inclusion of $X / \operatorname{ker}(G)$ into H_{G}, then we have $T=\widehat{R} j_{G} \pi$, which shows that T factors through a Hilbert space (i.e., $T \in \Gamma_{2}(X, Y)$). Clearly every operator in $\Gamma_{2}(X, Y)$ is strong*-norm continuous.

Corollary 3.3 Every strong*-norm continuous operator between two Banach spaces is uniformly convexifying in the sense of Beauzamy [7].

Corollary 3.4 Every strong*-norm continuous operator between two Banach spaces is a Banach-Saks operator [8].

Corollary 3.5 The class of all strong*-norm continuous operators between Banach spaces is an injective (closed) operator ideal in the Pietsch sense [38].

When the domain space is a C^{*}-algebra (respectively, a JB*-triple) then strong*-norm continuous operators coincide with $2-\mathrm{C}^{*}$-summing (respectively, $2-\mathrm{JB}^{*}$-triple-summing) operators. p - C^{*}-summing operators on C^{*}-algebras were introduced by Pisier in [39]. We recall that an operator T from a C^{*}-algebra A to a Banach space Y is said to be $p-C^{*}$-summing $(p>0)$ if there exists a constant C such that for every finite sequence of self-adjoint elements $\left(a_{1}, \ldots, a_{n}\right)$ in A the next inequality holds

$$
\begin{equation*}
\left(\sum_{1}^{n}\left\|T\left(a_{i}\right)\right\|^{p}\right)^{\frac{1}{p}} \leq C\left\|\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|, \tag{3.2}
\end{equation*}
$$

where, for each $x \in A$, we denote $|x|=\left(\frac{x x^{*}+x^{*} x}{2}\right)^{\frac{1}{2}}$. The smallest constant C verifying the above inequality is denoted by $C_{p}(T)$.

The following Pietsch's factorization theorem for p - C^{*}-summing operators was established by Pisier in [39]: if $T: A \longrightarrow Y$ is a bounded linear operator from a C^{*}-algebra to a complex Banach space, then T is a p-C*-summing operator if and only if there is a norm-one positive linear functional φ in A^{*} and a positive constant $K_{p}(T)$ such that

$$
\|T(x)\| \leq K_{p}(T)\left(\varphi\left(|x|^{p}\right)\right)^{\frac{1}{p}}
$$

for every x in A. Every p-summing operator from a C^{*}-algebra to a Banach space is p - C^{*}-summing but the converse is false in general (compare [39, Remark 1.2]). It follows from the little Grothendieck's inequality for C^{*}-algebras (see $[23,39]$) that an operator $T: A \longrightarrow Y$ is 2 - C^{*}-summing if and only if it is strong*-norm continuous.

The following result shows that $2-\mathrm{C}$-summing operators enjoy an extension property which is the appropriate version of [13, Theorem 4.15].

Theorem 3.6 Let A and B be two C^{*}-algebras with $B a C^{*}$-subalgebra of A and let Y be a Banach space. Then every $2-C^{*}$-summing operator $T: B \longrightarrow Y$ admits a norm preserving 2-C*-summing extension $\widetilde{T}: A \longrightarrow Y$.

Proof. Let $T: B \longrightarrow Y$ be a $2-\mathrm{C}^{*}$-summing operator. According to the Pietsch factorisation theorem, there is a norm-one positive linear functional φ in B^{*} and a positive constant $K_{p}(T)$ such that

$$
\begin{equation*}
\|T(x)\| \leq K_{2}(T)\left(\varphi\left(|x|^{2}\right)\right)^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

for every x in B. Proposition 3.1.6 in [29] implies the existence of a positive functional $\phi \in A^{*}$ satisfying that $\|\phi\|=\|\varphi\|$ and $\left.\phi\right|_{B}=\varphi$. The set $N_{\phi}=\left\{x \in A: \phi\left(x x^{*}+x^{*} x\right)=0\right\}$ is a closed subspace of A and the sesquilinear form

$$
\left(x+N_{\phi}, y+N_{\phi}\right) \longmapsto \frac{1}{2} \phi\left(x y^{*}+y^{*} x\right)
$$

defines a pre-inner product on the preHilbert space A / N_{ϕ}. The completion of the latter space is a Hilbert space that will be denoted by H_{ϕ}. Let $j_{\phi}: A \longrightarrow H_{\phi}$ denote the composition of the canonical projection and inclusion.

The norm-closure of $j_{\phi}(B)=B /\left(N_{\phi} \cap B\right)$ is a closed subspace of H_{ϕ} which is denoted by K. Let π be the orthogonal projection of H_{ϕ} onto K.

The operator $B /\left(N_{\phi} \cap B\right) \longrightarrow Y, x+\left(N_{\phi} \cap B\right) \longmapsto T(x)$ is well-defined by (3.3). Therefore there exists a unique operator $R: K \longrightarrow Y$ satisfying $R\left(x+\left(N_{\phi} \cap B\right)\right)=T(x)$. Finally, $\widetilde{T}: A \longrightarrow Y, \widetilde{T}=R \circ \pi \circ j_{\phi}$ is a norm preserving 2-C*-summing extension of T.

Proposition 3.7 Let X be a Banach space. Suppose that the w-right topology and the $S^{*}\left(X, X^{*}\right)$-topology coincide on bounded subsets of X. Then the following statements holds:
(a) X satisfies the DPP if and only if every strong*-norm continuous operator from X to a Banach space is completely continuous.
(b) X satisfies the DP1 if and only if every strong*-norm continuous operator from X to a Banach space is a DP1 operator.

Proof. (a) We prove only the if-implication, because the other implication follows easily. Suppose that every strong*-norm continuous operator from X to a Banach space is completely continuous. Let $\left(x_{n}\right)$ be a weaklynull sequence in X and let $T: X \longrightarrow Y$ be a weakly compact operator. Since the w-right topology and the $S^{*}\left(X, X^{*}\right)$-topology coincide on bounded subsets of X, then there exist a bounded linear operator G from X to a Hilbert space and a mapping $N:(0, \infty) \longrightarrow(0, \infty)$ satisfying

$$
\|T(x)\| \leq N(\varepsilon)\|G(x)\|+\varepsilon\|x\|
$$

for all $x \in X$ and $\varepsilon>0$ (compare [36, Proposition 5.1]).
Let us fix $\delta>0$. Since $\left(x_{n}\right)$ is bounded, we can find an appropriate $\varepsilon_{0}>0$ satisfying that $\varepsilon_{0}\left\|x_{n}\right\|<\frac{\delta}{2}$, for every natural n. By hypothesis, $G\left(x_{n}\right) \longrightarrow 0$ in norm. So there exists a natural m satisfying that

$$
N\left(\varepsilon_{0}\right)\left\|G\left(x_{n}\right)\right\|<\frac{\delta}{2}, \quad \text { for all } \quad n \geq m
$$

which gives that $\left\|T\left(x_{n}\right)\right\|<\delta$, for all $n \geq m$.
The proof of statement (b) follows similarly.
For each C^{*}-algebra A, the w-right and the strong* topologies coincide on bounded sets of A (compare [2, Theorem II.7]). The extension property of 2-C*-summing operators proved in Theorem 3.6 together with the above Proposition 3.7 give an alternative proof to [11, Corollary 2] and [19, Corollary 3.2].

Corollary 3.8 Every C^{*}-subalgebra of a C^{*}-algebra satisfying the DPP (respectively, the DP1) also satisfies the same property.

Let u be a norm-one element in a Banach space X. The set of states of X relative to $u, D(X, u)$, is defined as the non empty, convex, and weak*-compact subset of X^{*} given by

$$
D(X, u):=\left\{\Phi \in X^{*}: \Phi(u)=1=\|\Phi\|\right\}
$$

For $x \in X$, the numerical range of x relative to $u, V(X, u, x)$, is given by $V(X, u, x):=\{\Phi(x): \Phi \in D(X, u)\}$. The numerical radius of x relative to $u, v(X, u, x)$, is given by

$$
v(X, u, x):=\max \{|\lambda|: \lambda \in V(X, u, x)\}
$$

It is well-known that a bounded linear operator T on a complex Banach space X is hermitian if and only if $V\left(\mathcal{L}(X), I_{X}, T\right) \subseteq \mathbb{R}$ (compare [9, Section 5, Lemma 2]). If T is a bounded linear operator on X, then we have $V\left(\mathcal{L}(X), I_{X}, T\right)=\overline{c o} W(T)$ where

$$
W(T)=\left\{x^{*}(T(x)):\left(x, x^{*}\right) \in \Gamma\right\}
$$

and $\Gamma \subseteq\left\{\left(x, x^{*}\right): x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}$ verifies that its projection onto the first coordinate is norm dense in the unit sphere of X [9, Section 9]. Moreover, the numerical radius of T can be calculated as follows

$$
v\left(\mathcal{L}(X), I_{X}, T\right)=\sup \left\{\left|x^{*}(T(x))\right|:\left(x, x^{*}\right) \in \Gamma\right\}
$$

In particular if $X=Y^{*}$, then by the Bishop-Phelps-Bollobás theorem, it follows that

$$
v\left(\mathcal{L}(X), I_{X}, T\right)=\sup \left\{\left|x^{*}(T(x))\right|: x \in S_{X}, \quad x^{*} \in S_{Y}, \quad x^{*}(x)=1\right\}
$$

Originally introduced by Kaup in [26], the class of complex Banach spaces called JB*-triples includes all C*algebras, Hilbert spaces, spin factors and operators between complex Hilbert spaces. A JB*-triple is a complex Banach space E with a continuous triple product $\{., .,\}:. E \times E \times E \longrightarrow E$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle one, and satisfies:
(JB1) (Jordan Identity) $L(a, b)\{x, y, z\}=\{L(a, b) x, y, z\}-\{x, L(b, a) y, z\}+\{x, y, L(a, b) z\}$, for all a, b, c, x, y, z in E, where $L(a, b) x:=\{a, b, x\} ;$
(JB2) The map $L(a, a): E \longrightarrow E$ is an hermitian operator with non negative spectrum for all a in E;
(JB3) $\|\{a, a, a\}\|=\|a\|^{3}$, for all a in E.
For each element x in a JB*-triple E, we shall denote $x^{[1]}:=x, x^{[3]}:=\{x, x, x\}$, and $x^{[2 n+1]}:=\left\{x, x, x^{[2 n-1]}\right\},(n \in \mathbb{N})$. Given a subset $F \subset E$, the symbol $F \square F$ will denote the set

$$
\{L(x, y): x, y \in F\} \subset \mathcal{L}(E)
$$

Examples: every C^{*}-algebra is a JB^{*}-triple with respect to the product $\{a, b, c\}:=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$. The above product remains valid for the space $\mathcal{L}(H, K)$ of all continuous operators between two complex Hilbert spaces H, K.

For each JB*-triple E and every state $\Phi \in D\left(\mathcal{L}(E), I_{E}\right)$, the assignment $x \longmapsto\|x\|_{\Phi}:=\Phi(L(x, x))^{\frac{1}{2}}$ defines a prehilbertian seminorm on E. Further, whenever φ is a norm-one element in E^{*} and $z \in S_{E^{*}}$ with $\varphi(z)=1$, the mapping $x \longmapsto\|z\|_{\varphi}=\varphi\{x, x, z\}^{\frac{1}{2}}$ does not depend on the point of support z, and defines also a prehilbertian seminorm on E (compare [34, Section 1]).

In the more general setting of JB*-triples, only the notion of $2-\mathrm{C}^{*}$-summing operator has been generalized in [32]. An operator T from a JB*-triple E to a Banach space Y is said to be $2-J B^{*}$-triple-summing if there exists a positive constant C such that for every finite sequence $\left(x_{1}, \ldots, x_{n}\right)$ of elements in E we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{2} \leq C\left\|\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)\right\| \tag{3.4}
\end{equation*}
$$

The smallest constant C for which (3.4) holds is denoted by $C_{2}(T)$.
The corresponding Pietsch factorization theorem for 2-JB*-triple-summing operators was established in [32, Theorem 3.6]. Indeed: if $T: E \longrightarrow Y$ is a 2-JB*-triple-summing operator then there are norm-one functionals φ_{1}, φ_{2} in E^{*} and a positive constant $C(T)$ such that

$$
\|T(x)\| \leq C(T)\|x\|_{\varphi_{1}, \varphi_{2}}
$$

for all $x \in E$. This result together with the little Grothendieck inequality for JB*-triples and the Hahn-Banach theorem allow us to prove the following result with a verbatim adaptation of the proof of Theorem 3.6.

Theorem 3.9 Let E and F be two JB*-triples with F a JB*-subtriple of E and let Y be a Banach space. Then every 2-JB*-triple-summing operator $T: F \longrightarrow Y$ admits a norm preserving 2-JB*-triple-summing extension $\widetilde{T}: E \longrightarrow Y$.

Having in mind that for every JB*-triple E, the w-right and strong* topologies coincide on bounded subsets of E (compare [33, p. 621]), the results [12, Corollary 6] and [1, Corollary 1] follow now as a direct consequence.

Corollary 3.10 Every $J B^{*}$-subtriple of a $J B^{*}$-triple satisfying the DPP (respectively, the DP1) also satisfies the same property.

Our next goal is to introduce a suitable variation of p-summing operators in JB^{*}-triples.
Let x be an element in a (general) JB*-triple E and let E_{x} denote the JB^{*}-subtriple generated by x. It is known that E_{x} is a commutative JB^{*}-triple. Therefore, the closed linear span of $\left.E_{x} \square E_{x}\right|_{E_{x}} \subset \mathcal{L}\left(E_{x}\right)$ is an abelian C^{*}-algebra (compare [26, Proposition 1.5]). This structure allows to define $\left.L(x, x)^{\frac{p}{2}}\right|_{E_{x}}$ as an element in $\mathcal{L}\left(E_{x}\right)$.

However, this definition, based on "local theory," does not satisfy our needs because $L(x, x)^{\frac{p}{2}}$ should be an element in $\mathcal{L}(E)$.

We shall see how local theory, wisely applied, can help us to avoid this obstacle. Let x be an element in a JB^{*}-triple E. It is known that E_{x} is JB^{*}-triple isomorphic (and hence isometric) to $C_{0}(\Omega)$ for some locally compact Hausdorff space Ω contained in $(0,\|x\|]$, such that $\Omega \cup\{0\}$ is compact and $C_{0}(\Omega)$ denotes the Banach space of all complex-valued continuous functions vanishing at 0 . It is also known that there exists a triple isomorphism Ψ from E_{x} onto $C_{0}(\Omega), \Psi(x)(t)=t(t \in \Omega)$ (cf. [25, 4.8], [26, 1.15] and [20]). The set $\bar{\Omega}=\operatorname{Sp}(x)$ is called the triple spectrum of x. We should note that $C_{0}(\mathrm{Sp}(x))=C(\mathrm{Sp}(x))$, whenever $0 \notin \mathrm{Sp}(x)$.

Local theory in JB*-triples gave rise to the so-called triple functional calculus. To avoid possible confusion with the classical continuous functional calculus in C^{*}-algebras, given a function $f \in C_{0}(\mathrm{Sp}(x)), f(x)$ shall have its usual meaning when E_{x} is regarded as an abelian C^{*}-algebra and $f_{t}(x)$ shall denote the same element of E_{x} when the latter is regarded as a JB*-subtriple of E. Thus, for any odd polynomial, $P(\lambda)=\sum_{k=0}^{n} \alpha_{k} \lambda^{2 k+1}$, we have $P_{t}(x)=\sum_{k=0}^{n} \alpha_{k} x^{[2 k+1]}$. The symbol $x^{[p]}$ will stand for $f_{t}(x)$, where $f(\lambda):=\lambda^{p},(\lambda \in \operatorname{Sp}(x))$.

The general lack of order in JB*-triples of the same kind that exists for C^{*}-algebras prevents us to affirm any property on a finite sum of the form $\sum_{j} x_{j}^{\left[\frac{p}{2}\right]}$, where x_{1}, \ldots, x_{k} are arbitrary elements in a JB*-triple E. In order to have a common order, not depending on the local structure, we make use of the space $\mathcal{L}(E)$. The following definition does not require the existence of an order.

Definition 3.11 Let E be a JB*-triple, let Y be a Banach space and let $p>0$. An operator $T: E \longrightarrow Y$ is said to be p-JB*-triple-summing if there exists a positive constant C such that for every finite sequence $\left(x_{1}, \ldots, x_{n}\right)$ of elements in E we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{p} \leq C\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\| \tag{3.5}
\end{equation*}
$$

The smallest constant C for which (3.5) holds is denoted by $C_{p}(T)$.
Let A be a C*-algebra. We recall that two elements a and b in A are said to be orthogonal if $a b^{*}=b^{*} a=0$, equivalently, $L(a, b)=0$. When a and b belong to a JB*-triple E, we say that a and b are orthogonal whenever $L(a, b)=0$. When a C^{*}-algebra is regarded as a JB^{*}-triple, these two notions of orthogonality coincide on A. We refer to [10, Lemma 1] for several reformulations of orthogonality in C^{*}-algebras and JB^{*}-triples.
C^{*}-algebras have a dual structure as JB^{*}-triples and C^{*}-algebras. Our next result shows that, in the setting of C^{*}-algebras, $p-\mathrm{C}^{*}$-summing operators and p - JB^{*}-triple-summing operators coincide.

Lemma 3.12 Let $\left(x_{1}, \ldots, x_{n}\right)$ be a finite sequence of elements in the C^{*}-algebra A and let X be a Banach space. The following statements hold:
(a) $\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\| \leq\left\|\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)\right\| \leq 2\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\|$.
(b) When $x_{1} \ldots, x_{n}$ are assumed to be hermitian we have

$$
\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\|=\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\|
$$

for every $p>0$.
(c) If $T \in \mathcal{L}(A, X)$, then T is p - C^{*}-summing whenever it is p-JB*-triple-summing. Moreover, if T is $p-C^{*}$-summing then there exists $C>0$ satisfying

$$
\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{p} \leq C\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\|
$$

for every finite sequence $\left(x_{1}, \ldots, x_{n}\right)$ of hermitian elements in A.

Proof. (a) Let 1 denote the unit element in $A^{* *}$. For every finite sequence $\left(x_{1}, \ldots, x_{n}\right)$ of elements in A we have

$$
\left\|\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)\right\| \geq\left\|\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)(1)\right\|=\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\| .
$$

To see the other inequality let us denote $S:=\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)$. Clearly S is a hermitian operator on A, Sinclair's theorem (compare [9, Remark in p. 54]) assures that

$$
\|S\|=\sup \left\{|\phi(S(z))|: z \in S_{A}, \phi \in S_{A^{*}}, \phi(z)=1\right\} .
$$

It is worth mentioning that $\phi(S(z)) \geq 0$ for any ϕ and z in the above setting. Let $z \in S_{A}$ and $\phi \in S_{A^{*}}$ with $\phi(z)=1$. We define $\psi(x):=\phi(x \circ z)$, where the symbol \circ denotes the natural Jordan product in A. It can be easily seen that $\psi \in S_{A^{*}}, \psi(1)=\phi(z)=1$. Moreover,

$$
\psi(L(x, x)(1))=\phi(L(x, x)(1) \circ z)=\frac{1}{2} \phi\left(\{x, x, z\}+\left\{x^{*}, x^{*}, z\right\}\right) \geq \frac{1}{2} \phi(L(x, x)(z)),
$$

for all $x \in A$. Furthermore, $\phi(L(x, x)(z))=\psi(L(x, x)(1))$, whenever $x=x^{*}$. In particular $\phi(S(z)) \leq 2 \psi(S(1))$, and hence

$$
\begin{aligned}
\|S\| & \leq 2 \sup \left\{\psi(S(1)): \psi \in S_{A^{*}}, \psi(1)=1\right\} \\
& =2 \sup \left\{\psi\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right): \psi \in S_{A^{*}}, \psi(1)=1\right\}=2\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\| .
\end{aligned}
$$

When x_{1}, \ldots, x_{n} are hermitian elements, the constant 2 in the above inequality can be omitted, which in particular gives: $\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right\|=\left\|\sum_{i=1}^{n} L\left(x_{i}, x_{i}\right)\right\|$.
(b) Every self-adjoint element $x \in A$ admits a decomposition in the form $x=x^{+}-x^{-}$, where x^{+}and x^{-} are orthogonal positive elements in A. It is not hard to see that $x^{\left[\frac{p}{2}\right]}=\left(x^{+}\right)^{\left[\frac{p}{2}\right]}-\left(x^{-}\right)^{\left[\frac{p}{2}\right]}$. Since $\left(x^{+}\right)^{\left[\frac{p}{2}\right]}$ and $\left(x^{-}\right)^{\left[\frac{p}{2}\right]}$ are orthogonal, we have $\left|x^{\left[\frac{p}{2}\right]}\right|^{2}=\left(x^{+}\right)^{p}+\left(x^{-}\right)^{p}=|x|^{p}$. Let x_{1}, \ldots, x_{n} be self-adjoint elements in A. The last paragraph in the proof of the previous statement shows that

$$
\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\|=\left\|\sum_{i=1}^{n}\left|x_{i}^{\left[\frac{p}{2}\right]}\right|^{2}\right\|=\left\|\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\| .
$$

(c) The formula stated in (b) proves the required statements.

Let A be a C^{*}-algebra and let X be a Banach space. The question is clearly whether p-JB*-triple-summing and p-C*-summing operators coincide in $\mathcal{L}(A, X)$. A strengthening of the inequality in Lemma 3.12, (b) seems to be necessary.

Proposition 3.13 Let A be a C^{*}-algebra and let $p \geq 2$. Then the formula

$$
\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)(1) \geq \sum_{i=1}^{n}\left|x_{i}\right|^{p},
$$

holds for every finite sequence of elements x_{1}, \ldots, x_{n} in A. In particular p-JB*-triple-summing and $p-C^{*}$-summing operators on A coincide.

Proof. Considering $A^{* *}$ instead of A, we may assume that A is a von Neumann algebra.
Let e be a partial isometry in A. It is easy to check that $e^{\left[\frac{p}{2}\right]}=e$. Since $\frac{e e^{*}+e^{*} e}{2}$ is a positive element in the closed unit ball of A and $p / 2 \geq 1$ we have

$$
L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1)=L(e, e)(1)=\frac{e e^{*}+e^{*} e}{2} \geq|e|^{p}=\left(\frac{e e^{*}+e^{*} e}{2}\right)^{\frac{p}{2}} .
$$

Let a be an algebraic element in A when the latter is regarded as a JBW*-triple. That is, $a=\sum_{i}^{k} \alpha_{i} e_{i}$, where $\alpha_{i} \in \mathbb{R}^{+}$and $\left(e_{i}\right)$ are mutually orthogonal partial isometries (tripotents) in A. Since the e_{i} 's are mutually orthogonal, we have $a^{\left[\frac{p}{2}\right]}=\sum_{i}^{k} \alpha_{i}^{\frac{p}{2}} e_{i}$. Thus,

$$
\begin{equation*}
L\left(a^{\left[\frac{p}{2}\right]}, a^{\left[\frac{p}{2}\right]}\right)(1)=\sum_{i}^{k} \alpha_{i}^{\frac{p}{2}} L\left(e_{i}, e_{i}\right)(1) \geq \sum_{i}^{k} \alpha_{i}^{\frac{p}{2}}\left|e_{i}\right|^{p}=\left(\sum_{i}^{k} \alpha_{i}^{2}\left|e_{i}\right|^{2}\right)^{\frac{p}{2}}=|a|^{p} . \tag{3.6}
\end{equation*}
$$

It is known that the set of tripotents is norm-total in every JBW*-triple, i.e., for every element x in A there exists a sequence (a_{k}) of algebraic elements in A converging in norm to x (compare [24, Lemma 3.11]). Since $\left(a_{k}^{\left[\frac{p}{2}\right]}\right)$ and $\left(\left|a_{k}\right|^{p}\right)$ converge in norm to $x^{\left[\frac{p}{2}\right]}$ and $|x|^{p}$, respectively, inequality (3.6) proves the statement.

From now on, given an element a in a C^{*}-algebra $A, \sigma_{A}(a)$ will stand for the spectrum of a in A.
Remark 3.14 The inequality established in the above Proposition 3.13 does not hold for $0<p<2$. Indeed, let us consider $A=C\left([0,1], M_{2}(\mathbb{C})\right)$ the C^{*}-algebra of all continuous functions on $[0,1]$ with values in $M_{2}(\mathbb{C})$. We define $e \equiv e(t):=\left(\begin{array}{cc}\sqrt{t} & \sqrt{1-t} \\ 0 & 0\end{array}\right) \in A$. In this case, we have

$$
\left(e e^{*}+e^{*} e\right)(t)=\left(\begin{array}{cc}
1+t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & 1-t
\end{array}\right) .
$$

Since for each $t \in[0,1]$, the spectrum $\sigma_{M_{2}(\mathbb{C})}\left(e e^{*}+e^{*} e(t)\right)=\{1+\sqrt{t}, 1-\sqrt{t}\}$, it can be easily seen that $\sigma_{A}\left(\frac{e e^{*}+e^{*} e}{2}\right)=[0,1]$. We claim that, for $0<p<2$, there is no positive constant $C>0$ satisfying

$$
C L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1) \geq|e|^{p} .
$$

Otherwise, we have

$$
C \frac{e e^{*}+e^{*} e}{2}=C L(e, e)(1)=C L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1) \geq|e|^{p}=\left(\frac{e e^{*}+e^{*} e}{2}\right)^{\frac{p}{2}},
$$

which is impossible, since $C t \nsupseteq t^{\frac{p}{2}}$ in $C[0,1]$.
However, for each $0<p<2$, the question whether every p - C^{*}-summing operator on a C^{*}-algebra is automatically p-JB*-triple-summing remains open.

Following standard arguments, a Pietsch factorisation theorem for p-JB*-triple- summing operators on JB*-triples can be established now.

Theorem 3.15 Let T be a bounded operator from a JB*-triple E to a Banach space X. For each $p>0$, the following assertions are equivalent.
(a) T is p-JB*-triple-summing.
(b) There is a state $\Psi \in D\left(\mathcal{L}(E), I_{E}\right)$ and a positive constant $C(T)$ such that

$$
\|T(x)\|^{p} \leq C(T) \Psi\left(L\left(x^{\left[\frac{p}{2}\right]}, x^{\left[\frac{p}{2}\right]}\right)\right)
$$

for every $x \in E$.
(c) There exist two norm-one functionals $\varphi_{1}, \varphi_{2} \in E^{*}$ and a positive constant $K(T)$ such that

$$
\|T(x)\|^{p} \leq K(T)\left(\left\|x^{\left[\frac{p}{2}\right]}\right\|_{\varphi_{1}}^{2}+\left\|x^{\left[\frac{p}{2}\right]}\right\|_{\varphi_{2}}^{2}\right)
$$

for every $x \in E$.

Proof. (a) \Rightarrow (b) Let us denote $K:=D\left(\mathcal{L}(E), I d_{E}\right)$. Clearly, K is a weak*-compact subset in $\mathcal{L}(E)^{*}$. For every finite sequence $x_{1}, \ldots, x_{k} \in E$, we define the convex function $f_{x_{1}, \ldots, x_{k}}: K \longrightarrow \mathbb{R}$ by

$$
f_{x_{1}, \ldots, x_{k}}(\Phi):=\sum_{i=1}^{k}\left\|T\left(x_{i}\right)\right\|^{p}-C_{p}(T) \Phi\left(\sum_{i=1}^{k} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right)
$$

The set $\Gamma:=\left\{f_{x_{1}, \ldots, x_{k}}: x_{1}, \ldots, x_{k} \in E\right\} \subset C(K, \mathbb{R})$ is convex and hence concave in the terminology of [38, E.4]. Since for each $x_{1}, \ldots, x_{k} \in E$, the operator $S=\sum_{i=1}^{k} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)$ is hermitian, Sinclair's Theorem (compare [9, Theorem 11.17]) assures that

$$
\begin{equation*}
\|S\|=\sup _{\Phi \in K}|\Phi(S)|=\max _{\Phi \in K}|\Phi(S)| \tag{3.7}
\end{equation*}
$$

Thus, there exists $\Phi_{S} \in K$ satisfying that $\Phi_{S}(S)=\|S\|$, and hence

$$
f_{x_{1}, \ldots, x_{k}}\left(\Phi_{S}\right)=\sum_{i=1}^{k}\left\|T\left(x_{i}\right)\right\|^{p}-C_{p}(T)\left\|\sum_{i=1}^{k} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\| \leq 0
$$

By the Ky Fan lemma (see [38, E.4]) there exists an element $\Psi \in K$ such that $f_{x_{1}, \ldots, x_{k}}(\Psi) \leq 0$ for every $f_{x_{1}, \ldots, x_{k}} \in \Gamma$, which in particular implies that

$$
\|T(x)\|^{p} \leq C(T) \Psi\left(L\left(x^{\left[\frac{p}{2}\right]}, x^{\left[\frac{p}{2}\right]}\right)\right)
$$

for every $x \in E$.
(b) \Rightarrow (c) Let $\Psi \in D\left(\mathcal{L}(E), I_{E}\right)$, satisfying the assumption (b). The map $\|\cdot\|_{\Psi}$ is a prehilbertian seminorm on E. Denoting $N:=\left\{x \in E:\|x\|_{\Psi}=0\right\}$, then the quotient E / N can be completed to a Hilbert space H. Let us denote by Q the natural quotient map from E to H. By [33, Corollary 1] (see also [34, Corollary 1.11]) there exist two norm-one functionals $\varphi_{1}, \varphi_{2} \in E^{*}$ such that the inequality

$$
\|Q(x)\|^{2}=\|x\|_{\Psi}^{2}=\Psi(L(x, x)) \leq 4\left(\|x\|_{\varphi_{1}}^{2}+\|x\|_{\varphi_{2}}^{2}\right)
$$

holds for every $x \in E$. We therefore have:

$$
\|T(x)\|^{p} \leq 4 C(T)\left(\left\|x^{\left[\frac{p}{2}\right]}\right\|_{\varphi_{1}}^{2}+\left\|x^{\left[\frac{p}{2}\right]}\right\|_{\varphi_{2}}^{2}\right)
$$

for every $x \in E$.
(c) \Rightarrow (a) Let $\varphi \in S_{E^{*}}$ and $z \in S_{E^{* *}}$ with $\varphi(z)=1$. Since for every finite sequence $\left(x_{1}, \ldots, x_{n}\right)$ in E we have

$$
\sum_{i}\left\|x_{i}^{\left[\frac{p}{2}\right]}\right\|_{\varphi}^{2}=\sum_{i} \varphi\left\{x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}, z\right\}=\varphi \sum_{i} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)(z) \leq\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\|
$$

and hence a) follows from c).

4 w-right-norm continuous holomorphic mappings

Given Banach spaces X and Y, letting $m=1,2, \ldots$, we shall denote by $\mathcal{L}\left({ }^{m} X, Y\right)$ the Banach space of all continuous m-linear mappings from $X^{m}=X \times \ldots \times X$ (m times) to Y, with respect to the pointwise vector operations and the norm defined by

$$
\|A\|=\sup _{x_{1} \neq 0, \ldots, x_{m} \neq 0} \frac{\left\|A\left(x_{1}, \ldots, x_{m}\right)\right\|}{\left\|x_{1}\right\| \cdots\left\|x_{m}\right\|}
$$

where $A \in \mathcal{L}\left({ }^{m} X, Y\right)$ and $x_{1}, \ldots, x_{m} \in X$.

An element $A \in \mathcal{L}\left({ }^{m} X, Y\right)$ is said to be symmetric if

$$
A\left(x_{1}, \ldots, x_{m}\right)=A\left(x_{\sigma(1)}, \ldots, x_{\sigma(m)}\right)
$$

for any permutation $\sigma:\{1, \ldots, m\} \longrightarrow\{1, \ldots, m\}$. The symbol $\mathcal{L}_{s}\left({ }^{m} X, Y\right)$ will denote the closed subspace of $\mathcal{L}\left({ }^{m} X, Y\right)$ of all symmetric continuous m-linear mappings.

A continuous m-homogeneous polynomial P from X to Y is a mapping $P: X \longrightarrow Y$ for which there is a unique $A \in \mathcal{L}_{s}\left({ }^{m} X, Y\right)$ such that

$$
P(x)=A(x, \ldots, x) \quad \text { for any } \quad x \in X
$$

The m-linear operator A is called the generating operator for P and in the sequel will be denoted by \widehat{P}. By a 0 -homogeneous polynomial we mean a constant function. $\mathcal{P}\left({ }^{m} X, Y\right)$ will denote the Banach space of all continuous m-homogeneous polynomials from X to Y, with respect the pointwise vector operations and the norm defined by

$$
\|P\|=\sup _{x \neq 0} \frac{\|P(x)\|}{\|x\|}
$$

Every m-homogeneous polynomial $P: X \longrightarrow Y$ satisfies the following polarization formula:

$$
\begin{equation*}
\widehat{P}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{2^{m} m!} \sum_{\varepsilon_{i}= \pm 1} \varepsilon_{1} \cdot \ldots \cdot \varepsilon_{m} P\left(\sum_{i=1}^{m} \varepsilon_{i} x_{i}\right) \tag{4.1}
\end{equation*}
$$

Jointly w-right-norm continuous multilinear operators have been studied in [22, 30] and [37]. A multilinear operator $T: X_{1} \times \ldots \times X_{m} \longrightarrow X$ is jointly w-right-to-norm continuous if and only if it is jointly w-right-tonorm continuous at 0 if and only if there exist reflexive Banach spaces R_{1}, \ldots, R_{m} and bounded linear operators $T_{i}: X_{i} \longrightarrow R_{i}$ satisfying, for each x_{i} in X_{i},

$$
\left\|T\left(x_{1}, \ldots, x_{m}\right)\right\| \leq\left\|\left|x_{1}\right|\right\|_{T_{1}} \cdots\left\|\left|x_{m}\right|\right\|_{T_{m}}
$$

(compare [22, Theorem 4] and [37, Proposition 3.11] or [30, Theorem 1]).
The polarization formula (4.1) guarantees that an m-homogeneous polynomial P is w-right-norm continuous if and only if its generating multilinear operator is jointly w-right-norm continuous (at 0) if and only if P is w-right-norm continuous at 0 . The corresponding affirmation for the strong* topology is also true.

Arens [3, 4] was the first author in considering extensions of bilinear operators to the product of the biduals. For multilinear operators, Aron and Berner introduced, in [5], a method to extend k-linear mappings to the product of the biduals that can be described as follows: Let X_{1}, \ldots, X_{k}, and X be Banach spaces and $T: X_{1} \times \cdots \times X_{k} \longrightarrow$ X a k-linear operator. Let $\pi:\{1, \ldots, k\} \longrightarrow\{1, \ldots, k\}$ (denoted $i \longmapsto \pi_{i}$) be a permutation. We define the Aron-Berner extension of T associated to π

$$
A B(T)_{\pi}: X_{1}^{* *} \times \cdots \times X_{k}^{* *} \longrightarrow X^{* *}
$$

by

$$
A B(T)_{\pi}\left(z_{1}, \ldots, z_{k}\right)=\text { weak }^{*}-\lim _{\alpha_{\pi_{1}}} \cdots \text { weak }^{*}-\lim _{\alpha_{\pi_{k}}} T\left(x_{1}^{\alpha_{1}}, \ldots, x_{k}^{\alpha_{k}}\right)
$$

where $\left(z_{1}, \ldots, z_{k}\right) \in X_{1}^{* *} \times \cdots \times X_{k}^{* *}$ and, for $1 \leq i \leq k,\left(x_{i}^{\alpha_{i}}\right)_{\alpha_{i}} \subset X_{i}$ is a net weak* convergent to $z_{i} . A B(T)_{\pi}$ is bounded and has the same norm as T. For each k-linear operator there are k ! possibly different extensions. However, for each symmetric k-linear operator T the restriction of $A B(T)_{\pi}$ to the diagonal does not depend on the permutation π.

Given an m-homogeneous polynomial $P: X \longrightarrow Y$, the m-homogeneous polynomial $A B(P): X \longrightarrow Y$, $A B(P)(x):=A B(\widehat{P})_{\pi}(x, \ldots, x)$ (where π is any permutation of the set $\{1, \ldots, k\}$), will be called the AronBerner extension of P.

A continuous polynomial P from X to Y is a finite sum of continuous homogeneous polynomials. We shall denote by $\mathcal{P}(X, Y)$ the space of all continuous polynomials from X to Y with respect to pointwise vector operations. Following [31], a polynomial $P: X \longrightarrow Y$ is said to be weakly compact if P maps bounded sets in X into relatively weakly compact sets in Y.

We have already noticed that a bounded linear operator $T: X \longrightarrow Y$ is weakly compact if and only if T is w-right-norm continuous. The following examples show that none of these implications holds for continuous polynomials in general Banach spaces.

Example 4.1 Let $P: \ell_{2} \longrightarrow \ell_{1}$ be the 2-homogeneous polynomial whose generating operator is defined by

$$
\begin{aligned}
& \widehat{P}: \ell_{2} \times \ell_{2} \longrightarrow \ell_{1} \\
& \widehat{P}(x, y)=x \cdot y
\end{aligned}
$$

where $x \cdot y$ denotes the pointwise multiplication. It follows by Hölder's inequality that \widehat{P} is well defined with $\|\widehat{P}\| \leq 1$. Since ℓ_{2} is a reflexive Banach space, and for any reflexive Banach space the w-right topology coincides with the norm topology, we trivially have that P is w-right-norm continuous. However, P cannot be weakly compact because P maps the canonical basis of ℓ_{2} to the canonical basis of ℓ_{1} and the latter admits no weakly convergent subsequences.

A weakly compact polynomial on a Banach space X need not be w-right-norm continuous, even when X satisfies the Dunford-Pettis property.

Example 4.2 Since the interval $\left[\frac{1}{2}, 1\right]$ is not scattered, there is a continuous surjective linear map $q: C\left(\left[\frac{1}{2}, 1\right]\right) \longrightarrow \ell_{2}$ (compare [13, Corollary 4.16]). By the open mapping theorem, we can pick $f_{n} \in C\left(\left[\frac{1}{2}, 1\right]\right)$ with $\left\|f_{n}\right\|=1$ such that $q\left(f_{n}\right)=e_{n}$, for every $n \in \mathbb{N}$, where $\left(e_{n}\right)$ denotes the canonical basis of ℓ_{2}. We can define a sequence $\left(g_{n}\right)$ in $C([0,1])$ satisfying that $\left.g_{n}\right|_{\left[\frac{1}{2}, 1\right]}=f_{n}$ and $\left.g_{n}\right|_{\left[0, \frac{1}{4}\right]}=0$.

On the other hand, the assignment $f \longmapsto\left(f\left(\frac{1}{6 n}\right)-f(0)\right)_{n}$ defines a linear operator $p: C([0,1]) \longrightarrow c_{0}$. Finally, we define a symmetric bilinear map

$$
V: C([0,1]) \times C([0,1]) \longrightarrow \ell_{2}
$$

given by $V(f, g):=p(f) \cdot q\left(\left.g\right|_{\left[\frac{1}{2}, 1\right]}\right)+p(g) \cdot q\left(\left.f\right|_{\left[\frac{1}{2}, 1\right]}\right)$, where for $a \in c_{0}$ and $b \in \ell_{2}, a \cdot b \in \ell_{1}$ is defined by $(a \cdot b)_{n}=a_{n} b_{n}$. It is clear that V is weakly compact. We claim that V is not jointly w-right-norm continuous. Indeed, let us pick a sequence $\left(x_{n}\right)$ of mutually orthogonal continuous functions in $C([0,1])$ satisfying $\left\|x_{n}\right\|=x_{n}\left(\frac{1}{6 n}\right)=1$. By definition, $\left(x_{n}\right)$ is a w-right-null sequence in $C([0,1])$ (compare [35, Lemma 13]), while $\left(g_{n}\right)$ is a bounded sequence in $C([0,1])$. Thus, if V were jointly w-right-norm continuous, then Proposition 3.11 in [37], would imply that

$$
1=\left\|e_{n}\right\|=\left\|V\left(x_{n}, g_{n}\right)\right\| \longrightarrow 0
$$

which is impossible.
Let us recall that an operator is said to be pseudo weakly compact if it is sequentially w-right-norm continuous. A Banach space X is called sequentially right if every pseudo weakly compact operator from X to another Banach space is weakly compact. C^{*}-algebras, JB^{*}-triples and Banach spaces satisfying Pelczynski’s Property (V) are examples of sequentially right spaces (compare [35]).

It is also known that a bounded linear operator $T: X \longrightarrow Y$ is weakly compact if and only if its bitranspose remains Y-valued. In the multilinear setting, a similar question has been recently considered in [37]. We first recall the following definition introduced in [37]: Given Banach spaces X_{1}, \ldots, X_{k}, X, a multilinear operator $T: X_{1} \times \cdots \times X_{k} \longrightarrow X$ is right quasi completely continuous (RQCC) if for arbitrary w-right Cauchy sequences $\left(x_{i}^{n}\right)_{n} \subset X_{i}(1 \leq i \leq k)$, the sequence $\left(T\left(x_{1}^{n}, \ldots, x_{k}^{n}\right)\right)_{n}$ converges in norm, equivalently, for every sequence $\left(x_{i}^{n}\right) \subset X_{i}$ which is w-right-convergent to $x_{i} \in X_{i}(1 \leq i \leq k)$ we have

$$
\lim _{n}\left\|T\left(x_{1}^{n}, \ldots, x_{k}^{n}\right)-T\left(x_{1}, \ldots, x_{k}\right)\right\|=0
$$

that is T is jointly sequentially w-right-norm continuous. The following result follows from Proposition 3.3 and Theorem 3.8 in [37]. Let X_{1}, \ldots, X_{k} be non zero sequentially right Banach spaces and let $T: X_{1} \times \cdots \times X_{k} \longrightarrow X$
be a multilinear operator. Then T is RQCC if and only if all of the Aron-Berner extensions of T are X-valued if and only if T has an X-valued Aron-Berner extension. We shall study this equivalence in the case of holomorphic mappings between complex Banach spaces.

We now consider weakly compact holomorphic mappings. Let X, Y be two Banach spaces, a mapping $f: X \longrightarrow Y$ is said to be a holomorphic map if for each $x \in X$ there exists a sequence of polynomials

$$
\hat{d}^{n} f(x) \in \mathcal{P}\left({ }^{n} X, Y\right)
$$

and a neighborhood V_{x} of x such that the series

$$
\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(x)(y-x)
$$

converges uniformly to $f(y)$ for every $y \in V_{x}$.
A holomorphic function $f: X \longrightarrow Y$ is said to be of bounded type if it is bounded on all bounded subsets of X. The polynomial series at zero $f(y)=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(0)(y)$ of such a function have infinite radius of uniform convergence, i.e.: $\lim \sup \left\|\frac{1}{n!} \hat{d}^{n} f(0)\right\|^{\frac{1}{n}}=0$ (compare [16, Section 6.2]).

If $f: X \longrightarrow Y$ is a holomorphic function of bounded type and $f(y)=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(0)(y)(y \in X)$ is its Taylor series at 0 , it follows by [21, Section 2] or [16, Proposition 6.16] that the assignment

$$
y \longmapsto A B(f)(y)=\sum_{n=0}^{\infty} \frac{1}{n!} A B\left(\hat{d}^{n} f(0)\right)(y), \quad\left(y \in X^{* *}\right)
$$

defines a holomorphic function of bounded type, $A B(f): X^{* *} \longrightarrow Y^{* *}$, called the Aron-Berner extension of f.
A holomorphic map $f: X \longrightarrow Y$ is said to be weakly compact if for every $x \in X$ there exists a neighborhood V_{x} of x such that $f\left(V_{x}\right)$ is a relatively weakly compact set of Y. See [28] or [17] for details about holomorphic maps. The Examples 4.1 , and 4.2 show that weak compactness is not the correct property to guarantee AronBerner extensions valued in the same codomain space.

We shall now show that w-right-norm continuity of a holomorphic mapping f implies w-right-norm continuity of its derivatives at every point.

Proposition 4.3 Let $f: X \longrightarrow Y$ be a holomorphic mapping between two Banach spaces. Then the following statements hold:
(a) If f is w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial $\hat{d}^{n} f(x)$ is w-right-norm continuous (respectively, strong*-norm continuous) for every $n \in \mathbb{N}$ and every $x \in X$.
(b) If f is sequentially w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial $\hat{d}^{n} f(x)$ is sequentially w-right-norm continuous (respectively, strong*-norm continuous) for every $n \in \mathbb{N}$ and every $x \in X$.

Proof. We shall only include here the proof of the statements concerning the w-right topology, the proofs of those affirmations concerning the strong* topology follow similarly.
(a) Let us fix $x \in X$. By hypothesis, there exist reflexive spaces R_{1}, \ldots, R_{k}, bounded linear operators T_{i} : $X \longrightarrow R_{i}(i \in\{1, \ldots, k\})$ and $\delta>0$ satisfying that $f(W) \in f(x)+B(Y)$, where

$$
W=\left\{y \in X:\|x-y\|_{T_{i}}<\delta, \forall i \in\{1, \ldots, k\}\right\} .
$$

Since $W_{0}:=\left\{y \in X:\|y\|_{T_{i}}<\delta, \forall i \in\{1, \ldots, k\}\right\}$ is a balanced set, it follows by [41, Lemma 3.1] (compare also the proof of [6, Proposition 3.4]), that

$$
\frac{1}{n!} \hat{d}^{n} f(x)\left(W_{0}\right) \subset \overline{c o} f\left(x+W_{0}\right) \subseteq \overline{c o}(f(x)+B(Y))
$$

where $\overline{c o} A$ denotes the convex balanced hull of A. In particular there exists a constant $M_{n}>0$ satisfying that

$$
\left\|\hat{d}^{n} f(x)(y)\right\| \leq M_{n}, \quad \text { for all } \quad y \in W_{0}
$$

Taking $R=\oplus^{\ell_{2}} R_{i}$ and $T: X \longrightarrow R, x \longmapsto(\delta / 2)^{-1}\left(T_{i}(x)\right)$, it can be easily seen that, for each $y \in X$ with $T(y) \neq 0$, we have $\frac{y}{\|y\|_{T}} \in W_{0}$, and hence,

$$
\left\|\hat{d}^{n} f(x)(y)\right\| \leq M_{n}\|y\|_{T}^{n}
$$

For each $y \in \operatorname{ker}(T)$, and $t>0$, $t y$ lies in W_{0}, thus $t^{n}\left\|\hat{d}^{n} f(x)(y)\right\|=\left\|\hat{d}^{n} f(x)(t y)\right\| \leq M_{n}$, which implies that $\hat{d}^{n} f(x)(y)=0$. We have then shown that

$$
\left\|\hat{d}^{n} f(x)(y)\right\| \leq M_{n}\|y\|_{T}^{n}
$$

for all $y \in X$. This proves that $\hat{d}^{n} f(x)$ is w-right-norm continuous at 0 , which gives the desired statement.
(b) We assume that f is sequentially w-right-norm continuous. Let $\left(y_{k}\right)$ be a sequence in X converging in the w-right topology to $y \in X$. Let us fix $x \in X$ and φ in the closed unit ball of Y^{*}. Defining $g_{k}(\lambda):=\varphi f\left(x+\lambda y_{k}\right)$ and $g(\lambda):=\varphi f(x+\lambda y)$, it follows by Cauchy's integral formula that

$$
\begin{aligned}
\left|\frac{1}{n!} \varphi\left(\hat{d}^{n} f(x)\left(y_{k}\right)-\hat{d}^{n} f(x)(y)\right)\right| & =\left|\left(g_{k}^{(n)}(0)-g^{(n)}(0)\right) / n!\right| \\
& \leq \sup \left\{\left|\left(g_{k}-g\right)(\lambda)\right|:|\lambda|=1\right\} \\
& \leq \sup \left\{\left\|f\left(x+\lambda y_{k}\right)-f(x+\lambda y)\right\|:|\lambda|=1\right\}
\end{aligned}
$$

Taking supreme over all φ in the closed unit ball of Y^{*}, we have

$$
\left\|\hat{d}^{n} f(x)\left(y_{k}\right)-\hat{d}^{n} f(x)(y)\right\| \leq n!\sup \left\{\left\|f\left(x+\lambda y_{k}\right)-f(x+\lambda y)\right\|:|\lambda|=1\right\}
$$

Finally, since f is sequentially w-right-norm continuous, it can be easily seen that

$$
\lim _{k \rightarrow \infty} \sup \left\{\left\|f\left(x+\lambda y_{k}\right)-f(x+\lambda y)\right\|:|\lambda|=1\right\}=0
$$

Theorem 4.4 Let X be a sequentially right space, Y a Banach space and let $f: X \longrightarrow Y$ be a holomorphic function of bounded type. Then f is sequentially w-right-norm continuous if and only if $A B(f)$ is Y-valued.

Proof. Let $f(y)=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^{n} f(0)(y),(y \in X)$ and $A B(f)(y)=\sum_{n=0}^{\infty} \frac{1}{n!} A B\left(\hat{d}^{n} f(0)\right)(y),\left(y \in X^{* *}\right)$ be the Taylor series of f and $A B(f)$ at zero, respectively. If f is sequentially w-right-norm continuous, then Proposition $4.3 b$) implies that, for each natural $n, \hat{d}^{n} f(0)$ is sequentially w-right-norm continuous. The polarization formula (4.1) implies that, for each natural n, the generating multilinear operator of $\hat{d}^{n} f(0)$ is jointly sequentially w-right-norm continuous or RQCC. Theorem 3.8 in [37] guarantees that $A B\left(\hat{d}^{n} f(0)\right)$ is Y-valued for all natural n. The uniform convergence of the Taylor series at zero of the function $A B(f)$ assures that $A B(f)\left(X^{* *}\right) \subseteq Y$.

Assume now that $A B(f)\left(X^{* *}\right) \subseteq Y$. Since $X^{* *}$ is a balanced set, it follows by [41, Lemma 3.1] (compare also the proof of [6, Proposition 3.4]), that

$$
\frac{1}{n!} A B\left(\hat{d}^{n} f(0)\right)\left(X^{* *}\right) \subset \overline{c o} A B(f)\left(X^{* *}\right) \subseteq Y
$$

It follows again from Theorem 3.8 in [37] that $\hat{d}^{n} f(0)$ is sequentially w-right-norm continuous. The desired statement will finally follow from the uniform convergence of the Taylor series.

Acknowledgements The second and third named authors were partially supported by project I+D MCYT No. MTM200802186, and Junta de Andalucía grants FQM0199 and FQM3737. Part of the paper was written while D. Puglisi was visiting the Departamento de Análisis Matemático at Universidad de Granada (Spain); he would like to thank sincerely A. M. Peralta for his warm hospitality. We are also grateful to an anonymous referee for pointing out a gap in an earlier stage of this paper and to Professor M. Maestre for fruitful discussions and comments.

References

[1] M. D. Acosta and A. M. Peralta, An alternative Dunford-Pettis property for JB*-triples, Q. J. Math. 52(4), 391-401 (2001).
[2] C. A. Akemann, The dual space of an operator algebra, Trans. Am. Math. Soc. 126, 286-302 (1967).
[3] R. Arens, Operations induced in function classes, Monatsh. Math. 55, 1-19 (1951).
[4] R. Arens, The adjoint of a bilinear operation, Proc. Am. Math. Soc. 2, 839-848 (1951).
[5] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. Fr. 106, 3-24 (1978).
[6] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21, 7-30 (1976).
[7] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57(2), 103-139 (1976).
[8] B. Beauzamy, Propriété de Banach-Saks, Studia Math. 66(3), 227-235 (1979/80).
[9] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras (Cambridge University Press, New York, 1971).
[10] M. Burgos, F. J. Fernández-Polo, J. Garcés, J. Martínez, and A. M. Peralta, Orthogonality preservers in C^{*}-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348(1), 220-233 (2008).
[11] C. H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97, 59-64 (1990).
[12] Ch.-H. Chu and P. Mellon, The Dunford-Pettis property in JB*-triples, J. Lond. Math. Soc. (2) 55(3), 515-526 (1997).
[13] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators (Cambridge University Press, 1995).
[14] J. Diestel, W. M. Ruess, and W. Schachermayer, On weak compactness in $L_{1}(\mu, X)$, Proc. Am. Math. Soc. 118(2), 447-453 (1993).
[15] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys Monographs Vol. 15 (Am. Math. Soc., Providence, RI, 1977).
[16] S. Dineen, Complex Analysis on Infinite Dimensional Spaces (Springer, 1999).
[17] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Mathematics Studies Vol. 57 (North-Holland, Amsterdam, 1981)
[18] N. Dunford and J .T. Schwartz, Linear Operators, Part I (Interscence, New York, 1958).
[19] W. Freedman, An alternative Dunford-Pettis property, Studia Math. 125, 143-159 (1997).
[20] Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356, 67-89 (1985).
[21] T. Gamelin, Analytic Functions on Banach spaces, Complex Potential Theory (Montreal, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439 (Kluwer Academic Publisher, 1994), pp. 187-233.
[22] M. González and J. Gutiérrez, Injective factorization of holomorphic mappings, Proc. Am. Math. Soc. 127, 1715-1721 (1999).
[23] U. Haagerup, The Grothendieck inequality for bilinear forms on C*-algebras, Avd. Math. 56, 93-116 (1985).
[24] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61(1), 117-133 (1987).
[25] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39-64 (1977).
[26] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503-529 (1983).
[27] S. Moedomo and J. J. Uhl Jr., Radon-Nikodým theorems for the Bochner and Pettis integrals, Pac. J. Math. 38, 531-536 (1971).
[28] L. Nachbin, Topology on Spaces of Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Bd. 47 (Springer Verlag, Berlin, 1969).
[29] G. K. Pedersen, C*-Algebras and their Automorphism Groups, London Mathematical Society Monographs Vol. 14 (Academic Press, Inc., London-New York, 1979).
[30] C. Palazuelos, A. M. Peralta, and I. Villanueva, Factorizing multilinear operators on Banach spaces, C ${ }^{*}$-algebras and JB*-triples, Stud. Math. 192(2), 129-146 (2009).
[31] A. Pełczyński, On weakly compact polynomial operators on B-spaces with Dunford-Pettis property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 11, 371-378 (1963).
[32] A. M. Peralta, On summing operators on $J B^{*}$-triples, Manuscr. Math. 105(2), 265-281 (2001).
[33] A. M. Peralta and A. Rodríguez Palacios, Grothendieck's inequalities for real and complex JBW*-triples, Proc. Lond. Math. Soc. (3) 83(3), 605-625 (2001).
[34] A. M. Peralta and A. Rodríguez Palacios, Grothendieck's inequalities revisited, Recent Progress in Functional Analysis (Valencia, 2000), North-Holland Mathematics Studies Vol. 189 (North-Holland, Amsterdam, 2001), pp. 409-423.
[35] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Topological characterisation of weakly compact operators, J. Math. Anal. Appl. 325(2), 968-974 (2007).
[36] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Weakly compact operators and the strong* topology for a Banach space, Proc. R. Soc. Edinb. 140A, 1249-1267 (2010).
[37] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Quasi Completely continuous multilinear operators, Proc. R. Soc. Edinb. 140A, 635-649 (2010).
[38] A. Pietsch, Operator Ideals, North-Holland Mathematical Library Vol. 20 (North-Holland Publishing Co., AmsterdamNew York, 1980).
[39] G. Pisier, Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397-415 (1978).
[40] W. Ruess, [Weakly] Compact operators and DF spaces, Pac. J. Math 98(2), 419-441 (1982).
[41] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pac. J. Math. 131(1), 179-190 (1988).
[42] N. Ch. Wong and Y.-Ch. Wong, Topologies and bornologies determined by operator ideals, Math. Ann. 282(4), 587-614 (1988).

[^0]: * e-mail: j_diestel@hotmail.com, Phone: +1-330-672-9087, Fax: +1-330-672-2209
 ** Corresponding author: e-mail: aperalta @ugr.es, Phone: +34-958-246-307, Fax: +34-958-243-272
 *** e-mail: puglisi @math.kent.edu, Phone: +39-095-738-3095, Fax: +39-095-330-094

