MATHEMATISCHE

www.mn-journal.org

Founded in 1948 by Erhard Schmidt Edited by R. Mennicken (Regensburg) in co-operation with F. Finster (Regensburg), F. Gesztesy (Columbia-Missouri), K. Hulek (Hannover), F. Klopp (Villetaneuse), R. Schilling (Dresden)

REPRINT

Sequential w-right continuity and summing operators

Joe Diestel^{*1}, Antonio M. Peralta^{**1,2}, and Daniele Puglisi^{***1}

¹ Kent State University, Kent, OH 44242, USA

² Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received 13 July 2008, revised 30 July 2009, accepted 14 August 2009 Published online 8 March 2011

Key words W-right topology, strong* topology, sequential w-right-norm continuity, weakly compact mappings, summing operators

MSC (2010) Primary: 46G20, 46G25, 46L05, 47B07, 17C65; Secondary: 47A20

We continue the study of the w-right and strong^{*} topologies in general Banach spaces started in [36, 37] and [35]. We show that in $L_1(\mu)$ -spaces the w-right convergence of sequences admits a simpler control. Some considerations about these topologies will be contemplated in the particular cases of C*-algebras and JB*-triples in connection with summing operators. We also study (sequential) w-right-norm and strong*-norm continuity for holomorphic mappings.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Preliminaries

I. Villanueva, J. D. M. Wright, K. Ylinen and the second author of the present note introduced in [36] two interesting topologies: the strong^{*} and the w-right topology in the following way: let X and Y be two Banach spaces, for every bounded linear operator $T : X \longrightarrow Y$, we can consider a seminorm on X defined by $||x||_T := ||T(x)||$. The *strong*^{*}-topology is the topology generated by the family of seminorms $|| \cdot ||_T$, where $T : X \longrightarrow H$ is a bounded linear operator from X to some Hilbert space H (such a topology is denoted by $S^*(X, X^*)$). Similarly, the *w*-right-topology is the topology generated by the family of seminorms $|| \cdot ||_T$ where T runs in the set of all bounded linear operators from X to a reflexive space [36].

In Section 2, we establish new methods for controlling w-right convergent sequences in $L_1(\mu)$ spaces. Section 3 is devoted to a more detailed study of strong*-norm continuous operators between Banach spaces. In the particular cases of operators whose domain is a C*-algebra or a JB*-triple, we explore the connections with *p*-C*-summing and *p*-JB*-triple-summing operators. We prove an extension property for 2-C*-summing and 2-JB*-triple-summing operators (see Theorems 3.6 and 3.9). In this section we shall also introduce and develop *p*-JB*-triple-summing operators on JB*-triples as suitable generalizations of *p*-C*-summing operators on C*-algebras in the sense introduced by Pisier in [39].

The last section of the paper is devoted to the study of those holomorphic mappings of bounded type which are sequentially w-right-norm continuous. The main result in [35] establishes that a bounded linear operator $T: X \longrightarrow Y$ is weakly compact if and only if T is w-right-norm continuous. We shall provide examples showing that none of these implications holds for continuous polynomials in general Banach spaces. In the linear case, T is weakly compact if and only if T^{**} is Y-valued. In the setting of multilinear operators, this equivalence has been recently studied in [37]. One of the main results in the just quoted paper proves that when X_1, \ldots, X_k are non zero sequentially right Banach spaces and $T: X_1 \times \cdots \times X_k \longrightarrow X$ is a multilinear operator, then T is RQCC (i.e., T is jointly sequentially w-right-norm continuous) if and only if all of the Aron-Berner extensions of T are X-valued if and only if T has an X-valued Aron-Berner extension. We shall consider here holomorphic mappings of bounded type f between two Banach spaces X and Y with X being a sequentially right Banach

^{*} e-mail: j_diestel@hotmail.com, Phone: +1-330-672-9087, Fax: +1-330-672-2209

^{**} Corresponding author: e-mail: aperalta@ugr.es, Phone: +34-958-246-307, Fax: +34-958-243-272

^{***} e-mail: puglisi@math.kent.edu, Phone: +39-095-738-3095, Fax: +39-095-330-094

space. We shall prove that such a mapping f is sequentially w-right-norm continuous if and only if its Aron-Berner extension, $AB(f): X^{**} \longrightarrow Y^{**}$, is Y-valued.

1.1 Notation

Except otherwise stated, all the Banach spaces considered in this paper will be complex. Given a Banach space X, S(X) and B(X) denote, respectively, the unit sphere and the closed unit ball of X. For any pair of Banach spaces $X, Y, \mathcal{L}(X, Y)$ will stand for the space of all bounded linear operators between X and Y, while $X \otimes^{\vee} Y$ and $X \otimes Y$ will denote the injective and projective tensor product of X and Y, respectively.

2 When the w-right-topology and the weak-topology coincide sequentially

In [36, Proposition 2.7] the authors remarked the following.

Proposition 2.1 Let X be a Banach space. If the w-right-topology coincides with the weak topology on X, then X is finite dimensional.

Given a set X with two topologies τ_1 and τ_2 , we say that τ_1 and τ_2 coincide sequentially if both topologies define the same convergent sequences on X, that is, a sequence $(x_n)_n$ in X is τ_1 -convergent to $x \in X$ if and only if $(x_n)_n$ converges to the same x in the τ_2 -topology.

We recall that a bounded linear operator $T : X \longrightarrow Y$ is called *completely continuous* if it maps weakly convergent sequences to norm convergent sequences. A Banach space X has the *Dunford-Pettis property* (DPP) if, for every Banach space Y, every weakly compact operator from X to Y is completely continuous. X satisfies the (weaker) *alternative Dunford-Pettis property* (DP1) if every weakly compact operator $T : X \longrightarrow Y$ is a DP1 operator, that is, $T(x_n)$ converges in norm to T(x) whenever $x_n \longrightarrow x$ weakly in X and $||x_n|| = ||x|| = 1$.

The following result was established in [36, Remark 4.5].

Proposition 2.2 Let X be a Banach space.

- (a) The w-right and the weak topologies coincide sequentially if and only if X has the DPP.
- (b) *The w-right and the weak topologies coincide sequentially on the unit sphere of X if and only if X has the DP*1.

To formulate the next result we first recall a deep result due to Rieffel (see [27] for more details).

Theorem 2.3 (Rieffel) Let (Ω, Σ, μ) be a finite measure space and let X be a Banach space. A vector measure $F : \Sigma \longrightarrow X$ is Bochner-representable with respect to μ (i.e., $F(B) = Bochner - \int_B f d\mu$ for all $B \in \Sigma$ and some $f \in L_1(\mu, X)$) if and only if F is μ -continuous, F is of bounded variation, and for each $\epsilon > 0$ there exists $B_{\epsilon} \in \Sigma$ with $\mu(\Omega \setminus B_{\epsilon}) < \epsilon$ such that

$$\left\{\frac{F(B)}{\mu(B)} : B \subseteq B_{\epsilon}, \ B \in \Sigma, \ \mu(B) > 0\right\}$$

is relatively weakly compact.

Remark 2.4 Note that we can reformulate Rieffel's theorem in terms of operators as follows: a bounded linear operator $T : L_1(\mu) \longrightarrow X$ is Bochner-representable (i.e., there is a $g \in L_\infty(\mu, X)$ so that T(f) = Bochner $-\int_{\Omega} f \cdot g \, d\mu$ for every $f \in L_1(\mu)$) if and only if for each $\epsilon > 0$ there exists $\Omega_{\epsilon} \in \Sigma$ with $\mu(\Omega \setminus \Omega_{\epsilon}) < \epsilon$ so that $T : L_1(\Omega_{\epsilon}, \Sigma_{\Omega_{\epsilon}}, \mu|_{\Sigma_{\Omega_{\epsilon}}}) \longrightarrow X$ is weakly compact, where $\Sigma_{\Omega_{\epsilon}}$ denotes the σ -field $\Sigma_{\Omega_{\epsilon}} = \{F \in \Sigma : F \subseteq \Omega_{\epsilon}\}$.

Proposition 2.5 Let (Ω, Σ, μ) be a finite measure space, and let $(f_n)_n$ be a sequence in $L_1(\mu)$. Then the following are equivalent:

- (0) $(f_n)_n$ is weakly null.
- (0') $(f_n)_n$ is w-right null.
- (1) For every Banach space X, and every weakly compact operator $T : L_1(\mu) \longrightarrow X$, the sequence $(T(f_n))_n$ is norm null.
- (2) For each Banach space X, and every representable operator $T : L_1(\mu) \longrightarrow X$, the sequence $(T(f_n))_n$ is norm null.
- (3) For every Banach space X and every $g \in L_{\infty}(\mu, X)$, the sequence $(f_n \cdot g)_n$ is weakly null in $L_1(\mu, X)$.

Proof. Since $L_1(\mu)$ has the DPP, then (0) and (0') are equivalent by Proposition 2.2. The equivalence of (0') and (1) follows directly from the definition of the w-right topology.

(1) \Rightarrow (2) Let X be a Banach space and let $T : L_1(\mu) \longrightarrow X$ be a representable operator. Fixing $\epsilon > 0$, by the previous remark, there exists $\Omega_{\epsilon} \in \Sigma$ with $\mu(\Omega \setminus \Omega_{\epsilon}) < \epsilon$ so that

 $T: L_1(\Omega, \Sigma_{\Omega_{\epsilon}}, \mu|_{\Sigma_{\Omega_{\epsilon}}}) \longrightarrow X$ is weakly compact.

Moreover, since $(f_n)_n$ is weakly null in $L_1(\Omega, \Sigma, \mu)$, by a classical result of Dunford and Pettis (see [15] Chapter IV.2) the sequence $(f_n)_n$ is uniformly integrable. We can then assume that $\|f_n \chi_{\Omega \setminus \Omega_{\epsilon}}\|_{L_1(\Omega, \Sigma, \mu)} < \frac{\epsilon}{\|T\|}$ uniformly in $n \in \mathbb{N}$.

Now, since $\{f_n \chi_{\Omega_{\epsilon}}\}_n$ is weakly null in $L_1(\Omega, \Sigma_{\Omega_{\epsilon}}, \mu|_{\Sigma_{\Omega_{\epsilon}}})$, then there is an $n_0 \in \mathbb{N}$ so that $||T(f_n \chi_{\Omega_{\epsilon}})|| < \epsilon$, for all $n > n_0$. Therefore, for $n > n_0$, we have

$$\|T(f_n)\| \le \|T(f_n\chi_{\Omega_{\epsilon}})\| + \|T(f_n\chi_{\Omega\setminus\Omega_{\epsilon}})\| < \epsilon + \|T\| \|f_n\chi_{\Omega\setminus\Omega_{\epsilon}}\|_{L_1(\Omega,\Sigma,\mu)} < 2\epsilon.$$

 $(2) \Rightarrow (0)$ Fix $g \in L_{\infty}(\mu)$; It's enough to choose $T : L_1(\mu) \longrightarrow \mathbb{C}$ defined by $T(f) = \int_{\Omega} f g d\mu$. T is trivially representable and so $\langle f_n, g \rangle \xrightarrow{n \to \infty} 0$, that is, $(f_n)_n$ is weakly null in $L_1(\mu)$.

 $(0) \Rightarrow (3)$ Fix a Banach space X and an element $g \in L_{\infty}(\mu, X)$. Let $(f_n)_n$ be a weakly-null sequence in $L_1(\mu)$. Since (Ω, Σ, μ) is a finite measure space we can apply the Diestel-Ruess-Schachermayer Theorem (see [14]) to the weakly relatively compact set $\{f_n\}_{n \in \mathbb{N}}$. Then for each subsequence $(f_{n_k})_k$ of $(f_n)_n$ there exists a sequence $(g_n)_n$ with $g_n \in co\{f_{n_k} : n_k \ge n\}$ such that $(g_n(\omega))_n$ is a null sequence of scalars for a.e. $\omega \in \Omega$. But the sequence $(g_n \cdot g)_k$ is such that $g_n \cdot g \in co\{f_{n_k} \cdot g : n_k \ge n\}$ and so $(g_n(\omega) \cdot g(\omega))_k$ is norm null in X for a.e. $\omega \in \Omega$. By the Diestel-Ruess-Schachermayer's Theorem the sequence $(f_n \cdot g)_{n \in \mathbb{N}}$ is weakly null in $L_1(\mu, X)$.

(3) \Rightarrow (0) It's enough to choose $X = \mathbb{K}$ and $g(\omega) = 1$ for each $\omega \in \Omega$.

Corollary 2.6 (0), (0'), (1), (2) of the proposition above are equivalent for any measure space (Ω, Σ, μ) .

Proof. Note that (0), (0') and (1) are trivially equivalent because $L_1(\mu)$ has the DPP.

 $(0) \Rightarrow (2)$ Let $(f_n)_n$ be a weakly null sequence in $L_1(\mu)$. It is well known that (see [18], III.8.5) there exists a set Ω_1 in Σ , a sub σ -field of Σ such that the restriction μ_1 of μ to Σ_1 has the properties

- (i) the measure space $(\Omega_1, \Sigma_1, \mu_1)$ is σ -finite;
- (ii) $\overline{span}\{f_n : n \ge 1\} \subseteq L_1(\Omega_1, \Sigma_1, \mu_1).$

Since $L_1(\Omega_1, \Sigma_1, \mu_1)$ is a closed subspace of $L_1(\Omega, \Sigma, \mu)$, we can assume, without loss of generality that (Ω, Σ, μ) is a σ -finite measure space. Thus there exists a sequence (A_n) in Σ of pairwise disjoint sets with finite and positive μ -measure such that $\Omega = \bigcup_{n \in \mathbb{N}} A_n$.

Now, we define $\mu_0: \Sigma \longrightarrow [0, +\infty)$ as

$$\mu_0(E) = \sum_{n \in \mathbb{N}} \frac{1}{2^n \ \mu(A_n)} \ \mu(A_n \cap E) \quad \text{for every} \quad E \in \Sigma.$$

It is easy to see that μ_0 is a finite measure (it is a probability measure) and, if we consider the function $h = \sum_{n \in \mathbb{N}} 2^n \mu(A_n) \chi_{A_n}$, the map

$$T: L_1(\mu) \longrightarrow L_1(\mu_0)$$
$$f \longmapsto h \cdot f$$

is a surjective isometry. Since μ and μ_0 have the same null sets, for each Banach space X the identity

$$id: L_{\infty}(\mu, X) \longrightarrow L_{\infty}(\mu_0, X)$$

is a surjective isometry.

^{© 2011} WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Fix a Banach space X and a representable operator $S: L_1(\mu) \longrightarrow X$. Then there is a $g \in L_{\infty}(\mu, X)$ so that $S(f) = \int_{\Omega} f \cdot g \, d\mu$. By the last paragraph above, we can consider g as element of $L_{\infty}(\mu_0, X)$. Then the operator

$$\widetilde{S} : L_1(\mu_0) \longrightarrow X$$

 $\widetilde{S}(f) = \int_{\Omega} f \cdot g \, d\mu_0 \quad \text{for each} \quad f \in L_1(\mu_0)$

is trivially representable. Since $(T(f_n))_n$ is w-right null in $L_1(\mu_0)$ (actually, every bounded linear operator maps w-right null sequences into w-right null sequences), by the previous proposition we have

$$||S(f_n)|| = ||S(f_n \cdot h)|| \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

because for each $f \in L_1(\mu, X)$ we have $\int_{\Omega} f d\mu = \int_{\Omega} f \cdot h d\mu_0$, which gives (2). The implication (2) \Rightarrow (0) follows similarly.

3 Strong*-norm continuous operators

We recall a result established in [35]. We should note here that after the publication of the just quoted paper, we were told about the significative papers [40] and [42], which are directly connected with the results obtained in [35]. In fact, the main result in [35] follows as a consequence of [40, Proposition 2.6 and Theorems 3.1 and 3.2], proved there in a more general setting. The equivalence of (i) and (iii) in [35, Corollary 5] can be also obtained from [42, Lemmas 2.1 and 3.2].

Theorem 3.1 Let X and Y be two Banach spaces, and let $T : X \longrightarrow Y$ be a bounded linear operator. Then the following are equivalent

- (a) T is w-right-norm continuous.
- (b) T is w-right-norm continuous on the closed unit ball of X.
- (c) *T* is weakly compact.

Similarly we have:

Theorem 3.2 Let X and Y be two Banach spaces, and let $T : X \longrightarrow Y$ be a bounded linear operator. Then T is strong*-norm continuous if and only if T factors through a Hilbert space.

Proof. Let $T: X \longrightarrow Y$ be a strong*-norm linear operator. The set

$$U := \{ x \in X : ||T(x)|| \le 1 \}$$

is a strong*-neighborhood of zero in X. Then there exist Hilbert spaces H_1, \ldots, H_n , and operators $G_i : X \longrightarrow$ $H_i, i = 1, \ldots, n$, satisfying that $\bigcap_{i=1}^n \{x \in X : \|G_i(x)\| \le 1\} \subseteq U$. Consider $H := \left(\bigoplus_{i=1}^n H_i\right)_{\ell_2}$, and $G : X \longrightarrow H$ defined by $G(x) = (G_i(x))_{i=1}^n$. The inclusion

$$\{x \in X : \|G(x)\| \le 1\} \subseteq \bigcap_{i=1}^{n} \{x \in X : \|G_i(x)\| \le 1\}$$

implies that

$$||T(x)|| \le ||G(x)|| \quad \text{for each} \quad x \in X.$$
(3.1)

The kernel of G is a closed subspace of X and the mapping $x + \ker(G) \mapsto |||x|||_G = ||G(x)||$ is a prehilbertian norm on the quotient $X/\ker(G)$. The inequality (3.1) guarantees that the law

$$R: X/\ker(G) \longrightarrow Y$$
$$x + \ker(G) \longmapsto T(x)$$

is a well-defined continuous operator on $X/\ker(G)$ with $||R|| \leq ||T||$. If H_G denotes the completion of $X/\ker(G)$, then H_G is a Hilbert space and R admits an extension $\widehat{R} : H_G \longrightarrow Y$. If π denotes the canonical projection of

X onto $X/\ker(G)$ and j_G the inclusion of $X/\ker(G)$ into H_G , then we have $T = \widehat{R} j_G \pi$, which shows that T factors through a Hilbert space (i.e., $T \in \Gamma_2(X, Y)$). Clearly every operator in $\Gamma_2(X, Y)$ is strong*-norm continuous.

Corollary 3.3 *Every strong*^{*}*-norm continuous operator between two Banach spaces is uniformly convexifying in the sense of Beauzamy* [7].

Corollary 3.4 Every strong*-norm continuous operator between two Banach spaces is a Banach-Saks operator [8].

Corollary 3.5 The class of all strong*-norm continuous operators between Banach spaces is an injective (closed) operator ideal in the Pietsch sense [38].

When the domain space is a C*-algebra (respectively, a JB*-triple) then strong*-norm continuous operators coincide with 2-C*-summing (respectively, 2-JB*-triple-summing) operators. p-C*-summing operators on C*-algebras were introduced by Pisier in [39]. We recall that an operator T from a C*-algebra A to a Banach space Y is said to be p-C*-summing (p > 0) if there exists a constant C such that for every finite sequence of self-adjoint elements (a_1, \ldots, a_n) in A the next inequality holds

$$\left(\sum_{1}^{n} \|T(a_{i})\|^{p}\right)^{\frac{1}{p}} \leq C \left\| \left(\sum_{1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} \right\|,\tag{3.2}$$

where, for each $x \in A$, we denote $|x| = \left(\frac{xx^* + x^*x}{2}\right)^{\frac{1}{2}}$. The smallest constant C verifying the above inequality is denoted by $C_p(T)$.

The following Pietsch's factorization theorem for p-C*-summing operators was established by Pisier in [39]: if $T : A \longrightarrow Y$ is a bounded linear operator from a C*-algebra to a complex Banach space, then T is a p-C*-summing operator if and only if there is a norm-one positive linear functional φ in A^* and a positive constant $K_p(T)$ such that

$$||T(x)|| \le K_p(T)(\varphi(|x|^p))^{\frac{1}{p}}$$

for every x in A. Every p-summing operator from a C*-algebra to a Banach space is p-C*-summing but the converse is false in general (compare [39, Remark 1.2]). It follows from the little Grothendieck's inequality for C*-algebras (see [23, 39]) that an operator $T : A \longrightarrow Y$ is 2-C*-summing if and only if it is strong*-norm continuous.

The following result shows that 2-C*-summing operators enjoy an extension property which is the appropriate version of [13, Theorem 4.15].

Theorem 3.6 Let A and B be two C*-algebras with B a C*-subalgebra of A and let Y be a Banach space. Then every 2-C*-summing operator $T : B \longrightarrow Y$ admits a norm preserving 2-C*-summing extension $\tilde{T} : A \longrightarrow Y$.

Proof. Let $T : B \longrightarrow Y$ be a 2-C*-summing operator. According to the Pietsch factorisation theorem, there is a norm-one positive linear functional φ in B^* and a positive constant $K_p(T)$ such that

$$||T(x)|| \le K_2(T)(\varphi(|x|^2))^{\frac{1}{2}}$$
(3.3)

for every x in B. Proposition 3.1.6 in [29] implies the existence of a positive functional $\phi \in A^*$ satisfying that $\|\phi\| = \|\varphi\|$ and $\phi|_B = \varphi$. The set $N_{\phi} = \{x \in A : \phi(xx^* + x^*x) = 0\}$ is a closed subspace of A and the sesquilinear form

$$(x + N_{\phi}, y + N_{\phi}) \longmapsto \frac{1}{2}\phi(xy^* + y^*x)$$

defines a pre-inner product on the preHilbert space A/N_{ϕ} . The completion of the latter space is a Hilbert space that will be denoted by H_{ϕ} . Let $j_{\phi} : A \longrightarrow H_{\phi}$ denote the composition of the canonical projection and inclusion.

The norm-closure of $j_{\phi}(B) = B/(N_{\phi} \cap B)$ is a closed subspace of H_{ϕ} which is denoted by K. Let π be the orthogonal projection of H_{ϕ} onto K.

The operator $B/(N_{\phi} \cap B) \longrightarrow Y$, $x + (N_{\phi} \cap B) \longmapsto T(x)$ is well-defined by (3.3). Therefore there exists a unique operator $R: K \longrightarrow Y$ satisfying $R(x + (N_{\phi} \cap B)) = T(x)$. Finally, $\widetilde{T}: A \longrightarrow Y$, $\widetilde{T} = R \circ \pi \circ j_{\phi}$ is a norm preserving 2-C*-summing extension of T.

Proposition 3.7 Let X be a Banach space. Suppose that the w-right topology and the $S^*(X, X^*)$ -topology coincide on bounded subsets of X. Then the following statements holds:

- (a) X satisfies the DPP if and only if every strong*-norm continuous operator from X to a Banach space is completely continuous.
- (b) X satisfies the DP1 if and only if every strong*-norm continuous operator from X to a Banach space is a DP1 operator.

Proof. (a) We prove only the if-implication, because the other implication follows easily. Suppose that every strong*-norm continuous operator from X to a Banach space is completely continuous. Let (x_n) be a weakly-null sequence in X and let $T : X \longrightarrow Y$ be a weakly compact operator. Since the w-right topology and the $S^*(X, X^*)$ -topology coincide on bounded subsets of X, then there exist a bounded linear operator G from X to a Hilbert space and a mapping $N : (0, \infty) \longrightarrow (0, \infty)$ satisfying

$$||T(x)|| \le N(\varepsilon)||G(x)|| + \varepsilon ||x||,$$

for all $x \in X$ and $\varepsilon > 0$ (compare [36, Proposition 5.1]).

Let us fix $\delta > 0$. Since (x_n) is bounded, we can find an appropriate $\varepsilon_0 > 0$ satisfying that $\varepsilon_0 ||x_n|| < \frac{\delta}{2}$, for every natural n. By hypothesis, $G(x_n) \longrightarrow 0$ in norm. So there exists a natural m satisfying that

$$N(\varepsilon_0) \|G(x_n)\| < \frac{\delta}{2}, \quad \text{for all} \quad n \ge m,$$

which gives that $||T(x_n)|| < \delta$, for all $n \ge m$.

The proof of statement (b) follows similarly.

For each C*-algebra A, the w-right and the strong* topologies coincide on bounded sets of A (compare [2, Theorem II.7]). The extension property of 2-C*-summing operators proved in Theorem 3.6 together with the above Proposition 3.7 give an alternative proof to [11, Corollary 2] and [19, Corollary 3.2].

Corollary 3.8 Every C*-subalgebra of a C*-algebra satisfying the DPP (respectively, the DP1) also satisfies the same property.

Let u be a norm-one element in a Banach space X. The set of states of X relative to u, D(X, u), is defined as the non empty, convex, and weak*-compact subset of X^* given by

$$D(X, u) := \{ \Phi \in X^* : \Phi(u) = 1 = \|\Phi\| \}.$$

For $x \in X$, the numerical range of x relative to u, V(X, u, x), is given by $V(X, u, x) := \{\Phi(x) : \Phi \in D(X, u)\}$. The numerical radius of x relative to u, v(X, u, x), is given by

$$v(X, u, x) := \max\{|\lambda| : \lambda \in V(X, u, x)\}.$$

It is well-known that a bounded linear operator T on a complex Banach space X is hermitian if and only if $V(\mathcal{L}(X), I_X, T) \subseteq \mathbb{R}$ (compare [9, Section 5, Lemma 2]). If T is a bounded linear operator on X, then we have $V(\mathcal{L}(X), I_X, T) = \overline{co} W(T)$ where

$$W(T) = \{x^*(T(x)) : (x, x^*) \in \Gamma\},\$$

and $\Gamma \subseteq \{(x, x^*) : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$ verifies that its projection onto the first coordinate is norm dense in the unit sphere of X [9, Section 9]. Moreover, the numerical radius of T can be calculated as follows

$$v(\mathcal{L}(X), I_X, T) = \sup\{|x^*(T(x))| : (x, x^*) \in \Gamma\}.$$

www.mn-journal.com

In particular if $X = Y^*$, then by the Bishop-Phelps-Bollobás theorem, it follows that

$$v(\mathcal{L}(X), I_X, T) = \sup\{|x^*(T(x))| : x \in S_X, x^* \in S_Y, x^*(x) = 1\}.$$

Originally introduced by Kaup in [26], the class of complex Banach spaces called JB*-triples includes all C*algebras, Hilbert spaces, spin factors and operators between complex Hilbert spaces. A JB*-triple is a complex Banach space E with a continuous triple product $\{.,.,.\}: E \times E \times E \longrightarrow E$ which is bilinear and symmetric in the outer variables and conjugate linear in the middle one, and satisfies:

- (JB1) (Jordan Identity) $L(a,b)\{x, y, z\} = \{L(a,b)x, y, z\} \{x, L(b,a)y, z\} + \{x, y, L(a,b)z\}$, for all a, b, c, x, y, z in E, where $L(a,b)x := \{a, b, x\}$;
- (JB2) The map $L(a, a) : E \longrightarrow E$ is an hermitian operator with non negative spectrum for all a in E;
- (JB3) $||\{a, a, a\}|| = ||a||^3$, for all a in E.

For each element x in a JB*-triple E, we shall denote $x^{[1]} := x$, $x^{[3]} := \{x, x, x\}$, and $x^{[2n+1]} := \{x, x, x^{[2n-1]}\}, (n \in \mathbb{N})$. Given a subset $F \subset E$, the symbol $F \Box F$ will denote the set

$$\{L(x,y): x, y \in F\} \subset \mathcal{L}(E).$$

Examples: every C*-algebra is a JB*-triple with respect to the product $\{a, b, c\} := \frac{1}{2}(ab^*c + cb^*a)$. The above product remains valid for the space $\mathcal{L}(H, K)$ of all continuous operators between two complex Hilbert spaces H, K.

For each JB*-triple E and every state $\Phi \in D(\mathcal{L}(E), I_E)$, the assignment $x \mapsto ||x||_{\Phi} := \Phi(L(x, x))^{\frac{1}{2}}$ defines a prehilbertian seminorm on E. Further, whenever φ is a norm-one element in E^* and $z \in S_{E^*}$ with $\varphi(z) = 1$, the mapping $x \mapsto ||z||_{\varphi} = \varphi \{x, x, z\}^{\frac{1}{2}}$ does not depend on the point of support z, and defines also a prehilbertian seminorm on E (compare [34, Section 1]).

In the more general setting of JB*-triples, only the notion of 2-C*-summing operator has been generalized in [32]. An operator T from a JB*-triple E to a Banach space Y is said to be 2-JB*-triple-summing if there exists a positive constant C such that for every finite sequence (x_1, \ldots, x_n) of elements in E we have

$$\sum_{i=1}^{n} \|T(x_i)\|^2 \le C \left\| \sum_{i=1}^{n} L(x_i, x_i) \right\|.$$
(3.4)

The smallest constant C for which (3.4) holds is denoted by $C_2(T)$.

The corresponding Pietsch factorization theorem for 2-JB*-triple-summing operators was established in [32, Theorem 3.6]. Indeed: if $T : E \longrightarrow Y$ is a 2-JB*-triple-summing operator then there are norm-one functionals φ_1, φ_2 in E^* and a positive constant C(T) such that

$$||T(x)|| \le C(T) ||x||_{\varphi_1,\varphi_2}$$

for all $x \in E$. This result together with the little Grothendieck inequality for JB*-triples and the Hahn-Banach theorem allow us to prove the following result with a verbatim adaptation of the proof of Theorem 3.6.

Theorem 3.9 Let E and F be two JB^* -triples with F a JB^* -subtriple of E and let Y be a Banach space. Then every 2- JB^* -triple-summing operator $T : F \longrightarrow Y$ admits a norm preserving 2- JB^* -triple-summing extension $\widetilde{T} : E \longrightarrow Y$.

Having in mind that for every JB*-triple E, the w-right and strong* topologies coincide on bounded subsets of E (compare [33, p. 621]), the results [12, Corollary 6] and [1, Corollary 1] follow now as a direct consequence.

Corollary 3.10 Every JB*-subtriple of a JB*-triple satisfying the DPP (respectively, the DP1) also satisfies the same property.

Our next goal is to introduce a suitable variation of *p*-summing operators in JB*-triples.

Let x be an element in a (general) JB*-triple E and let E_x denote the JB*-subtriple generated by x. It is known that E_x is a commutative JB*-triple. Therefore, the closed linear span of $E_x \Box E_x|_{E_x} \subset \mathcal{L}(E_x)$ is an abelian C*-algebra (compare [26, Proposition 1.5]). This structure allows to define $L(x, x)^{\frac{p}{2}}|_{E_x}$ as an element in $\mathcal{L}(E_x)$.

However, this definition, based on "local theory," does not satisfy our needs because $L(x, x)^{\frac{p}{2}}$ should be an element in $\mathcal{L}(E)$.

We shall see how local theory, wisely applied, can help us to avoid this obstacle. Let x be an element in a JB*-triple E. It is known that E_x is JB*-triple isomorphic (and hence isometric) to $C_0(\Omega)$ for some locally compact Hausdorff space Ω contained in (0, ||x||], such that $\Omega \cup \{0\}$ is compact and $C_0(\Omega)$ denotes the Banach space of all complex-valued continuous functions vanishing at 0. It is also known that there exists a triple isomorphism Ψ from E_x onto $C_0(\Omega)$, $\Psi(x)(t) = t$ ($t \in \Omega$) (cf. [25, 4.8], [26, 1.15] and [20]). The set $\overline{\Omega} = \text{Sp}(x)$ is called the *triple spectrum* of x. We should note that $C_0(\text{Sp}(x)) = C(\text{Sp}(x))$, whenever $0 \notin \text{Sp}(x)$.

Local theory in JB*-triples gave rise to the so-called *triple functional calculus*. To avoid possible confusion with the classical continuous functional calculus in C*-algebras, given a function $f \in C_0(\operatorname{Sp}(x))$, f(x) shall have its usual meaning when E_x is regarded as an abelian C*-algebra and $f_t(x)$ shall denote the same element of E_x when the latter is regarded as a JB*-subtriple of E. Thus, for any odd polynomial, $P(\lambda) = \sum_{k=0}^{n} \alpha_k \lambda^{2k+1}$, we have $P_t(x) = \sum_{k=0}^{n} \alpha_k x^{[2k+1]}$. The symbol $x^{[p]}$ will stand for $f_t(x)$, where $f(\lambda) := \lambda^p$, $(\lambda \in \operatorname{Sp}(x))$. The general lack of order in JB*-triples of the same kind that exists for C*-algebras prevents us to affirm any

The general lack of order in JB*-triples of the same kind that exists for C*-algebras prevents us to affirm any property on a finite sum of the form $\sum_j x_j^{\left[\frac{p}{2}\right]}$, where x_1, \ldots, x_k are arbitrary elements in a JB*-triple E. In order to have a common order, not depending on the local structure, we make use of the space $\mathcal{L}(E)$. The following definition does not require the existence of an order.

Definition 3.11 Let *E* be a JB*-triple, let *Y* be a Banach space and let p > 0. An operator $T : E \longrightarrow Y$ is said to be *p*-JB*-triple-summing if there exists a positive constant *C* such that for every finite sequence (x_1, \ldots, x_n) of elements in *E* we have

$$\sum_{i=1}^{n} \|T(x_i)\|^p \le C \left\| \sum_{i=1}^{n} L\left(x_i^{\left[\frac{p}{2}\right]}, x_i^{\left[\frac{p}{2}\right]}\right) \right\|.$$
(3.5)

The smallest constant C for which (3.5) holds is denoted by $C_p(T)$.

Let A be a C*-algebra. We recall that two elements a and b in A are said to be *orthogonal* if $ab^* = b^*a = 0$, equivalently, L(a, b) = 0. When a and b belong to a JB*-triple E, we say that a and b are orthogonal whenever L(a, b) = 0. When a C*-algebra is regarded as a JB*-triple, these two notions of orthogonality coincide on A. We refer to [10, Lemma 1] for several reformulations of orthogonality in C*-algebras and JB*-triples.

C*-algebras have a dual structure as JB*-triples and C*-algebras. Our next result shows that, in the setting of C*-algebras, p-C*-summing operators and p-JB*-triple-summing operators coincide.

Lemma 3.12 Let (x_1, \ldots, x_n) be a finite sequence of elements in the C*-algebra A and let X be a Banach space. The following statements hold:

- (a) $\left\|\sum_{i=1}^{n} |x_i|^2\right\| \le \left\|\sum_{i=1}^{n} L(x_i, x_i)\right\| \le 2 \left\|\sum_{i=1}^{n} |x_i|^2\right\|.$
- (b) When $x_1 \ldots, x_n$ are assumed to be hermitian we have

$$\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\| = \left\|\sum_{i=1}^{n} |x_{i}|^{p}\right\|,$$

for every p > 0.

(c) If $T \in \mathcal{L}(A, X)$, then T is p-C*-summing whenever it is p-JB*-triple-summing. Moreover, if T is p-C*-summing then there exists C > 0 satisfying

$$\sum_{i=1}^{n} \|T(x_i)\|^p \le C \left\| \sum_{i=1}^{n} L\left(x_i^{\left[\frac{p}{2}\right]}, x_i^{\left[\frac{p}{2}\right]}\right) \right\|$$

for every finite sequence (x_1, \ldots, x_n) of hermitian elements in A.

Proof. (a) Let 1 denote the unit element in A^{**} . For every finite sequence (x_1, \ldots, x_n) of elements in A we have

$$\left\|\sum_{i=1}^{n} L(x_i, x_i)\right\| \ge \left\|\sum_{i=1}^{n} L(x_i, x_i)(1)\right\| = \left\|\sum_{i=1}^{n} |x_i|^p\right\|.$$

To see the other inequality let us denote $S := \sum_{i=1}^{n} L(x_i, x_i)$. Clearly S is a hermitian operator on A, Sinclair's theorem (compare [9, Remark in p. 54]) assures that

$$||S|| = \sup\{|\phi(S(z))| : z \in S_A, \phi \in S_{A^*}, \phi(z) = 1\}.$$

It is worth mentioning that $\phi(S(z)) \ge 0$ for any ϕ and z in the above setting. Let $z \in S_A$ and $\phi \in S_{A^*}$ with $\phi(z) = 1$. We define $\psi(x) := \phi(x \circ z)$, where the symbol \circ denotes the natural Jordan product in A. It can be easily seen that $\psi \in S_{A^*}$, $\psi(1) = \phi(z) = 1$. Moreover,

$$\psi(L(x,x)(1)) = \phi(L(x,x)(1) \circ z) = \frac{1}{2}\phi(\{x,x,z\} + \{x^*,x^*,z\}) \ge \frac{1}{2}\phi(L(x,x)(z)),$$

for all $x \in A$. Furthermore, $\phi(L(x, x)(z)) = \psi(L(x, x)(1))$, whenever $x = x^*$. In particular $\phi(S(z)) \le 2\psi(S(1))$, and hence

$$||S|| \leq 2 \sup\{\psi(S(1)) : \psi \in S_{A^*}, \psi(1) = 1\}$$

= $2 \sup\left\{\psi\left(\sum_{i=1}^n |x_i|^2\right) : \psi \in S_{A^*}, \psi(1) = 1\right\} = 2\left\|\sum_{i=1}^n |x_i|^2\right\|.$

When x_1, \ldots, x_n are hermitian elements, the constant 2 in the above inequality can be omitted, which in particular gives: $\left\|\sum_{i=1}^{n} |x_i|^2\right\| = \left\|\sum_{i=1}^{n} L(x_i, x_i)\right\|$. (b) Every self-adjoint element $x \in A$ admits a decomposition in the form $x = x^+ - x^-$, where x^+ and x^-

(b) Every self-adjoint element $x \in A$ admits a decomposition in the form $x = x^+ - x^-$, where x^+ and x^- are orthogonal positive elements in A. It is not hard to see that $x^{\left\lfloor \frac{p}{2} \right\rfloor} = (x^+)^{\left\lfloor \frac{p}{2} \right\rfloor} - (x^-)^{\left\lfloor \frac{p}{2} \right\rfloor}$. Since $(x^+)^{\left\lfloor \frac{p}{2} \right\rfloor}$ and $(x^-)^{\left\lfloor \frac{p}{2} \right\rfloor}$ are orthogonal, we have $|x^{\left\lfloor \frac{p}{2} \right\rfloor}|^2 = (x^+)^p + (x^-)^p = |x|^p$. Let x_1, \ldots, x_n be self-adjoint elements in A. The last paragraph in the proof of the previous statement shows that

$$\left\|\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)\right\| = \left\|\sum_{i=1}^{n} \left|x_{i}^{\left[\frac{p}{2}\right]}\right|^{2}\right\| = \left\|\sum_{i=1}^{n} |x_{i}|^{p}\right\|$$

(c) The formula stated in (b) proves the required statements.

Let A be a C*-algebra and let X be a Banach space. The question is clearly whether p-JB*-triple-summing
and p-C*-summing operators coincide in
$$\mathcal{L}(A, X)$$
. A strengthening of the inequality in Lemma 3.12, (b) seems
to be necessary.

Proposition 3.13 Let A be a C*-algebra and let $p \ge 2$. Then the formula

$$\sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}\right)(1) \ge \sum_{i=1}^{n} |x_{i}|^{p},$$

holds for every finite sequence of elements x_1, \ldots, x_n in A. In particular p-JB*-triple-summing and p-C*-summing operators on A coincide.

Proof. Considering A^{**} instead of A, we may assume that A is a von Neumann algebra.

Let e be a partial isometry in A. It is easy to check that $e^{\left[\frac{p}{2}\right]} = e$. Since $\frac{ee^* + e^*e}{2}$ is a positive element in the closed unit ball of A and $p/2 \ge 1$ we have

$$L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1) = L(e, e)(1) = \frac{ee^* + e^*e}{2} \ge |e|^p = \left(\frac{ee^* + e^*e}{2}\right)^{\frac{r}{2}}.$$

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Let a be an algebraic element in A when the latter is regarded as a JBW*-triple. That is, $a = \sum_{i=1}^{k} \alpha_{i} e_{i}$, where $\alpha_{i} \in \mathbb{R}^{+}$ and (e_{i}) are mutually orthogonal partial isometries (tripotents) in A. Since the e_{i} 's are mutually orthogonal, we have $a^{\left[\frac{p}{2}\right]} = \sum_{i=1}^{k} \alpha_{i}^{\frac{p}{2}} e_{i}$. Thus,

$$L\left(a^{\left[\frac{p}{2}\right]}, a^{\left[\frac{p}{2}\right]}\right)(1) = \sum_{i}^{k} \alpha_{i}^{\frac{p}{2}} L(e_{i}, e_{i})(1) \ge \sum_{i}^{k} \alpha_{i}^{\frac{p}{2}} |e_{i}|^{p} = \left(\sum_{i}^{k} \alpha_{i}^{2} |e_{i}|^{2}\right)^{\frac{p}{2}} = |a|^{p}.$$
(3.6)

It is known that the set of tripotents is norm-total in every JBW*-triple, i.e., for every element x in A there exists a sequence (a_k) of algebraic elements in A converging in norm to x (compare [24, Lemma 3.11]). Since $(a_k^{\lfloor \frac{p}{2} \rfloor})$ and $(|a_k|^p)$ converge in norm to $x^{\lfloor \frac{p}{2} \rfloor}$ and $|x|^p$, respectively, inequality (3.6) proves the statement.

From now on, given an element a in a C*-algebra A, $\sigma_A(a)$ will stand for the *spectrum* of a in A.

Remark 3.14 The inequality established in the above Proposition 3.13 does not hold for $0 . Indeed, let us consider <math>A = C([0, 1], M_2(\mathbb{C}))$ the C*-algebra of all continuous functions on [0, 1] with values in $M_2(\mathbb{C})$. We define $e \equiv e(t) := \begin{pmatrix} \sqrt{t} & \sqrt{1-t} \\ 0 & 0 \end{pmatrix} \in A$. In this case, we have

$$(ee^* + e^*e)(t) = \begin{pmatrix} 1+t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1-t \end{pmatrix}.$$

Since for each $t \in [0,1]$, the spectrum $\sigma_{M_2(\mathbb{C})}(ee^* + e^*e(t)) = \{1 + \sqrt{t}, 1 - \sqrt{t}\}$, it can be easily seen that $\sigma_A(\frac{ee^* + e^*e}{2}) = [0,1]$. We claim that, for 0 , there is no positive constant <math>C > 0 satisfying

$$C L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1) \ge |e|^p.$$

Otherwise, we have

$$C\frac{ee^* + e^*e}{2} = C L(e, e)(1) = C L\left(e^{\left[\frac{p}{2}\right]}, e^{\left[\frac{p}{2}\right]}\right)(1) \ge |e|^p = \left(\frac{ee^* + e^*e}{2}\right)^{\frac{p}{2}},$$

which is impossible, since $Ct \geq t^{\frac{p}{2}}$ in C[0, 1].

However, for each 0 , the question whether every*p*-C*-summing operator on a C*-algebra is automatically*p*-JB*-triple-summing remains open.

Following standard arguments, a Pietsch factorisation theorem for p-JB*-triple- summing operators on JB*-triples can be established now.

Theorem 3.15 Let T be a bounded operator from a JB^* -triple E to a Banach space X. For each p > 0, the following assertions are equivalent.

- (a) T is p-JB*-triple-summing.
- (b) There is a state $\Psi \in D(\mathcal{L}(E), I_E)$ and a positive constant C(T) such that

$$||T(x)||^p \le C(T)\Psi\left(L\left(x^{\left[\frac{p}{2}\right]}, x^{\left[\frac{p}{2}\right]}\right)\right).$$

for every $x \in E$.

(c) There exist two norm-one functionals $\varphi_1, \varphi_2 \in E^*$ and a positive constant K(T) such that

$$||T(x)||^p \le K(T) \left(\left\| x^{\left[\frac{p}{2}\right]} \right\|_{\varphi_1}^2 + \left\| x^{\left[\frac{p}{2}\right]} \right\|_{\varphi_2}^2 \right),$$

for every $x \in E$.

Proof. (a) \Rightarrow (b) Let us denote $K := D(\mathcal{L}(E), Id_E)$. Clearly, K is a weak*-compact subset in $\mathcal{L}(E)^*$. For every finite sequence $x_1, \ldots, x_k \in E$, we define the convex function $f_{x_1, \ldots, x_k} : K \longrightarrow \mathbb{R}$ by

$$f_{x_1,\dots,x_k}(\Phi) := \sum_{i=1}^k \|T(x_i)\|^p - C_p(T) \Phi\left(\sum_{i=1}^k L\left(x_i^{\left\lfloor \frac{p}{2} \right\rfloor}, x_i^{\left\lfloor \frac{p}{2} \right\rfloor}\right)\right).$$

The set $\Gamma := \left\{ f_{x_1,\ldots,x_k} : x_1,\ldots,x_k \in E \right\} \subset C(K,\mathbb{R})$ is convex and hence concave in the terminology of [38, E.4]. Since for each $x_1,\ldots,x_k \in E$, the operator $S = \sum_{i=1}^k L\left(x_i^{\left\lfloor \frac{p}{2} \right\rfloor}, x_i^{\left\lfloor \frac{p}{2} \right\rfloor}\right)$ is hermitian, Sinclair's Theorem (compare [9, Theorem 11.17]) assures that

$$||S|| = \sup_{\Phi \in K} |\Phi(S)| = \max_{\Phi \in K} |\Phi(S)|.$$
(3.7)

Thus, there exists $\Phi_S \in K$ satisfying that $\Phi_S(S) = ||S||$, and hence

$$f_{x_1,\dots,x_k}(\Phi_S) = \sum_{i=1}^k \|T(x_i)\|^p - C_p(T) \left\| \sum_{i=1}^k L\left(x_i^{\left[\frac{p}{2}\right]}, x_i^{\left[\frac{p}{2}\right]}\right) \right\| \le 0.$$

By the Ky Fan lemma (see [38, E.4]) there exists an element $\Psi \in K$ such that $f_{x_1,\ldots,x_k}(\Psi) \leq 0$ for every $f_{x_1,\ldots,x_k} \in \Gamma$, which in particular implies that

$$||T(x)||^{p} \leq C(T)\Psi\left(L\left(x^{\left[\frac{p}{2}\right]}, x^{\left[\frac{p}{2}\right]}\right)\right),$$

for every $x \in E$.

(b) \Rightarrow (c) Let $\Psi \in D(\mathcal{L}(E), I_E)$, satisfying the assumption (b). The map $\|.\|_{\Psi}$ is a prehilbertian seminorm on *E*. Denoting $N := \{x \in E : \|x\|_{\Psi} = 0\}$, then the quotient E/N can be completed to a Hilbert space *H*. Let us denote by *Q* the natural quotient map from *E* to *H*. By [33, Corollary 1] (see also [34, Corollary 1.11]) there exist two norm-one functionals $\varphi_1, \varphi_2 \in E^*$ such that the inequality

$$|Q(x)|^{2} = ||x||_{\Psi}^{2} = \Psi(L(x,x)) \le 4\left(||x||_{\varphi_{1}}^{2} + ||x||_{\varphi_{2}}^{2}\right)$$

holds for every $x \in E$. We therefore have:

$$||T(x)||^p \le 4C(T) \left(\left\| x^{\left[\frac{p}{2}\right]} \right\|_{\varphi_1}^2 + \left\| x^{\left[\frac{p}{2}\right]} \right\|_{\varphi_2}^2 \right),$$

for every $x \in E$.

(c) \Rightarrow (a) Let $\varphi \in S_{E^*}$ and $z \in S_{E^{**}}$ with $\varphi(z) = 1$. Since for every finite sequence (x_1, \ldots, x_n) in E we have

$$\sum_{i} \left\| x_{i}^{\left[\frac{p}{2}\right]} \right\|_{\varphi}^{2} = \sum_{i} \varphi \left\{ x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]}, z \right\} = \varphi \sum_{i} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]} \right)(z) \le \left\| \sum_{i=1}^{n} L\left(x_{i}^{\left[\frac{p}{2}\right]}, x_{i}^{\left[\frac{p}{2}\right]} \right) \right\|,$$

and hence a) follows from c).

4 w-right-norm continuous holomorphic mappings

Given Banach spaces X and Y, letting m = 1, 2, ..., we shall denote by $\mathcal{L}(^m X, Y)$ the Banach space of all continuous *m*-linear mappings from $X^m = X \times ... \times X$ (*m* times) to Y, with respect to the pointwise vector operations and the norm defined by

$$||A|| = \sup_{x_1 \neq 0, \dots, x_m \neq 0} \frac{||A(x_1, \dots, x_m)||}{||x_1|| \cdots ||x_m||}$$

where $A \in \mathcal{L}(^m X, Y)$ and $x_1, \ldots, x_m \in X$.

www.mn-journal.com

An element $A \in \mathcal{L}(^m X, Y)$ is said to be symmetric if

$$A(x_1,\ldots,x_m) = A(x_{\sigma(1)},\ldots,x_{\sigma(m)})$$

for any permutation $\sigma : \{1, \ldots, m\} \longrightarrow \{1, \ldots, m\}$. The symbol $\mathcal{L}_s(^m X, Y)$ will denote the closed subspace of $\mathcal{L}(^m X, Y)$ of all symmetric continuous *m*-linear mappings.

A continuous *m*-homogeneous polynomial *P* from *X* to *Y* is a mapping $P : X \longrightarrow Y$ for which there is a unique $A \in \mathcal{L}_s(^m X, Y)$ such that

$$P(x) = A(x, \dots, x)$$
 for any $x \in X$.

The *m*-linear operator A is called the *generating operator* for P and in the sequel will be denoted by \hat{P} . By a 0-homogeneous polynomial we mean a constant function. $\mathcal{P}(^{m}X, Y)$ will denote the Banach space of all continuous *m*-homogeneous polynomials from X to Y, with respect the pointwise vector operations and the norm defined by

$$||P|| = \sup_{x \neq 0} \frac{||P(x)||}{||x||}$$

Every *m*-homogeneous polynomial $P: X \longrightarrow Y$ satisfies the following polarization formula:

$$\widehat{P}(x_1,\ldots,x_m) = \frac{1}{2^m m!} \sum_{\varepsilon_i = \pm 1} \varepsilon_1 \cdot \ldots \cdot \varepsilon_m P\left(\sum_{i=1}^m \varepsilon_i x_i\right),\tag{4.1}$$

Jointly w-right-norm continuous multilinear operators have been studied in [22, 30] and [37]. A multilinear operator $T: X_1 \times \ldots \times X_m \longrightarrow X$ is jointly w-right-to-norm continuous if and only if it is jointly w-right-to-norm continuous at 0 if and only if there exist reflexive Banach spaces R_1, \ldots, R_m and bounded linear operators $T_i: X_i \longrightarrow R_i$ satisfying, for each x_i in X_i ,

$$||T(x_1,\ldots,x_m)|| \le ||x_1|||_{T_1} \cdots ||x_m||_{T_m}$$

(compare [22, Theorem 4] and [37, Proposition 3.11] or [30, Theorem 1]).

The polarization formula (4.1) guarantees that an *m*-homogeneous polynomial *P* is w-right-norm continuous if and only if its generating multilinear operator is jointly w-right-norm continuous (at 0) if and only if *P* is w-right-norm continuous at 0. The corresponding affirmation for the strong^{*} topology is also true.

Arens [3, 4] was the first author in considering extensions of bilinear operators to the product of the biduals. For multilinear operators, Aron and Berner introduced, in [5], a method to extend k-linear mappings to the product of the biduals that can be described as follows: Let X_1, \ldots, X_k , and X be Banach spaces and $T: X_1 \times \cdots \times X_k \longrightarrow X$ a k-linear operator. Let $\pi: \{1, \ldots, k\} \longrightarrow \{1, \ldots, k\}$ (denoted $i \longmapsto \pi_i$) be a permutation. We define the Aron-Berner extension of T associated to π

$$AB(T)_{\pi}: X_1^{**} \times \cdots \times X_k^{**} \longrightarrow X^{**}$$

by

$$AB(T)_{\pi}(z_1,\ldots,z_k) = \operatorname{weak}^* - \lim_{\alpha_{\pi_1}} \cdots \operatorname{weak}^* - \lim_{\alpha_{\pi_k}} T(x_1^{\alpha_1},\ldots,x_k^{\alpha_k}),$$

where $(z_1, \ldots, z_k) \in X_1^{**} \times \cdots \times X_k^{**}$ and, for $1 \le i \le k$, $(x_i^{\alpha_i})_{\alpha_i} \subset X_i$ is a net weak^{*} convergent to z_i . $AB(T)_{\pi}$ is bounded and has the same norm as T. For each k-linear operator there are k! possibly different extensions. However, for each symmetric k-linear operator T the restriction of $AB(T)_{\pi}$ to the diagonal does not depend on the permutation π .

Given an *m*-homogeneous polynomial $P : X \longrightarrow Y$, the *m*-homogeneous polynomial $AB(P) : X \longrightarrow Y$, $AB(P)(x) := AB(\hat{P})_{\pi}(x, \ldots, x)$ (where π is any permutation of the set $\{1, \ldots, k\}$), will be called the Aron-Berner extension of P.

A continuous polynomial P from X to Y is a finite sum of continuous homogeneous polynomials. We shall denote by $\mathcal{P}(X, Y)$ the space of all continuous polynomials from X to Y with respect to pointwise vector operations. Following [31], a polynomial $P: X \longrightarrow Y$ is said to be *weakly compact* if P maps bounded sets in X into relatively weakly compact sets in Y.

We have already noticed that a bounded linear operator $T : X \longrightarrow Y$ is weakly compact if and only if T is w-right-norm continuous. The following examples show that none of these implications holds for continuous polynomials in general Banach spaces.

Example 4.1 Let $P: \ell_2 \longrightarrow \ell_1$ be the 2-homogeneous polynomial whose generating operator is defined by

$$\widehat{P}: \ell_2 \times \ell_2 \longrightarrow \ell_1,$$
$$\widehat{P}(x, y) = x \cdot y,$$

where $x \cdot y$ denotes the pointwise multiplication. It follows by Hölder's inequality that \hat{P} is well defined with $\|\hat{P}\| \leq 1$. Since ℓ_2 is a reflexive Banach space, and for any reflexive Banach space the w-right topology coincides with the norm topology, we trivially have that P is w-right-norm continuous. However, P cannot be weakly compact because P maps the canonical basis of ℓ_2 to the canonical basis of ℓ_1 and the latter admits no weakly convergent subsequences.

A weakly compact polynomial on a Banach space X need not be w-right-norm continuous, even when X satisfies the Dunford-Pettis property.

Example 4.2 Since the interval $\left[\frac{1}{2}, 1\right]$ is not scattered, there is a continuous surjective linear map $q: C\left(\left[\frac{1}{2}, 1\right]\right) \longrightarrow \ell_2$ (compare [13, Corollary 4.16]). By the open mapping theorem, we can pick $f_n \in C\left(\left[\frac{1}{2}, 1\right]\right)$ with $||f_n|| = 1$ such that $q(f_n) = e_n$, for every $n \in \mathbb{N}$, where (e_n) denotes the canonical basis of ℓ_2 . We can define a sequence (g_n) in C([0, 1]) satisfying that $g_n|_{\left[\frac{1}{2}, 1\right]} = f_n$ and $g_n|_{\left[0, \frac{1}{4}\right]} = 0$.

On the other hand, the assignment $f \mapsto (f(\frac{1}{6n}) - f(0))_n$ defines a linear operator $p : C([0, 1]) \longrightarrow c_0$. Finally, we define a symmetric bilinear map

$$V: C([0,1]) \times C([0,1]) \longrightarrow \ell_2$$

given by $V(f,g) := p(f) \cdot q(g|_{[\frac{1}{2},1]}) + p(g) \cdot q(f|_{[\frac{1}{2},1]})$, where for $a \in c_0$ and $b \in \ell_2$, $a \cdot b \in \ell_1$ is defined by $(a \cdot b)_n = a_n b_n$. It is clear that V is weakly compact. We claim that V is not jointly w-right-norm continuous. Indeed, let us pick a sequence (x_n) of mutually orthogonal continuous functions in C([0,1]) satisfying $||x_n|| = x_n(\frac{1}{6n}) = 1$. By definition, (x_n) is a w-right-null sequence in C([0,1]) (compare [35, Lemma 13]), while (g_n) is a bounded sequence in C([0,1]). Thus, if V were jointly w-right-norm continuous, then Proposition 3.11 in [37], would imply that

$$1 = ||e_n|| = ||V(x_n, g_n)|| \longrightarrow 0,$$

which is impossible.

Let us recall that an operator is said to be *pseudo weakly compact* if it is sequentially w-right-norm continuous. A Banach space X is called *sequentially right* if every pseudo weakly compact operator from X to another Banach space is weakly compact. C*-algebras, JB*-triples and Banach spaces satisfying Pelczynski's Property (V) are examples of sequentially right spaces (compare [35]).

It is also known that a bounded linear operator $T: X \longrightarrow Y$ is weakly compact if and only if its bitranspose remains Y-valued. In the multilinear setting, a similar question has been recently considered in [37]. We first recall the following definition introduced in [37]: Given Banach spaces X_1, \ldots, X_k, X , a multilinear operator $T: X_1 \times \cdots \times X_k \longrightarrow X$ is *right quasi completely continuous* (RQCC) if for arbitrary w-right Cauchy sequences $(x_i^n)_n \subset X_i \ (1 \le i \le k)$, the sequence $(T(x_1^n, \ldots, x_k^n))_n$ converges in norm, equivalently, for every sequence $(x_i^n) \subset X_i$ which is w-right-convergent to $x_i \in X_i \ (1 \le i \le k)$ we have

$$\lim_{n \to \infty} \|T(x_1^n, \dots, x_k^n) - T(x_1, \dots, x_k)\| = 0,$$

that is T is jointly sequentially w-right-norm continuous. The following result follows from Proposition 3.3 and Theorem 3.8 in [37]. Let X_1, \ldots, X_k be non zero sequentially right Banach spaces and let $T: X_1 \times \cdots \times X_k \longrightarrow X$

be a multilinear operator. Then T is RQCC if and only if all of the Aron-Berner extensions of T are X-valued if and only if T has an X-valued Aron-Berner extension. We shall study this equivalence in the case of holomorphic mappings between complex Banach spaces.

We now consider weakly compact holomorphic mappings. Let X, Y be two Banach spaces, a mapping $f: X \longrightarrow Y$ is said to be a *holomorphic map* if for each $x \in X$ there exists a sequence of polynomials

$$\hat{d}^n f(x) \in \mathcal{P}(^n X, Y)$$

and a neighborhood V_x of x such that the series

$$\sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^n f(x) (y-x)$$

converges uniformly to f(y) for every $y \in V_x$.

A holomorphic function $f: X \longrightarrow Y$ is said to be of *bounded type* if it is bounded on all bounded subsets of X. The polynomial series at zero $f(y) = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^n f(0)(y)$ of such a function have infinite radius of uniform convergence, i.e.: $\limsup \|\frac{1}{n!} \hat{d}^n f(0)\|^{\frac{1}{n}} = 0$ (compare [16, Section 6.2]).

If $f: X \longrightarrow Y$ is a holomorphic function of bounded type and $f(y) = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^n f(0)(y)$ $(y \in X)$ is its Taylor series at 0, it follows by [21, Section 2] or [16, Proposition 6.16] that the assignment

$$y \longmapsto AB(f)(y) = \sum_{n=0}^{\infty} \frac{1}{n!} AB(\hat{d}^n f(0))(y), \quad (y \in X^{**})$$

defines a holomorphic function of bounded type, $AB(f) : X^{**} \longrightarrow Y^{**}$, called the Aron-Berner extension of f.

A holomorphic map $f: X \longrightarrow Y$ is said to be *weakly compact* if for every $x \in X$ there exists a neighborhood V_x of x such that $f(V_x)$ is a relatively weakly compact set of Y. See [28] or [17] for details about holomorphic maps. The Examples 4.1, and 4.2 show that weak compactness is not the correct property to guarantee Aron-Berner extensions valued in the same codomain space.

We shall now show that w-right-norm continuity of a holomorphic mapping f implies w-right-norm continuity of its derivatives at every point.

Proposition 4.3 Let $f : X \longrightarrow Y$ be a holomorphic mapping between two Banach spaces. Then the following statements hold:

- (a) If f is w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial $\hat{d}^n f(x)$ is w-right-norm continuous (respectively, strong*-norm continuous) for every $n \in \mathbb{N}$ and every $x \in X$.
- (b) If f is sequentially w-right-norm continuous (respectively, strong*-norm continuous), then the polynomial $\hat{d}^n f(x)$ is sequentially w-right-norm continuous (respectively, strong*-norm continuous) for every $n \in \mathbb{N}$ and every $x \in X$.

Proof. We shall only include here the proof of the statements concerning the w-right topology, the proofs of those affirmations concerning the strong^{*} topology follow similarly.

(a) Let us fix $x \in X$. By hypothesis, there exist reflexive spaces R_1, \ldots, R_k , bounded linear operators $T_i : X \longrightarrow R_i$ $(i \in \{1, \ldots, k\})$ and $\delta > 0$ satisfying that $f(W) \in f(x) + B(Y)$, where

$$W = \{ y \in X : \|x - y\|_{T_i} < \delta, \forall i \in \{1, \dots, k\} \}$$

Since $W_0 := \{y \in X : \|y\|_{T_i} < \delta, \forall i \in \{1, ..., k\}\}$ is a balanced set, it follows by [41, Lemma 3.1] (compare also the proof of [6, Proposition 3.4]), that

$$\frac{1}{n!}\hat{d}^n f(x)(W_0) \subset \overline{co}f(x+W_0) \subseteq \overline{co}(f(x)+B(Y)),$$

where $\overline{co}A$ denotes the convex balanced hull of A. In particular there exists a constant $M_n > 0$ satisfying that

$$\|\hat{d}^n f(x)(y)\| \le M_n$$
, for all $y \in W_0$.

Taking $R = \bigoplus^{\ell_2} R_i$ and $T : X \longrightarrow R$, $x \longmapsto (\delta/2)^{-1}(T_i(x))$, it can be easily seen that, for each $y \in X$ with $T(y) \neq 0$, we have $\frac{y}{\|y\|_x} \in W_0$, and hence,

$$||d^n f(x)(y)|| \le M_n ||y||_T^n$$

For each $y \in \text{ker}(T)$, and t > 0, ty lies in W_0 , thus $t^n \|\hat{d}^n f(x)(y)\| = \|\hat{d}^n f(x)(ty)\| \le M_n$, which implies that $\hat{d}^n f(x)(y) = 0$. We have then shown that

$$\|d^n f(x)(y)\| \le M_n \|y\|_{T}^n$$

for all $y \in X$. This proves that $\hat{d}^n f(x)$ is w-right-norm continuous at 0, which gives the desired statement.

(b) We assume that f is sequentially w-right-norm continuous. Let (y_k) be a sequence in X converging in the w-right topology to $y \in X$. Let us fix $x \in X$ and φ in the closed unit ball of Y^* . Defining $g_k(\lambda) := \varphi f(x + \lambda y_k)$ and $g(\lambda) := \varphi f(x + \lambda y)$, it follows by Cauchy's integral formula that

$$\begin{aligned} \left| \frac{1}{n!} \varphi (\hat{d}^n f(x)(y_k) - \hat{d}^n f(x)(y)) \right| &= \left| \left(g_k^{(n)}(0) - g^{(n)}(0) \right) / n! \right| \\ &\leq \sup\{ ||(g_k - g)(\lambda)| : |\lambda| = 1 \} \\ &\leq \sup\{ ||f(x + \lambda y_k) - f(x + \lambda y)|| : |\lambda| = 1 \}. \end{aligned}$$

Taking supreme over all φ in the closed unit ball of Y^* , we have

$$\|\hat{d}^n f(x)(y_k) - \hat{d}^n f(x)(y)\| \le n! \sup\{\|f(x + \lambda y_k) - f(x + \lambda y)\| : |\lambda| = 1\}.$$

Finally, since f is sequentially w-right-norm continuous, it can be easily seen that

$$\lim_{k \to \infty} \sup\{\|f(x + \lambda y_k) - f(x + \lambda y)\| : |\lambda| = 1\} = 0.$$

Theorem 4.4 Let X be a sequentially right space, Y a Banach space and let $f : X \longrightarrow Y$ be a holomorphic function of bounded type. Then f is sequentially w-right-norm continuous if and only if AB(f) is Y-valued.

Proof. Let $f(y) = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{d}^n f(0)(y)$, $(y \in X)$ and $AB(f)(y) = \sum_{n=0}^{\infty} \frac{1}{n!} AB(\hat{d}^n f(0))(y)$, $(y \in X^{**})$ be the Taylor series of f and AB(f) at zero, respectively. If f is sequentially w-right-norm continuous, then Proposition 4.3 b) implies that, for each natural n, $\hat{d}^n f(0)$ is sequentially w-right-norm continuous. The polarization formula (4.1) implies that, for each natural n, the generating multilinear operator of $\hat{d}^n f(0)$ is jointly sequentially w-right-norm continuous or RQCC. Theorem 3.8 in [37] guarantees that $AB(\hat{d}^n f(0))$ is Y-valued for all natural n. The uniform convergence of the Taylor series at zero of the function AB(f) assures that $AB(f)(X^{**}) \subseteq Y$.

Assume now that $AB(f)(X^{**}) \subseteq Y$. Since X^{**} is a balanced set, it follows by [41, Lemma 3.1] (compare also the proof of [6, Proposition 3.4]), that

$$\frac{1}{n!}AB(\widehat{d}^n f(0))(X^{**}) \subset \overline{co}AB(f)(X^{**}) \subseteq Y.$$

It follows again from Theorem 3.8 in [37] that $\hat{d}^n f(0)$ is sequentially w-right-norm continuous. The desired statement will finally follow from the uniform convergence of the Taylor series.

Acknowledgements The second and third named authors were partially supported by project I+D MCYT No. MTM2008-02186, and Junta de Andalucía grants FQM0199 and FQM3737. Part of the paper was written while D. Puglisi was visiting the Departamento de Análisis Matemático at Universidad de Granada (Spain); he would like to thank sincerely A. M. Peralta for his warm hospitality. We are also grateful to an anonymous referee for pointing out a gap in an earlier stage of this paper and to Professor M. Maestre for fruitful discussions and comments.

© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

References

- M. D. Acosta and A. M. Peralta, An alternative Dunford-Pettis property for JB*-triples, Q. J. Math. 52(4), 391–401 (2001).
- [2] C. A. Akemann, The dual space of an operator algebra, Trans. Am. Math. Soc. 126, 286–302 (1967).
- [3] R. Arens, Operations induced in function classes, Monatsh. Math. 55, 1–19 (1951).
- [4] R. Arens, The adjoint of a bilinear operation, Proc. Am. Math. Soc. 2, 839–848 (1951).
- [5] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. Fr. 106, 3–24 (1978).
- [6] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21, 7–30 (1976).
- [7] B. Beauzamy, Opérateurs uniformément convexifiants, Studia Math. 57(2), 103–139 (1976).
- [8] B. Beauzamy, Propriété de Banach-Saks, Studia Math. 66(3), 227–235 (1979/80).
- [9] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras (Cambridge University Press, New York, 1971).
- [10] M. Burgos, F. J. Fernández-Polo, J. Garcés, J. Martínez, and A. M. Peralta, Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348(1), 220–233 (2008).
- [11] C. H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97, 59-64 (1990).
- [12] Ch.-H. Chu and P. Mellon, The Dunford-Pettis property in JB*-triples, J. Lond. Math. Soc. (2) 55(3), 515–526 (1997).
- [13] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators (Cambridge University Press, 1995).
- [14] J. Diestel, W. M. Ruess, and W. Schachermayer, On weak compactness in $L_1(\mu, X)$, Proc. Am. Math. Soc. **118**(2), 447–453 (1993).
- [15] J. Diestel and J. J. Uhl, Vector Measures, Mathematical Surveys Monographs Vol. 15 (Am. Math. Soc., Providence, RI, 1977).
- [16] S. Dineen, Complex Analysis on Infinite Dimensional Spaces (Springer, 1999).
- [17] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Mathematics Studies Vol. 57 (North-Holland, Amsterdam, 1981)
- [18] N. Dunford and J.T. Schwartz, Linear Operators, Part I (Interscence, New York, 1958).
- [19] W. Freedman, An alternative Dunford-Pettis property, Studia Math. 125, 143–159 (1997).
- [20] Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356, 67–89 (1985).
- [21] T. Gamelin, Analytic Functions on Banach spaces, Complex Potential Theory (Montreal, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 439 (Kluwer Academic Publisher, 1994), pp. 187–233.
- [22] M. González and J. Gutiérrez, Injective factorization of holomorphic mappings, Proc. Am. Math. Soc. 127, 1715–1721 (1999).
- [23] U. Haagerup, The Grothendieck inequality for bilinear forms on C*-algebras, Avd. Math. 56, 93–116 (1985).
- [24] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61(1), 117–133 (1987).
- [25] W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228, 39–64 (1977).
- [26] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183, 503–529 (1983).
- [27] S. Moedomo and J. J. Uhl Jr., Radon-Nikodým theorems for the Bochner and Pettis integrals, Pac. J. Math. 38, 531–536 (1971).
- [28] L. Nachbin, Topology on Spaces of Holomorphic Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Bd.
 47 (Springer Verlag, Berlin, 1969).
- [29] G. K. Pedersen, C*-Algebras and their Automorphism Groups, London Mathematical Society Monographs Vol. 14 (Academic Press, Inc., London-New York, 1979).
- [30] C. Palazuelos, A. M. Peralta, and I. Villanueva, Factorizing multilinear operators on Banach spaces, C*-algebras and JB*-triples, Stud. Math. 192(2), 129–146 (2009).
- [31] A. Pełczyński, On weakly compact polynomial operators on *B*-spaces with Dunford-Pettis property, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 11, 371–378 (1963).
- [32] A. M. Peralta, On summing operators on JB^* -triples, Manuscr. Math. 105(2), 265–281 (2001).
- [33] A. M. Peralta and A. Rodríguez Palacios, Grothendieck's inequalities for real and complex JBW*-triples, Proc. Lond. Math. Soc. (3) 83(3), 605–625 (2001).
- [34] A. M. Peralta and A. Rodríguez Palacios, Grothendieck's inequalities revisited, Recent Progress in Functional Analysis (Valencia, 2000), North-Holland Mathematics Studies Vol. 189 (North-Holland, Amsterdam, 2001), pp. 409–423.
- [35] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Topological characterisation of weakly compact operators, J. Math. Anal. Appl. 325(2), 968–974 (2007).
- [36] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Weakly compact operators and the strong* topology for a Banach space, Proc. R. Soc. Edinb. 140A, 1249–1267 (2010).

- [37] A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen, Quasi Completely continuous multilinear operators, Proc. R. Soc. Edinb. 140A, 635–649 (2010).
- [38] A. Pietsch, Operator Ideals, North-Holland Mathematical Library Vol. 20 (North-Holland Publishing Co., Amsterdam-New York, 1980).
- [39] G. Pisier, Grothendieck's theorem for non commutative C*-algebras with an appendix on Grothendieck's constant, J. Funct. Anal. 29, 397–415 (1978).
- [40] W. Ruess, [Weakly] Compact operators and DF spaces, Pac. J. Math 98(2), 419-441 (1982).
- [41] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pac. J. Math. 131(1), 179–190 (1988).
- [42] N. Ch. Wong and Y.-Ch. Wong, Topologies and bornologies determined by operator ideals, Math. Ann. 282(4), 587–614 (1988).