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Abstract

We show, among other results, that if λ denotes the Lebesgue measure on the Borel sets in [0, 1] and X
is an infinite dimensional Banach space, then the set of measures whose range is neither closed nor convex
is lineable in ca(λ,X). We also show that, in certain situations, we have lineability of the set of X-valued
and non-σ -finite measures with relatively compact range. The lineability of sets of the type Lp(I)\Lq(I)
is studied and some open questions are proposed. Some classical techniques together with the converse of
the Lyapunov Convexity Theorem are used.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

In the last years several results concerning the linear structure of certain subsets of functions
verifying some special (and apparently uncommon) properties have been appearing in Mathemat-
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0024-3795/$ - see front matter ( 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2008.01.008



Author's personal copy

2806 G.A. Muñoz-Fernández et al. / Linear Algebra and its Applications 428 (2008) 2805–2812

ical Analysis. Large vector spaces of continuous nowhere differentiable functions, everywhere
surjective functions, or differentiable nowhere monotone functions have been constructed in the
past. Moreover, new mathematical terminology has been also introduced. Following this termi-
nology, we say that a subset M of functions satisfying such a property is spaceable if M ∪ {0}
contains a closed infinite dimensional subspace. The set M will be called lineable if M ∪ {0}
contains an infinite dimensional vector space. At times, we will be more specific, referring to the
set M as μ-lineable if it contains a vector space of dimension μ. This terminology of lineable
and spaceable was first introduced in [2,3,9,14].

Some of these special properties are not isolated phenomena. In [3] it was shown that the set
of everywhere surjective functions is 2c-lineable and that the set of differentiable functions on R

which are nowhere monotone is lineable in C(R). Fonf et al. showed [10] that the set of nowhere
differentiable functions on [0, 1] is spaceable in C[0, 1]. Some of these pathological behaviors
occur in really interesting ways. For instance Hencl [15] showed that any separable Banach
space is isometrically isomorphic to a subspace of C[0, 1] whose non-zero elements are nowhere
approximately differentiable and nowhere Hölder. Also, in [17], the third and fourth authors
showed that, in certain situations, there is lineability in the set of bounded linear and non-absolutely
summing operators. They also provided examples of large subspaces inside �p(E, F )\Ip(E, F ),
the set of non-p-integral p-summing operators. For further new results regarding Banach spaces
and Banach algebras of functions enjoying some of these so called pathological properties we refer
the interested reader to [1,5,11,12] and, for results related to lineability and non-measurability,
we refer to [13].

Our work here continues this ongoing search for sets of functions enjoying special properties.
Our main results in Section 2 are related to some pathologies and special properties of measures
like, for instance, the converse of Lyapunov convexity theorem. The main results in this section
will be the following.

Proposition 2.2. Let (�,�, λ) be the measure space on the unit interval and 1 � p < ∞. Then
the set of �p-valued measures with relatively compact range and such that their variation measure
takes the value infinity on every non-null set is lineable in cca(�,�, �p).

Theorem 2.4. Let λ be the Lebesgue measure on the Borel sets in [0, 1], and let X be an infinite
dimensional Banach space. Then the set of injective measures is lineable in ca(λ,X).

Corollary 2.5. Let λ be the Lebesgue measure on the Borel sets in [0, 1], and X be an infinite
dimensional Banach space. Then the set of measures whose range is neither closed nor convex is
lineable in ca(λ,X).

Some of the techniques we use to prove the above results are inspired in arguments from [4].
Section 3 will deal with the lineability of subsets of classical �p spaces and sets of the type

Lp(I) \ Lq(I) for I either a bounded or unbounded interval, showing, by means of classical real
analysis techniques, that:

Theorem 3.3. If 1 � p < q then the set Lp[0, 1] \ Lq [0, 1] is c-lineable.

Theorem 3.4. Ifp > q � 1 and I any unbounded interval then the setLp(I) \ Lq(I) is c-lineable.

Theorem 3.5. If p > q � 1 then the set �p\�q is c-lineable.
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Finally, we will conclude by proposing some questions and open problems. Most of the notation
is from the category of measure and function spaces and rather usual, otherwise we will give
definitions when necessary.

2. Some pathologies in measure spaces

It was proved in [19, p. 90] and in [16] that if X is an infinite dimensional Banach space then
there exists a non-trivial X-valued measure with relatively compact range such that its variation
measure assumes the value infinity on every non-null set. Let (�,�) be a measurable space and
let X be an infinite dimensional Banach space. We denote by ca(�,�, X) the Banach space of
all countably additive measures μ : � −→ X endowed with the semi-variation norm

‖μ‖ = sup{‖μ(E)‖ : E ∈ �}.
Also, let cca(�,�, X) denote the closed subspace of ca(�,�, X) consisting of measures with
relatively norm compact range. Given a positive measure λ, we denote by ca(λ,X) = {μ ∈
ca(�,�, X) : μ � λ}where, as usual,μ � λmeans the absolute continuity ofμwith respect toλ.

Before stating and proving the main results of this section, recall that, given a measure μ, its
variation is defined as

|μ|(E) = sup

{
m∑
i=1

‖μ(Ei‖ : Ei ’s pairwise disjoint and
m⋃
i=1

Ei = E

}
.

Let us also recall the following technical lemma, whose proof can be found in [17].

Lemma 2.1. Let {an}n∈N be a sequence of positive real numbers. If
∑∞
n=1 an = +∞ then there

exists {Ai}i∈N ⊆ N such that:

(i) |Ai | = ω0 for each i ∈ N, where |A| denotes the cardinality of A, and ω0 = |N|,
(ii) Ai ∩ Aj = ∅ if i /= j, and

(iii)
∑
m∈Ai am = +∞ for each i ∈ N.

Throughout this paper we will apply the previous lemma several times to the harmonic series
{ 1
n
}n∈N. The following proposition, where we consider classical �p spaces, will serve as an

example.

Proposition 2.2. Let (�,�, λ) be the measure space on the unit interval and 1 � p < ∞. Then
the set of �p-valued measures with relatively compact range and such that their variation measure
takes the value infinity on every non-null set is lineable in cca(�,�, �p).

Proof. We will denote by en the usual unit vector of �p, let rn : [0, 1] −→ {−1, 1} be the sequence
of Rademacher functions and we denote with λ the Lebesgue measure on the Borel sets in
[0, 1]. Now, consider a sequence {An}n∈N of subsets of N as in Lemma 2.1. Next, let us define
μn : � −→ �p by

μn(E) =
∑
j∈An

[(∫
E

rj (t)dλ(t)

)
· ej
j

1
p

]
. (1)

First of all let us notice that each μn is in cca(�,�, λ). In order to do this, recall from [8] that a
subset K of �p is relatively norm compact if and only if K is norm bounded and
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lim
n→∞

∑
i�n

|ai |p = 0

uniformly on a ∈ K .
Furthermore fix n ∈ N and notice that, trivially, μn(�) is norm bounded (it actually is weakly

compact). Secondly we need to show that

lim
m→∞

∑
i∈An,i�m

1

i

∣∣∣∣
∫
E

ri(t)dλ(t)

∣∣∣∣
p

= 0

uniformly for E ∈ �.

(1) The case p = 1 follows from the fact that �1 has the Schur property.
(2) For 1 < p < 2, we recall a well known result by Rosenthal [18] stating that every operator

L∞[0, 1] −→ �p is compact.
(3) If p � 2, we fix m ∈ N. Then:∑

i∈An,i�m

1

i

∣∣∣∣
∫
E

ri(t)dλ(t)

∣∣∣∣
p

� 1

m

∑
i∈An,i�m

∣∣∣∣
∫
E

ri(t)dλ(t)

∣∣∣∣ � 1

m
λ(E) � 1

m
.

Therefore the sequence {μn}n belongs to cca(�,�, X).
Now, suppose that there exist n ∈ N, A ∈ � with λ(A) > 0 and with |μn|(A) finite. Since �p

has the Radon–Nikodym property (see, e.g. [7]) then there exists a Bochner integrable function
g : A −→ �p such that

μn(E) =
∫
E

g(t)dλ(t) for all E ∈ � with E ⊂ A.

Using the original expression of μn, (1), we obtain

g(t) =
∑
j∈An

rj (t) · ej
j

1
p

a.e. t ∈ A.

In particular, since |rj (t)| = 1 for each t ∈ [0, 1] we obtain (Lemma 2.1) that

‖g(t)‖�p =
∑
j∈An

1

j
= ∞,

a clear contradiction.
Also, {μn}n is a linear independent sequence in cca(�,�, �p) since the μn’s have disjoint

supports. Finally, notice that every element of span{μn : n ∈ N}n has the property that its variation
measure is infinity for non-null elements. It suffices to check this for a linear combination of two
elements. Let c1, c2 ∈ R and n1, n2 ∈ N. Since

(c1μn1 + c2μn2)(E) =
∑

j∈An1∪An2

∫
E

sj (t)dλ(t) · ej
j

1
p

, (2)

where sj (t) = cirj (t) if j ∈ Ani (i = 1, 2). Then, using again the Radon–Nikodym property of
�p spaces we obtain that, if there existsA ∈ � with λ(A) > 0 so that |c1μn1 + c2μn2 |(A) is finite
then there should exist a Bochner integrable function g̃ : A −→ �p with

(c1μn1 + c2μn2)(E) =
∫
E

g̃(t)dλ(t).
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Therefore, using (2) and applying Lemma 2.1 again, we have

‖g̃(t)‖�p = |c1|
∑
j∈An1

1

j
+ |c2|

∑
j∈An2

1

j
a.e. t ∈ [0, 1],

which clearly is a contradiction. �
Definition 2.3. Let (�,�) be a measurable space, λ a positive measure on �, and X an infi-
nite dimensional Banach space. A measure μ ∈ ca(λ,X) is said to be injective when for each
φ,ψ ∈ L∞(λ),

if
∫
φdμ =

∫
ψdμ then φ = ψ λ− a.e.

In the previous definition we considered only infinite dimensional Banach spaces, since Hal-
mos proved that every measure μ from a σ -algebra � to a finite dimensional Banach space is
always semiconvex (i.e. for each E ∈ � there exists F ∈ � such that μ(F) = μ(E)

2 ); of course,
no semiconvex measure can be injective.

Theorem 2.4. Let λ be the Lebesgue measure on the Borel sets in [0, 1], and let X be an infinite
dimensional Banach space. Then the set of injective measures is lineable in ca(λ,X).

Proof. The proof will follow in the same manner as previously. First, let rn : [0, 1] −→ {−1, 1}
be the sequence of Rademacher functions. Now, consider a sequence {An}n verifying (i) and (ii)
from Lemma 2.1. Since X is an infinite dimensional Banach space, X contains a basic sequence,
let us call it {xn}n (see, e.g. [6]). Now, define μn : � −→ X by

μn(E) =
∑
j∈An

(∫
E

rpn(j)(t)dλ(t)

)
· xj

2j
,

where pn is a bijection pn : An = {an(i)}i ↔ N given by pn(j) = i where an(i) = j . Now,
notice that each μn is an injective measure. Indeed, fix n ∈ N and consider φ,ψ ∈ L∞(λ) such
that

∫
φdμn = ∫

ψdμn. Then

∑
j∈An

(∫
φrpn(j) dλ

)
xj

2j
=

∑
j∈An

(∫
ψrpn(j) dλ

)
xj

2j
.

Since {xn}n is a basic sequence we obtain
∫
φrpn(j)dλ = ∫

ψrpn(j)dλ for each j ∈ An, and from
the fact that the sequence of Rademacher functions {rn}n is total inL1(λ)we have φ = ψ λ− a.e.

It is a simple exercise to show that, by construction, the sequence {μn}n is linearly independent.
Finally, one can easily check (using the same argument as in Proposition 2.2) that every non-null
element of span{μn : n ∈ N}n is injective as well. �

A classical result of Lyapunov states that, given a finite dimensional Banach space X we have
that, for each σ -algebra � and for each measure G : � −→ X such that G is σ -additive, has
bounded variation and is atomless (or not atomic measure), then the range ofG (i.e. {G(E) : E ∈
�}) is a compact convex set of X. Wnuk [20] proved that if X is an infinite dimensional Banach
space then there exists a measure whose range is neither closed nor convex. Since it is well known
that every injective measure has range neither closed nor convex, we can now obtain the following
result, consequence of Theorem 2.4.
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Corollary 2.5. Let λ be the Lebesgue measure on the Borel sets in [0, 1], and letX be an infinite
dimensional Banach space. Then the set of measures whose range is neither closed nor convex is
lineable in ca(λ,X).

3. Subspaces of Lp(I)\Lq(I), sequence spaces and non linear properties

In this section we will focus our attention on the lineability of spaces of the type Lp(I)\Lq(I)
for I either a bounded or unbounded interval. We will begin the section by considering the set
Lp(I)\Lq(I) for I bounded. Without loss of generality we will restrict ourselves to I = [0, 1].
Before stating the first result of this section we need the following lemmas, of simple proof.

Lemma 3.1. Let k ∈ N, 0 < rk < rk−1 < · · · < r2 < r1 and let α1, α2, . . . , αk be all non-zero
real numbers. Then we have that

(1) If α1 > 0 then there exists ε ∈ (0, 1) such that α1
xr1

> − ∑k
j=2

αj

x
rj

for every x ∈ (0, ε).
(2) If α1 < 0 then there exists ε ∈ (0, 1) such that α1

xr1
< − ∑k

j=2
αj

x
rj

for every x ∈ (0, ε).

Proof. Without loss of generality we may assume that α1 > 0 (since the other case is similar).
Then, since lim x → 0+(− ∑k

j=2 αjx
r1−rj ) = 0, we have that there exists ε ∈ (0, 1) such that

− ∑k
j=2 αjx

r1−rj < α1, for every x ∈ (0, ε). Multiplying the previous inequality by x−r1 we
obtain the desired result. �

Lemma 3.2. Let k ∈ N, 0 < rk < rk−1 < · · · < r2 < r1 and let α1, α2, . . . , αk be all non-zero

real numbers. For every A > 0, there exists ε ∈ (0, 1) such that
∣∣∣∑k−1

j=1
αj

x
rj

∣∣∣ > A
xrk

for every

x ∈ (0, ε).

Proof. It is a simple exercise to check that the function
∑k−1
j=1

αj

x
rj−rk is unbounded on any

neighborhood of the form (0, δ), where δ > 0. Moreover, lim x → 0+ ∑k−1
j=1

αj

x
rj−rk = α1 · ∞.

Therefore, lim x → 0+
∣∣∣∑k−1

j=1
αj

x
rj−rk

∣∣∣ = ∞. Then, if A > 0, there exists ε ∈ (0, 1) such that∣∣∣∑k−1
j=1

αj

x
rj−rk

∣∣∣ > A, for every x ∈ (0, ε). Multiplying this previous expression by x−rk we arrive

at the wished inequality. �

Theorem 3.3. Let 1 � p < q. The set Lp[0, 1] \ Lq [0, 1] is c-lineable.

Proof. Let us consider the set of functions on (0, 1) given by

Bp,q =
{

1

xr
: x ∈ (0, 1),

1

q
< r <

1

p

}

and let V = span{Bp,q}. We will show that V \ {0} ⊂ Lp[0, 1] \ Lq [0, 1] and dim(V ) = c.
First of all, notice that Bp,q ⊂ Lp[0, 1] \ Lq [0, 1]. Now, take g ∈ V , it would be

g(x) =
k∑
j=1

αj

xrj
,
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where αj ∈ R, 1
q
< rj <

1
p

for every j ∈ {1, 2, . . . , k}. Let us also assume, without loss of gen-
erality, that r1 > r2 > · · · > rk . Let us further suppose that g = 0 and that α1 /= 0. Taking ε as
in Lemma 3.1 we obtain that g(x) /= 0 over the interval (0, ε), thus α1 = 0. Proceeding induc-
tively in this manner, and applying Lemma 3.1 (k − 1) times we obtain that αj = 0 for every
j ∈ {1, 2, . . . , k}. This shows that dim(V ) = c. Next, let us show that, ifg /= 0 theng ∈ Lp[0, 1] \
Lq [0, 1]. It suffices to show that g /∈ Lq [0, 1]. Let us now use Lemma 3.2 (for A = 1). We have
that there exists ε ∈ (0, 1) such that∫ 1

0
|g(x)|qdx >

∫ ε

0
|g(x)|qdx >

∫ ε

0

1

xq·rk
dx = ∞

and we are done. �

Of course we can also infer dual results for the sets Lp(I) \ Lq(I) for I unbounded and for
the difference of the classical �p spaces. Thus, we can state the following results, whose proofs
follow in a similar manner as the one above.

Theorem 3.4. Let p > q � 1 and let I be any unbounded interval. The set Lp(I)\Lq(I) is
c-lineable.

Theorem 3.5. Let p > q � 1. The set �p\�q is c-lineable.

For Theorem 3.4 we can, without loss of generality, consider I = [1,∞) and the vector space
given by

span

{
1

xr
: x ∈ I, r ∈

(
1

p
,

1

q

)}
.

Also, for Theorem 3.5 it suffices to consider the following vector space:

span

{{
1

nr

}
n∈N

: r ∈
(

1

p
,

1

q

)}
.

We finish this section by pointing out a remark about sequence spaces and a question originally
posed by Aron and Gurariy in 2003.

Remark 1. Aron and Gurariy posed the question of whether there exists an infinite dimensional
and closed subspace of �∞ every non-zero element of which has a finite number of zero coordi-
nates. If we denote by P the set of odd prime numbers, and (if p ∈ P ) we call

xp =
(

1

p
,

1

p2
,

1

p3
,

1

p4
, . . .

)
∈ �∞,

it is not hard to see that

span{xp : p ∈ P }
is an infinite dimensional manifold enjoying the wished property. However, the problem originally
posed by Aron and Gurariy concerning spaceability still remains open.
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[10] V. Fonf, V.I. Gurariy, V. Kadeč, An infinite dimensional subspace of C[0, 1] consisting of nowhere differentiable
functions, C.R. Acad. Bulgare Sci. 52 (11–12) (1999) 13–16.

[11] D. García, B.C. Grecu, M. Maestre, J.B. Seoane-Sepúlveda, Infinite dimensional Banach spaces of functions with
nonlinear properties. Preprint.

[12] F.J. García-Pacheco, N. Palmberg, J.B. Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena
in analysis, J. Math. Anal. Appl. 326 (2) (2007) 929–939.

[13] F.J. García-Pacheco, J.B. Seoane-Sepúlveda, Vector spaces of non-measurable functions,Acta Math. Sinica (English
Series) 22 (6) (2006) 1805–1808.

[14] V.I. Gurariy, L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004) 62–72.
[15] S. Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable

and nowhere Hölder functions, Proc. Amer. Math. Soc. 128 (2000) 3505–3511.
[16] L. Janicka, N. Kalton, Vector measures of infinite variation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.

25 (3) (1977) 239–241.
[17] D. Puglisi, J.B. Seoane-Sepúlveda, Bounded linear non-absolutely summing operators, J. Math. Anal. Appl. 338

(2008) 292–298.
[18] H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators

from Lp(ν) to Lr(ν), J. Funct. Anal. 4 (1969) 176–214.
[19] E. Thomas, The Lebesgue–Nikodym theorem for vector valued measured, Mem. AMS 139 (1974).
[20] W. Wnuk, The converse of Lyapunov convexity theorem. Comment, Math. Prace Mater. 21 (2) (1980) 389–390.


