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1. Introduction. In the study of the tensor product of Banach spaces (see
[11]), it is natural to investigate which geometric properties of Banach spaces are
preserved by the tensor product of these spaces. Diestel and Uhl (see [7]) posed
the question whether the projective tensor product of two Banach spaces with
the Radon-Nikodym property has the Radon-Nikodym property. Bourgain and
Pisier (see [2]) answered this question in the negative. They constructed a Banach

space X with the Radon-Nikodym property such that X
∧
⊗ X does not have the

Radon-Nikodym property. In this paper, modifying ideas of Bu and Buskes (see
[3]) and Bu, Diestel, Dowling, Oja (see [4]), we show that if X and Y are two
Banach lattices with the Radon-Nikodym property, with one of them atomic, then
the Fremlin tensor product of X and Y has the Radon-Nikodym property. The
subtle techniques of measure theory, as used in the paper of Diestel, Fourie and
Swart [6], was found to be useful in Step 3 of our proof of Theorem 5.

2. Preliminaries. Throughout this paper we will denote by X a Banach lat-
tice, by X∗ its topological dual and by BX its closed unit ball. As usual we will
denote by X+ the positive cone of the Banach lattice X.

Definition 1. Let E and F be Banach lattices. A bounded linear operator T :
E −→ F is called positive if T (E+) ⊆ F+. Let L+(E,F ) be the collection of all
positive operators from E into F. An operator T ∈ L(E,F ) is called regular if there
exist T1, T2 ∈ L

+(E,F ) such that T = T1 − T2. Let L
r(E,F ) denote the collection

of regular operators from E into F . It is known that if F is Dedekind complete
then Lr(E,F ) is a Banach lattice with positive cone L+(E,F ) (see [14]) and norm

‖T‖r = inf{‖S‖ : S ∈ L+(E,F ), |T (x)| ≤ S(|x|), x ∈ E+}
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and in this case, ‖T‖r = ‖ |T | ‖.

For two Banach lattices X and Y , Fremlin in [8], and [9] introduced a lattice
tensor product, called the positive projective tensor product. Let X,Y, Z be Banach
lattices. A bilinear map φ : X × Y −→ Z is called positive if φ(X+, Y +) ⊆ Z+;
the projective cone on the tensor product X ⊗ Y is defined as:

X+ ⊗ Y + = {
n∑

k=1

xk ⊗ yk : n ∈ N, xk ∈ X
+, yk ∈ Y

+}

The positive projective tensor norm on X ⊗ Y is defined as:

‖u‖|π| = sup{|

n∑

i=1

φ(xi, yi)| : u =

n∑

i=1

xi ⊗ yi, φ

is a positive bilinear function on X × Y, ‖φ‖ ≤ 1 }.

Let X
∧
⊗F Y be the completion of X ⊗ Y equipped with the norm ‖ · ‖|π|.

Then X
∧
⊗F Y is a Banach lattice, having as positive cone the closure in X

∧
⊗F Y

of the projective cone X+ ⊗ Y +. Fremlin ([9], Theorem 1E (vii)), gave a simpler
equivalent form of the positive projective norm, as

‖u‖|π| = inf{

∞∑

k=1

‖xk‖ · ‖yk‖ : xk ∈ X
+, yk ∈ Y

+, |u| ≤

∞∑

k=1

xk ⊗ yk}.

Definition 2. Let (un)n∈N be a Schauder basis for a Banach space U and let
(u∗n)n∈N be its biorthogonal sequence in U ∗. The basis (un)n∈N is said to be an
unconditional basis for U if there exists a constant λ ≥ 1 so that

∑∞
n=1 tn 〈u

∗
n, x〉un

converges for every (tn)n∈N ∈ `∞, x ∈ U and
∥∥∥∥∥

∞∑

n=1

tn 〈u
∗
n, x〉un

∥∥∥∥∥ ≤ λ

∥∥∥∥∥

∞∑

n=1

〈u∗n, x〉un

∥∥∥∥∥ ∀(tn)n∈N ∈ B`∞ .

We recall that a Banach space U with an unconditional basis (un)n∈N can be
ordered in a natural way such that it becomes a Banach lattice with the new norm

|‖u|‖ = sup{‖
∑

n∈N

tnu
∗
n(u)un‖ : (tn)n∈N ∈ `∞}

where ‖ · ‖ denotes the original norm in U. Moreover

‖ · ‖ ≤ |‖ · |‖ ≤ K‖ · ‖,

whereK is a constant depending only on the unconditional basis (un)n∈N. Through-
out this paper U will denote a Banach lattice with a normalized unconditional basis
(un)n∈N with normalized biorthogonal functionals (u∗n)n∈N and throughout the se-
quel, U is endowed with the norm |‖ · |‖. Finally, following the terminology used
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by Heinrich Lotz, Tenny Peck and Horatio Porta (see [13]), we say that a Banach
space X is semi-embedded into a Banach space Y , if there exists a bounded, linear
injective operator σ : X −→ Y such that σ(BX) is closed. The map σ is called a
semi-embedding. In connection with this definition, we recall the following elegant
result of J. Bourgain and H. Rosenthal (see [1]).

Theorem 3. Suppose X is a separable Banach space that is semi-embeddable into
a Banach space Y having with the Radon-Nikodym property. Then X also has the
Radon-Nikodym property.

3. The Radon-Nikodym property in Fremlin tensor products. Let X
and U be Banach lattices, and let (un)n be a Schauder basis of U. It is easily
verified that the space

U(X) = {(xn)n∈N ⊆ X :
∑

n∈N

‖xn‖un is convergent in U }

endowed with the norm

‖(xn)‖U(X) = ‖
∑

n∈N

‖xn‖ ‖U

and the order defined defined by

(xn)n∈N ≤ (yn)n∈N ⇔ xn ≤X yn ∀n ∈ N,

is a Banach lattice.

Lemma 4. (Fremlin’s theorem [9]) Let X and Y be Banach lattices. Then for
each Banach lattice Z and for each continuous bilinear map φ : X×Y −→ Z there
exists a unique continuous linear map T : X⊗̂FY −→ Z such that

(i) ‖T‖ = ‖φ‖

(ii) T (x⊗ y) = φ(x, y)

(iii) φ is a positive if and only if T is a positive.

Theorem 5. Let X be a separable Banach lattice and U be a Banach space with
an unconditional basis. If U and X have the Radon-Nikodym property then the
Fremlin tensor product U ⊗̂FX of U and X can be semi-embedded in U(X)

Proof. To start, consider the bilinear operator

Ψ̃ : U ×X −→ U(X)

(u, x) 7−→ (u∗n(u)x)n∈N.
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Note that Ψ̃ is bilinear bounded and positive. If u ∈ U+ and x ∈ X+, then
Ψ̃(u, x)i = u∗i (u)x ≥ 0 for each i ∈ N; therefore, Ψ(u, x) ≥ 0 in U(X); moreover,

‖
∑

n∈N

‖Ψ̃(u, x)‖X un ‖U = ‖
∑

n∈N

‖u∗n(u)x‖Xun ‖U

= ‖x‖X‖
∑

n∈N

|u∗n(u)|un‖U

≤ ‖x‖X‖u‖U .

So Ψ̃ is bounded with ‖Ψ̃‖ ≤ 1.

By Fremlin‘s theorem there exists a unique continuous positive linear Ψ :
U⊗̂FX −→ U(X) such that

(i) ‖Ψ‖ ≤ 1 and

(ii) Ψ̃(u, x) = Ψ(u⊗ x) for each u ∈ U, x ∈ X.

Step 1. Ψ is injective.
First, consider Ψ on U ⊗F X. If v =

∑p
k=1 vk ⊗ xk ∈ (U ⊗F X)+ (with vk, xk ≥ 0

for each k) so that Ψ(v) = 0, then

0 = Ψ(v) =

p∑

k=1

Ψ̃(vk, xk) = (

p∑

k=1

u∗n(vk)xk)n∈N;

thus
p∑

k=1

u∗n(vk)xk = 0, ∀n ∈ N;

but every u∗n(vk)xk is in X+, so

u∗n(vk)xk = 0 ∀n ∈ N, k = 1, ..., p.

This means: either xk = 0 or u∗n(vk) = 0 for each n ∈ N; hence, either xk = 0 or
uk = 0. Either way we have v =

∑p
k=1 vk ⊗ xk = 0.

If there is a z > 0 in U ⊗̂FX so that Ψ(z) = 0, then we can choose a sequence
(zn)n∈N, of positive elements of U⊗FX such that zn ≤ z for every n ∈ N, convergent
to z (see [10]). Therefore,

0 ≤ Ψ(zn) ≤ Ψ(z) = 0 ∀n ∈ N;

so

zn = 0, ∀n ∈ N,
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and so

z = ‖ · ‖|π| − lim
n
zn = 0,

a contradiction. This means Ψ is injective on the positive cone of U ⊗̂FX and so
injective on U⊗̂FX.

We want to show that Ψ is a semi-embedding, i.e., we want to show that for a
sequence {zn}n∈N ⊆ BU⊗̂FX

and (yi)i∈N ∈ U(X) such that limnΨ(zn) = (yi)i in
U(X), there exists z ∈ BU⊗̂FX

such that Ψ(z) = (yi)i.

Step 2. Now, fix T ∈ Lr(U,X∗) and consider the series
∑

i∈N〈yi, T (ui)〉. First,
we show that the series is absolutely convergent: We suppose that (zn)n ⊆ BU⊗X ,
so we can write each zn as

zn =

p(n)∑

k=1

vk,n ⊗ xk,n.

Then,

(yi)i = lim
n

Ψ(zn)

= lim
n

p(n)∑

k=1

Ψ̃(vk,n, xk,n)

= lim
n
(

p(n)∑

k=1

(u∗i (vk,n)xk,n)i

= (lim
n

p(n)∑

k=1

(u∗i (vk,n)xk,n)i.

Hence,

lim
n

p(n)∑

k=1

u∗i (vk,n)xk,n = yi i ∈ N.

Then for fixed m ∈ N there exists n0 ∈ N so that for i = 1, 2, ...,m we have

‖

p(n0)∑

k=1

u∗i (vk,n0
)xk,n0

)− yi‖X ≤
ε

m
.



50 D. Puglisi

Therefore,

m∑

i=1

|〈yi, T (ui)〉|

≤

m∑

i=1

|〈yi −

p(n0)∑

k=1

u∗i (vk,n0
)xk,n0

, T (ui)〉|+

m∑

i=1

|〈

p(n0)∑

k=1

u∗i (vk,n0
)xk,n0

, T (ui)〉|

≤ ε‖T‖+

m∑

i=1

|

p(n0)∑

k=1

〈u∗i (vk,n0
)xk,n0

, T (ui)〉|

(which, if θi = sign

p(n0)∑

k=1

〈u∗i (vk,n0
)xk,n0

, T (ui)〉)

= ε‖T‖+ |

m∑

i=1

θi

p(n0)∑

k=1

〈u∗i (vk,n0
)xk,n0

, T (ui)〉|

= ε‖T‖+ |
m∑

i1

θiT (ui)⊗ u∗i (

p(n0)∑

k=1

vk,n0
⊗ xk,n0

)|

= ε‖T‖+ |

m∑

i=1

θiT (ui)⊗ u∗i (zn0
)|

≤ ε‖T‖+ ‖

m∑

i=1

θiT (ui)⊗ u∗i ‖L(U,X∗)‖zn0
‖

≤ ε‖T‖+ ‖T‖, for each m ∈ N. (*)

To see why it is so, recall: if z ∈ (U
∧
⊗F X)+ then for each ε > 0 there exists

(xj)
n
j=1 ⊆ X+, (vj)

n
j=1 ⊆ U+ so that z ≤

∑n
j=1 vj ⊗ xj and

n∑

j=1

‖vj‖ ‖xj‖ ≤ ‖z‖U⊗FX + ε.

So

|
m∑

i=1

θiT (ui)⊗ u∗i (z)| ≤
m∑

i=1

T (ui)⊗ u∗i (z)

≤

m∑

i=1

T (ui)⊗ u∗i (

n∑

j=1

vj ⊗ xj)

=

m∑

i=1

n∑

j=1

T (ui)(xj)u
∗
i (vj)
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=
n∑

j=1

T (
m∑

i=1

u∗i (vj)ui)(xj)

≤

n∑

j=1

‖T (

m∑

i=1

u∗i (vj)ui)‖X∗ ‖xj‖X

≤ ‖T‖

n∑

j=1

‖

m∑

i=1

u∗i (vj)ui‖U ‖xj‖X

≤ ‖T‖

n∑

j=1

‖vj‖U‖xj‖X

≤ ‖T‖ (‖z‖
U
∧
⊗FX

+ ε).

Now (*) follows and with it we see that

∑

i∈N

|〈yi, T (ui)〉| ≤ ‖T‖.

Now it makes sense to define φ : Lr(U,X∗) −→ K by

φ(T ) :=
∑

i∈N

〈yi, T (ui)〉 for each T ∈ L
r(U,X∗).

From the note above, φ is well defined, with

(a) φ ∈ Lr(U,X∗)∗ and

(b) ‖φ‖ ≤ 1.

Step 3. We show that there exists z ∈ BU⊗̂FX
so that Ψ(z) = (yi)i.

Let K = β((BU , ‖ · ‖)× (BX∗∗ , weak∗)) where β(S) is the C̆ech-Stone compacti-
fication of S. K is a compact Hausdorff space and, because (BU , ‖ · ‖) is a Polish
space, (BU , ‖ · ‖)× (BX∗∗ , weak∗) is universally measurable with respect to all
Radon measures on K (see [5]). Define

J : Lr(U,X∗) −→ C(K)

by
J(T )(u, x∗∗) = x∗∗(T (u))

on (BU×BX∗∗) and extend using the C̆ech-Stone nature ofK. J is a bounded linear
operator with ‖JT‖C(K) = ‖T‖ on the positive cone Lr(U,X∗). Now consider

Fφ : J(Lr(U,X∗)) −→ K

defined by
Fφ(JT ) = 〈T, φ〉 ∀T ∈ Lr(U,X∗).
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Note ‖Fφ‖ = ‖φ‖. So by the Hahn-Banach theorem and the Riesz representation
theorem, there exists a regular Borel measure ν so that

Fφ(JT ) =

∫

K

JT (ω)dν(ω) ∀T ∈ Lr(U,X∗) (A)

and

|ν|(K) = ‖Fφ‖ = ‖φ‖.

Define h1 : (BU , ‖·‖)×(BX∗∗ , weak∗) −→ BU by h1(u, x
∗∗) = u; h1 is continuous

into (BU∗∗ , weak∗) and so extends to a continuous function, still called h1, from
K to (BU∗∗ , weak∗). BU ‘s Polish character now allows us to look at

k1 = h1 · χBU×BX∗∗ ;

k1 is scalarly ν-measurable and U -valued; hence, strongly ν-measurable. Also, k1

is bounded in norm by 1 so

∫

K

‖k1(ω)‖d|ν| ≤ |ν|(K)

that is, k1 is Bochner ν-integrable. Now we know that (see [7], p. 172) for every
ε > 0 there exists a sequence (vn)n∈N ⊆ U and a sequence of Borel sets (Bn)n∈N ⊆
K such that

k1(ω) =

∞∑

n=1

vnχBn
(ω) |ν|-a.e.

with
∞∑

n=1

‖un‖U |ν|(Bn) ≤

∫

K

‖k1(ω)‖ d|ν|+ ε ≤ |ν|(K) + ε.

Let

h2 : K −→ X∗∗

be given by

h2(u, x
∗∗) := x∗∗.

Then h2 is weak∗-continuous and hence weak∗-measurable. Moreover, for each
x∗ ∈ X∗,

∫

K

|〈x∗, h2(ω)〉d|ν|(ω) ≤ ‖x
∗‖

∫

K

|h2(ω)|d|ν|(ω) ≤ ‖x
∗‖|ν|(K) <∞.

So h2 is Gelfand integrable (see [7], p. 42).

Now, if we consider, for each i ∈ N and x∗ ∈ (X∗)+, Ti = u∗i ⊗x
∗ ∈ L+(U,X∗), we
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have by (A) that

〈yi, x
∗〉 = 〈Ti, φ〉

=

∫

K

〈Tiu, x
∗∗〉dν(u, x∗∗)

=

∫

K

〈x∗, h2(u, x
∗∗)〉〈k1(u, x

∗∗), u∗i 〉dν(u, x
∗∗)

=

∫

K

〈x∗, h2(u, x
∗∗)〉〈

∞∑

n=1

vnχBn
(u, x∗∗), u∗i 〉dν(u, x

∗∗)

=

∞∑

n=1

u∗i (vn)

∫

Bn

〈x∗, h2(u, x
∗∗)〉dν(u, x∗∗)

=
∞∑

n=1

u∗i (vn)〈x
∗, a∗∗n 〉

where

a∗∗n = Gelfand−

∫

Bn

h2(u, x
∗∗)dν(u, x∗∗).

Therefore,

〈yi, x
∗〉 =

∞∑

n=1

u∗i (vn)〈x
∗, a∗∗n 〉. (B)

For every x∗ ∈ (X∗)+ and n ∈ N

|〈x∗, a∗∗n 〉| = |

∫

Bn

〈x∗, h2(u, x
∗∗)dν(u, x∗∗)|

≤

∫

Bn

|〈x∗, h2(u, x
∗∗)〉|dν(u, x∗∗)

≤ ‖x∗‖|ν|(Bn).

Hence,

‖a∗∗n ‖ ≤ |ν|(Bn).

Moreover

∑

n∈N

‖u∗i (vn)a
∗∗
n ‖ =

∑

n∈N

|u∗i (vn)|‖a
∗∗
n ‖

≤
∑

n∈N

‖vn‖|ν|(Bn)

≤ |ν|(K) + ε. (C)

That means the series
∑

n∈N u
∗
i (vn)a

∗∗
n is absolutely convergent in X∗∗.

Note, now, that since X is a Banach lattice with the Radon-Nikodym property,
X is norm-one complemented in X∗∗. Therefore there exists a norm one linear
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projection P : X∗∗ −→ X∗∗, so that P (X∗∗) = X. Let an = P (a∗∗n ) and z =∑
n∈N vn ⊗ an. We have

‖z‖
U
∧
⊗FX

≤
∑

n∈N

‖un‖‖an‖

≤ ‖P‖
∑

n∈N

‖un‖‖a
∗∗
n ‖

≤
∑

n∈N

‖un‖|ν|(Bn)

≤ (|ν|(K) + ε)

= (‖φ‖+ ε)

so that ‖z‖
U
∧
⊗FX

≤ ‖φ‖ ≤ 1. In particular z ∈ BU⊗̂FX
. Here is the catch:

from (B), (C) and from the definition of Ψ we have, for each i ∈ N

yi = P (yi)

= P (
∑

n∈N

u∗i (vn)a
∗∗
n )

=
∑

n∈N

u∗i (vn)P (a∗∗n )

=
∑

n∈N

u∗i (vn)an

=
∑

n∈N

(Ψ(un ⊗ an))i

= (
∑

n∈N

Ψ(un ⊗ an) )i

= Ψ(
∑

n∈N

un ⊗ zn )i = Ψ(z)i.

Hence

Ψ(z) = (yi)i.

We are done. 2

Corollary 6. Let X be a separable Banach lattice and U be a Banach space
with an unconditional basis. If U and X have the Radon-Nikodym property then
the Fremlin tensor product U ⊗̂FX of U and X has the Radon-Nikodym property

Proof. It is enough to note that from our hypothesis follow that U(X) has the
Radon-Nikodym property (that was proved by Bu, Diestel, Dowling, Oja (see [4]).
Now the result is a direct consequence of a theorem of Bourgain and Rosenthal
(see [1], Theorem 3). 2
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Now,using Heinrich-Mankiewicz [12] and N. Randrianantoanina [15] and the
result of Uhl [7] (which asserts that a general Banach space has the Radon-Nikodym
property if and only if does every of its separable closed subspace) We have the
following

Corollary 7. If U and X are two Banach lattices, one of them atomic, then the
Fremlin tensor product of U and X, U ⊗̂FX, has the Radon-Nikodym property if
both U and X possess this property.

Remark 1. Note that we cannot have stability of the Radon-Nikodym property
in the Fremlin tensor product of general Banach lattices because Fremlin proved
that (see [9]) L2[0, 1]⊗̂FL2[0, 1] is not Dedekind complete and so it cannot have
the Radon-Nikodym property (see [14]).

The author initially tried to show the stability of the Radon-Nikodym property for
the Fremlin tensor product. Qingying Bu pointed out to the author that Fremlin
proved L2[0, 1]⊗̂FL2[0, 1] is not Dedekind complete, and I take this occasion to
thank him.

Acknowledgement. I was told that Bu and Buskes have obtained the same result
by different methods, but I do not know their proof. I wish to thank Professor Joe
Diestel for his useful suggestions and for his great humanity.
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