UNIVERSITY OF CATANIA

Department of Mathematics and Computer Sciences Master degree in Mathematics

March $29^{\text {th }} 2023$

Exercise 1. Write down polar coordinates in \mathbb{R}^{4} and evaluate its Jacobian. Generalize to $\mathbb{R}^{n}, n \geq 5$.

Exercise 2. Let $E \subset \mathbb{R}^{n}$ be a Lebesgue measurable set, $|E|<+\infty$. Prove

$$
\|f\|_{p} \leq|E|^{1 / p-1 / q}\|f\|_{q} \quad 1 \leq p \leq q \leq+\infty .
$$

Exercise 3. For $f, g, h \in L^{1}\left(\mathbb{R}^{n}\right)$ prove that

1. $f * g=g * f$;
2. $f *(g * h)=(f * g) * h$;
3. $f *(g+h)=f * g+f * h$.

Exercise 4. Let $K(s, t): \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be such that

$$
K(\lambda s, \lambda t)=\lambda^{-1} K(s, t) \quad \forall s, t \geq 0, \lambda>0 .
$$

Assume that there exists $p \geq 1$ such that

$$
\gamma=\int_{0}^{+\infty} K(1, t) t^{-1 / p} d t<+\infty
$$

Show that

$$
(T f)(s)=\int_{0}^{+\infty} K(s, t) f(t) d t
$$

satisfies

$$
\|T f\|_{p} \leq \gamma\|f\|_{p} \quad \forall f \geq 0, f \in L^{p} .
$$

Exercise 5. Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. Prove that

$$
\lim _{R \rightarrow 0} f_{B_{R}(0)} u(y) d y=u(0) .
$$

Exercise 6. Let $x_{0} \in \mathbb{R}^{n}$ and $u \in C^{2}\left(\mathbb{R}^{n}\right)$. Prove that

$$
\lim _{r \rightarrow 0} \frac{2 n}{r^{2}}\left[u\left(x_{0}\right)-f_{\partial B_{r}\left(x_{0}\right)} u(x) d \sigma(x)\right]=-\Delta u\left(x_{0}\right) .
$$

Exercise 7. Evaluate $\lim _{n \rightarrow+\infty}(1-n|x|)^{+} \quad$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
Exercise 8. Evaluate $\frac{d}{d x}\left((-1)^{[x]}\right)$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
Exercise 9. Let $\psi \in C^{\infty}(\mathbb{R})$ and $T \in \mathcal{D}^{\prime}(\mathbb{R})$. Prove that

$$
(\psi T)^{\prime}=\psi^{\prime} T+\psi T^{\prime} \quad \text { in } \mathcal{D}^{\prime}(\mathbb{R})
$$

Exercise 10. Evaluate $\lim _{j \rightarrow+\infty} f_{j}(x)$ where

$$
f_{j}(x)= \begin{cases}\frac{1}{x} & \text { if }|x|>1 / j \\ j & \text { if } 0<x<1 / j \\ -j & \text { if }-1 / j<x<0\end{cases}
$$

in $\mathcal{D}^{\prime}(\mathbb{R})$.

