UNIVERSITY OF CATANIA

Department of Mathematics and Computer Sciences Master degree in Mathematics

March 29^{th} 2023

Exercise 1. Write down polar coordinates in \mathbb{R}^4 and evaluate its Jacobian. Generalize to \mathbb{R}^n , $n \geq 5$.

Exercise 2. Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set, $|E| < +\infty$. Prove

$$||f||_p \le |E|^{1/p-1/q} ||f||_q \qquad 1 \le p \le q \le +\infty.$$

Exercise 3. For $f, g, h \in L^1(\mathbb{R}^n)$ prove that

1. f * g = g * f;2. f * (g * h) = (f * g) * h;3. f * (g + h) = f * g + f * h.

Exercise 4. Let $K(s,t) : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be such that

$$K(\lambda s, \lambda t) = \lambda^{-1} K(s, t) \qquad \forall s, t \ge 0, \lambda > 0.$$

Assume that there exists $p \ge 1$ such that

$$\gamma = \int_0^{+\infty} K(1,t) \, t^{-1/p} \, dt < +\infty \, .$$

Show that

$$(Tf)(s) = \int_0^{+\infty} K(s,t)f(t) dt$$

satisfies

$$||Tf||_p \le \gamma ||f||_p \quad \forall f \ge 0, \ f \in L^p.$$

Exercise 5. Let $u : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Prove that

$$\lim_{R \to 0} \oint_{B_R(0)} u(y) \, dy = u(0).$$

Exercise 6. Let $x_0 \in \mathbb{R}^n$ and $u \in C^2(\mathbb{R}^n)$. Prove that

$$\lim_{r \to 0} \frac{2n}{r^2} \left[u(x_0) - \oint_{\partial B_r(x_0)} u(x) d\sigma(x) \right] = -\Delta u(x_0)$$

Exercise 7. Evaluate $\lim_{n \to +\infty} (1 - n|x|)^+$ in $\mathcal{D}'(\mathbb{R})$.

Exercise 8. Evaluate $\frac{d}{dx}((-1)^{[x]})$ in $\mathcal{D}'(\mathbb{R})$. **Exercise 9.** Let $\psi \in C^{\infty}(\mathbb{R})$ and $T \in \mathcal{D}'(\mathbb{R})$. Prove that $(\psi T)' = \psi' T + \psi T'$ in $\mathcal{D}'(\mathbb{R})$.

Exercise 10. Evaluate $\lim_{j \to +\infty} f_j(x)$ where

$$f_j(x) = \begin{cases} \frac{1}{x} & \text{if } |x| > 1/j \\ j & \text{if } 0 < x < 1/j \\ -j & \text{if } -1/j < x < 0 \end{cases}$$

in $\mathcal{D}'(\mathbb{R})$.