UNIVERSITY OF CATANIA - Department of Mathematics and Computer Sciences

Master degree in Mathematics - May $6^{\text {th }} 2020$

Exercise 1. Let $u \in C^{\alpha}(\Omega)$ and $v \in C^{\beta}(\Omega)$. Prove that $w=\min (u, v) \in C^{\gamma}(\Omega)$ where $\gamma=\min (\alpha, \beta)$.

Exercise 2. Let $\left\{g_{\varepsilon}\right\},\left\{h_{\varepsilon}\right\}$ for any $\varepsilon>0$, defined by

$$
g_{\varepsilon}(x)=\left\{\begin{array}{lll}
\frac{1}{x} & \text { if } x<-\varepsilon \text { or } x>2 \varepsilon & h_{\varepsilon}(x)= \begin{cases}\frac{1}{x} & \text { if } x<-\varepsilon \text { or } x>\varepsilon^{2} \\
0 & \text { otherwise }\end{cases} \\
\text { otherwise }
\end{array}\right.
$$

Discuss the limits in $\mathcal{D}^{\prime}(\mathbb{R})$ as $\varepsilon \rightarrow 0$.
Exercise 3. Let Ω be a bounded domain in \mathbb{R}^{n} and let $c(x)$ be a continuous function in $\bar{\Omega}$ such that $c(x) \leq 0$ in Ω. Prove that any solution u to equation

$$
-\Delta u+c u=0 \quad \forall x \in \Omega
$$

satisfy Maximum principle. What if $c(x) \geq 0$?

