UNIVERSITY OF CATANIA – Department of Mathematics and Computer Sciences

Master degree in Mathematics - April $18^{th}\ 2018$

Exercise 1. Let Ω be a bounded domain in \mathbb{R}^n and let $\{f_j\}$ be harmonic in Ω for any j. Assume $\{f_j\}$ converges uniformly to f in any ball $B \subset \Omega$. Show that f is harmonic in Ω . What about unbounded domains ?

Exercise 2. Let Ω be a bounded domain in \mathbb{R}^n and let $\{f_j\}$ be harmonic in Ω for any j. Assume that

- (H1) $f_j(x) \le f_{j+1}(x) \qquad \forall j \in \mathbb{N} \quad \forall x \in \Omega.$
- (H2) $\{f_j\}$ converges to f in Ω .

Show f is harmonic in Ω . Is it possible to replace (H2) by

(H3) There exists $x_0 \in \Omega$: $f_j(x_0)$ converges?

Exercise 3. Evaluate the limit of the sequence $f_n(x) = (1 - n|x|)^+$ in $\mathcal{D}(\mathbb{R})$.

Exercise 4. Evaluate the derivative of $(-1)^{[x]}$ in \mathbb{R} .

Exercise 5. Let $\psi \in C^{\infty}(\mathbb{R})$ function and let T be a distribution in \mathbb{R} . Evaluate the derivative of ψT .

Exercise 6. Evaluate the limit of

$$f_j(x) = \begin{cases} \frac{1}{x} & \text{se } |x| > 1/j \\ j & \text{se } 0 < x < 1/j \\ -j & \text{se } -1/j < x < 0 \end{cases}$$

in $\mathcal{D}(\mathbb{R})$.