UNIVERSITY OF CATANIA - A.A.2019-20

Department of Mathematics and Computer Sciences Master degree in Mathematics

April 27^{th} 2020.

Exercise 1. Let $u : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Prove that

$$\lim_{R \to 0} \oint_{B_R(0)} u(y) \, dy = u(0).$$

Exercise 2. let Ω be a domain in \mathbb{R}^n and $d: \Omega \to \mathbb{R}$ be such that $d(x) = \operatorname{dist}(x, \partial \Omega)$.

Prove d is Lipschitz continuous and for any $\varepsilon > 0$ the set $\Omega_{\varepsilon} = \{x \in \Omega : d(x) > \varepsilon\}$ is open.

Exercise 3. Let $X \subseteq \mathbb{R}^n$ and $\varepsilon > 0$. Prove that

$$X + B_{\varepsilon}(0) = \{ x \in \mathbb{R}^n : \operatorname{dist}(x, X) < \varepsilon \}$$

is open.

Exercise 4. Prove that $f : \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} \exp\left(-\frac{1}{1-|x|^2}\right) & \text{se } |x| < 1\\ 0 & \text{se } |x| \ge 1 \end{cases}$$

belongs to $C_0^{\infty}(\mathbb{R})$.

Exercise 5. Prove that $C_0^{\infty}(\mathbb{R})$ is dense in $L^1(\mathbb{R})$ w.r.t.

$$||f|| = \int_{\mathbb{R}} |f(x)| \, dx$$

Exercise 6. Prove that for any $C^2(\mathbb{R}^n)$ function u we have

$$\lim_{r \to 0} \frac{2n}{r^2} \left[u(x_0) - \oint_{\partial B_r(x_0)} u(x) d\sigma(x) \right] = -\Delta u(x_0)$$

where x_0 is any point in \mathbb{R}^n .