UNIVERSITY OF CATANIA - A.A.2019-20

Department of Mathematics and Computer Sciences Master degree in Mathematics

March $23^{\text {rd }} 2020$

Exercise 1. Let p, p^{\prime} be real numbers such that $1 \leq p, p^{\prime}<+\infty$ e $1 / p+1 / p^{\prime}=1$.
Prove that

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{p^{\prime}}}{p^{\prime}} \quad \forall a, b \geq 0
$$

and then show Hölder inequality as a Corollary.

Exercise 2. Write down polar-coordinates in \mathbb{R}^{4} and evaluate its Jacobian. Then, generalize to n dimensions where $n \geq 5$.

Exercise 3. Let E be a Lebesgue measurable set with finite measure. Prove that

$$
\|f\|_{p} \leq|E|^{1 / p-1 / q}\|f\|_{q} \quad 1 \leq p \leq q \leq+\infty
$$

Exercise 4. Let E be a Lebesgue measurable set with finite measure. Prove that

$$
\lim _{p \rightarrow+\infty}\|f\|_{p}=\|f\|_{\infty}
$$

for any $f \in L^{\infty}(E)$.

Exercise 5. Let f, g and h be summable functions in \mathbb{R}^{n}. Prove that

1. $f * g=g * f$;
2. $f *(g * h)=(f * g) * h$;
3. $f *(g+h)=f * g+f * h$.

Exercise 6. Let $K(s, t): \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be such that

$$
K(\lambda s, \lambda t)=\lambda^{-1} K(s, t) \quad \forall s, t \geq 0, \lambda>0 .
$$

Assume that there exists $p \geq 1$ such that

$$
\gamma=\int_{0}^{+\infty} K(1, t) t^{-1 / p} d t<+\infty
$$

Show that

$$
(T f)(s)=\int_{0}^{+\infty} K(s, t) f(t) d t
$$

satisfies

$$
\|T f\|_{p} \leq \gamma\|f\|_{p} \quad \forall f \geq 0, f \in L^{p} .
$$

