UNIVERSITY OF CATANIA - A.A.2019-20

Department of Mathematics and Computer Sciences Master degree in Mathematics

March 23^{rd} 2020

Exercise 1. Let p, p' be real numbers such that $1 \le p, p' < +\infty$ e 1/p + 1/p' = 1. Prove that

$$ab \le \frac{a^p}{p} + \frac{b^{p'}}{p'} \qquad \forall a, b \ge 0$$

and then show Hölder inequality as a Corollary.

Exercise 2. Write down polar-coordinates in \mathbb{R}^4 and evaluate its Jacobian. Then, generalize to n dimensions where $n \geq 5$.

Exercise 3. Let E be a Lebesgue measurable set with finite measure. Prove that

$$||f||_p \le |E|^{1/p-1/q} ||f||_q \qquad 1 \le p \le q \le +\infty$$

Exercise 4. Let E be a Lebesgue measurable set with finite measure. Prove that

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}$$

for any $f \in L^{\infty}(E)$.

Exercise 5. Let f, g and h be summable functions in \mathbb{R}^n . Prove that

- 1. f * g = g * f;
- 2. f * (q * h) = (f * q) * h;
- 3. f * (q + h) = f * q + f * h.

Exercise 6. Let $K(s,t): \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ be such that

$$K(\lambda s, \lambda t) = \lambda^{-1} K(s, t) \qquad \forall s, t \ge 0, \lambda > 0.$$

Assume that there exists $p \geq 1$ such that

$$\gamma = \int_0^{+\infty} K(1,t) t^{-1/p} dt < +\infty.$$

Show that

$$(Tf)(s) = \int_0^{+\infty} K(s, t) f(t) dt$$

satisfies

$$||Tf||_p \le \gamma ||f||_p \qquad \forall f \ge 0, \ f \in L^p.$$