Publications
2024
- C. Crespi, Cutello V, Pavone M, Zito F. An agent framework to explore pathfinding strategies in maze navigation problem. Le Matematiche. 2024; Vol. LXXIX (2024) – Issue II, pp. 555–583 DOI: 10.4418/2024.79.2.17.
- C. Cavallaro, C. Crespi, Cutello V, Pavone M, Zito F. Group Dynamics in Memory-Enhanced Ant Colonies: The Influence of Colony Division on a Maze Navigation Problem. Algorithms. 2024; 17(2):63. DOI: 10.3390/a17020063.
-
C. Crespi, M. Pavone. Does a Group’s Size Affect the Behavior of a Crowd? An Analysis Based on an Agent Model. In: Elsenbroich C, Verhagen H, eds. Advances in Social Simulation. ESSA 2023. Springer Proceedings in Complexity. Cham: Springer; 2024. DOI: 10.1007/978-3-031-57785-7_31.
2023
-
C. Crespi, G. Fargetta, M. Pavone, R. A. Scollo. A sensitivity analysis of parameters in an agent-based model for crowd simulations. Applied Soft Computing. 2023; 146:110684. DOI: 10.1016/j.asoc.2023.110684.
-
C. Crespi, G. Fargetta, M. Pavone, R. A. Scollo. How a Different Ant Behavior Affects on the Performance of the Whole Colony. In: Di Gaspero L, Festa P, Nakib A, Pavone M, eds. Metaheuristics (MIC 2022). Lecture Notes in Computer Science. Cham: Springer; 2023. DOI: 10.1007/978-3-031-26504-4_14.
-
C. Crespi, G. Fargetta, M. Pavone, R. A. Scollo. An Agent-Based Model for Crowd Simulation. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_2
2022
2020
2019