A Decidable Tableau Calculus for MLSS

Domenico Cantone

Dipartimento di Matematica e Informatica Università di Catania

Logica Computazionale, A.A. 2006/07

Outline

(1) A Decidable Tableau Calculus for MLSS

- Syntax and semantics of MLSS
- A tableau calculus for MLSS
- Soundness of the tableaux calculus $\mathfrak{T}_{\text {MLSS }}$
- Completeness of $\mathfrak{T}_{\text {MLSS }}$
- A saturation process for $\mathfrak{T}_{\text {MLSS }}$-tableaux
- Realizations of graphs by set-labelings
- Satisfiability of open and s-restricted $\mathfrak{T}_{\text {MLSS }}$-tableaux
- A decision procedure for MLSS

Outline

(1) A Decidable Tableau Calculus for MLSS

- Syntax and semantics of MLSS
- A tableau calculus for MLSS
- Soundness of the tableaux calculus $\mathfrak{T}_{\text {MLSS }}$
- Completeness of $\mathfrak{T}_{\text {MLSS }}$
- A saturation process for $\mathfrak{T}_{\text {MLSS }}$-tableaux
- Realizations of graphs by set-labelings
- Satisfiability of open and s-restricted $\mathfrak{T}_{\text {MLSS }}$-tableaux
- A decision procedure for MLSS

We present a fast tableau-based decision procedure for the ground set-theoretic fragment Multi-Level Syllogistic with Singleton (in short MLSS), a quantifier-free language with the basic Boolean set operators and the singleton operator.

The language of MLSS

The language of the fragment MLSS of set theory consists of

- a denumerable infinity of uninterpreted set constants c_{0}, c_{1}, \ldots;
- the interpreted set constant \emptyset (empty set),
- the operator symbols \cup (union), \cap (intersection), \backslash (set difference) and $\{-\}$-rule (singleton),
- the predicate symbols \in (membership) and $=$ (equality), and
- propositional connectives.

Terms of MLSS

Set terms of MLSS are defined in the standard recursive way, namely

- any set constant is an MLSS-term;
- if t_{1} and t_{2} are MLSS-terms, so are $t_{1} \cup t_{2}, t_{1} \cap t_{2}, t_{1} \backslash t_{2}$, and $\left\{t_{1}\right\}$.

Sentences of MLSS

Finally, MLSS-sentences are just propositional combinations of atoms of the form $t_{1} \in t_{2}$ and $t_{1}=t_{2}$, with t_{1} and t_{2} being any set terms.

The intended semantics of MLSS over the standard von Neumann universe \mathbb{V} is defined as follows.

- A (standard) assignment over a collection V of variables is any function M from V into \mathbb{V}.

Clearly, any set-theoretic formula φ all of whose variables belong to V becomes either true or false when each free occurrence \boldsymbol{x} gets replaced by $M x$ within φ and set-theoretic operators and relators are interpreted according to their standard meaning.

- An assignment M which makes φ true is said to be a model of φ.
- A formula φ is said to be satisfiable if it has a model.

Remarks

Notice that the relator \subseteq and the enumerative set-former operator $\left\{-,, \ldots,{ }_{-}\right\}$are easily expressible in MLSS. Indeed, $\boldsymbol{s} \subseteq \boldsymbol{t}$ is equivalent to $\boldsymbol{s} \cup \boldsymbol{t}=\boldsymbol{t}$ and the term $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ can be rewritten as $\left\{t_{1}\right\} \cup \ldots \cup\left\{t_{k}\right\}$.

We will make use of the abbreviations $s \notin t$ and $s \neq t$ to denote the literals $\neg(s \in t)$ and $\neg(s=t)$, respectively.

The decision problem

The (satisfiability) decision problem for a collection \mathcal{C} of set-theoretic formulas is the problem of establishing whether or not φ has a model, for any given formula φ in \mathcal{C}.

To solve this problem positively, one must design an algorithm that can test any φ in \mathcal{C} for satisfiability. Of course, for a specific \mathcal{C}, such an algorithm may not exist.

We present a tableau calculus for MLSS, denoted $\mathfrak{T}_{\text {MLss }}$, which is based upon the system KE.

The linear rules of $\mathfrak{T}_{\text {mLss }}$, namely those rules which do not cause branch splittings, are listed below. Note that the index i in the \cup - and \cap-rules can assume the values 1 and 2 , whereas ℓ in the $=-$ rules stands for any MLSS literal.

A tableau calculus for MLSS

prop rules:	$\frac{\alpha}{\alpha_{1}}$	$\frac{\alpha}{\alpha_{2}}$	$\begin{gathered} \hline \beta \\ \beta_{1}^{c} \\ \hline \beta_{2} \end{gathered}$	$\begin{gathered} \hline \beta \\ \beta_{2}^{c} \\ \hline \beta_{1} \end{gathered}$
U-rules:	$\begin{gathered} s \in t_{1} \cup t_{2} \\ s \notin t_{i} \\ s \in t_{3-i} \end{gathered}$	$\frac{s \notin t_{1} \cup t_{2}}{s \notin t_{i}}$	$\frac{\boldsymbol{s} \in \boldsymbol{t}_{i}}{\boldsymbol{s} \in \boldsymbol{t}_{1} \cup t_{2}}$	$\begin{gathered} s \notin t_{1} \\ s \notin t_{2} \\ \hline s \notin t_{1} \cup t_{2} \end{gathered}$
ก-rules:	$\begin{gathered} s \notin t_{1} \cap t_{2} \\ s \in t_{i} \\ s \notin t_{3-i} \end{gathered}$	$\frac{s \in t_{1} \cap t_{2}}{s \in t_{i}}$	$\frac{s \notin t_{i}}{s \notin t_{1} \cap t_{2}}$	$\begin{gathered} \boldsymbol{s} \in \boldsymbol{t}_{1} \\ \boldsymbol{s} \in \boldsymbol{t}_{2} \\ \hline \boldsymbol{s} \in \boldsymbol{t}_{1} \cap \boldsymbol{t}_{\mathbf{2}} \end{gathered}$

Table: $\mathfrak{T}_{\text {MLss-linear rules (part a) }}$

A tableau calculus for MLSS

\-rules:	s $\notin t_{1} \backslash t_{2}$ s $\in t_{1}$ s $\in t_{2}$ s $\notin t_{1} \backslash t_{2}$ s $\notin t_{2}$ $s \notin t_{1}$	$\begin{aligned} & \frac{s \in t_{1} \backslash t_{2}}{s \in t_{1}} \\ & \frac{s \in t_{1} \backslash t_{2}}{s \notin t_{2}} \end{aligned}$	$\begin{aligned} & \frac{s \notin t_{1}}{s \notin t_{1} \backslash t_{2}} \\ & \frac{s \in t_{2}}{s \notin t_{1} \backslash t_{2}} \end{aligned}$	$\begin{gathered} s \in t_{1} \\ s \notin t_{2} \\ \hline s \in t_{1} \backslash t_{2} \end{gathered}$
\{ $\}$-rules:	$\frac{s \in\left\{t_{1}\right\}}{s=t_{1}}$	$\frac{s \notin\left\{t_{1}\right\}}{s \neq t_{1}}$	$\overline{t_{1} \in\left\{t_{1}\right\}}$	
=-rules:	$\begin{gathered} \hline \hline t_{1}=t_{2} \\ \ell \\ \ell_{t_{2}}^{t_{1}} \end{gathered}$	$\begin{gathered} \hline t_{1}=t_{2} \\ \ell \\ \hline \ell_{t_{1}}^{t_{2}} \end{gathered}$	$\begin{gathered} s \in t \\ s^{\prime} \notin t \\ \hline s \neq s^{\prime} \end{gathered}$	

Table: $\mathfrak{T}_{\text {mLss-linear rules (part b) }}$

The branching rules of $\mathfrak{T}_{\text {mLss }}$ are listed next. Note that rules $(\beta 1),(\beta 2)$, and (\in) are cut rules, whereas rule (ext) is not. In particular, in rule (ext), the symbol c denotes a new set constant, one not already occurring in the branch to which the rule is applied.

A tableau calculus for MLSS

$\frac{\beta}{\beta_{1} \mid \beta_{1}^{c}}(\beta 1)$

$$
\frac{\beta}{\beta_{2} \mid \beta_{2}^{c}}(\beta 2)
$$

$$
s \in t \left\lvert\, s \notin t(\in) \quad \begin{gather*}
t_{1} \neq t_{2} \tag{ext}\\
\hline c \in t_{1} \\
c \not c \notin t_{1} \\
c \notin t_{2} \\
c \in t_{2}
\end{gather*}\right.
$$

Table: $\mathfrak{T}_{\text {MLss-branching rules }}$

Remark

In rule (ext), c stands for a new uninterpreted set constant.

Next we define how to construct $\mathfrak{T}_{\text {MLss }}$-tableaux.

Definition

Let φ be an MLSS-sentence. The initial $\mathfrak{T}_{\text {MLss }}$-tableau for φ is the single-node tree whose root is labeled by φ.
An $\mathfrak{T}_{\text {MLss }}$-tableau for φ is a tableau labeled with
MLSS-sentences, which can be constructed from the initial tableau for φ by a finite number of applications of the rules of $\mathfrak{T}_{\text {MLSS }}$.

Closure conditions must take into account also the semantics of set theory, as in the following definition.

Definition

A branch of a $\mathfrak{T}_{\text {MLSs-tableau }}$ is closed if it contains either

- two complementary sentences ψ and $\neg \psi$, or
- a finite membership cycle of the form

$$
t_{0} \in t_{1} \in \ldots \in t_{n} \in t_{0}, \text { or }
$$

- a literal of the form $t \neq t$, or
- a literal of the form $t \in \emptyset$.

A tableau is closed if all its branches are closed.

Tableau proofs and refutations are defined in the standard way.

Definition

A $\mathfrak{T}_{\text {mLss-tableau proof for an MLSS-sentence }} \varphi$ is any closed $\mathfrak{T}_{\text {MLss }}$-tableau for $\neg \varphi$.

A $\mathfrak{T}_{\text {mLss-tableau refutation for }} \varphi$ is any closed $\mathfrak{T}_{\text {MLss }}$-tableau for φ.

Our next task is to show that the tableau calculus $\mathfrak{T}_{\text {MLSs }}$ captures the semantics of MLSS exactly, namely it is both sound and complete. In fact, completeness will be proved under some restrictions which will render the calculus suitable for effective use as a decision procedure for MLSS.

Soundness of the tableau calculus $\mathfrak{T}_{\text {MLSS }}$ can easily be proved by showing that
(a) at least one of the extensions of any satisfiable branch is satisfiable, and
(b) no closed branch is satisfiable, where a branch ϑ of a $\mathfrak{T}_{\text {MLss-tableau }}$ is said to be satisfiable it there exists a set model which makes true all sentences in ϑ.

Property (b) follows by observing that
all closure conditions are unsatisfiable in the standard von Neumann universe.

Concerning (a), for the sake of simplicity we will only consider the case in which a satisfiable branch ϑ is extended by an application of the branching rule (ext), with the literal $t_{1} \neq t_{2}$ as premiss, using the set constant c (not occurring in ϑ).
Let ϑ_{1} and ϑ_{2} be the two branches which extend ϑ and let M be a set model satisfying ϑ. Since $M t_{1} \neq M t_{2}$, by extensionality there exists a set e which belongs to the symmetric difference of $M t_{1}$ and $M t_{2}$.
Let M^{\prime} be the assignment such that $M^{\prime} c=e$ and otherwise takes the same values as M. Since the set constant c does not occur in any sentence in ϑ, it is plain that \boldsymbol{M}^{\prime} must satisfy either ϑ_{1} or ϑ_{2}.

Other cases can be treated similarly. Thus we have:

Theorem (Soundness)

The tableau calculus $\mathfrak{T}_{\text {MLss }}$ for MLSS is sound.

Exercise

Complete the proof of soundness of the tableau calculus $\mathfrak{T}_{\text {MLSS }}$.

Some of the rules of the tableau calculus $\mathfrak{T}_{\text {MLSs }}$, if not suitably restricted, can cause a combinatorial explosion of the number of branches in an attempt to find a closed tableau for a given MLSS-sentence.
This is the case, for instance, for the linear rules

$$
\frac{s \in t_{i}}{s \in t_{1} \cup t_{2}} \quad \frac{s \notin t_{i}}{s \notin t_{1} \cap t_{2}} \quad \frac{s \notin t_{1}}{s \notin t_{1} \backslash t_{2}} \quad \overline{t_{1} \in\left\{t_{1}\right\}}
$$

which can cause the introduction of an unbounded number of new terms.

Hence, some restrictions need to be imposed on rule applicability.
The following is a quite strong restriction which completely takes care of the first problem outlined above:

R1. during the construction of a $\mathfrak{T}_{\text {mLss-tableau }} \mathbf{T}$ for an MLSS-sentence φ, no new compound set term can be introduced in T by any linear or branching rule.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

To further optimize our tableau system $\mathfrak{T}_{\text {MLss }}$, we will impose some restrictions on the applicability of the branching rules (\in) and (ext).
It is convenient to introduce the following definition:

Definition

Let T be an $\mathfrak{T}_{\text {MLss }}$-tableau for φ. An unfulfilled item of a branch ϑ of T is either

- a sentence β in ϑ such that none of its components β_{1} and β_{2} occurs in ϑ;
or
- a literal $t_{1} \neq t_{2}$ in ϑ such that
(b1) t_{1} and t_{2} occur in φ; and
(b2) there exists no term s such that the branch ϑ contains both $s \in t_{i}$ and $s \notin t_{3-i}$, for some $i \in\{1,2\} ;$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Definition (cntd)

Or

- an ordered pair (s, t) of terms occurring in ϑ such that (c1) neither $s \in t$ nor $s \notin t$ is in ϑ; and
(c2) for some terms t^{\prime} and $t^{\prime \prime}$ in φ, either
(c2.i) ϑ contains the literal $s \in t \cup t^{\prime}$, or
(c2.ii) t has the form $t^{\prime} \backslash t^{\prime \prime}$ and $s \in t^{\prime}$ occurs in ϑ, or
(c2.iii) t has the form $t^{\prime} \cap t^{\prime \prime}$ and $s \in t^{\prime}$ occurs in ϑ.
A branch ϑ is fulfilled if it has no unfulfilled item.
A tableau is fulfilled if all its branches are fulfilled.

$$
\begin{gathered}
\frac{s \in t \cup t^{\prime}}{s \in t \mid s \notin t}(c 2 . i) \quad \frac{s \in t^{\prime}}{s \in t^{\prime} \backslash t^{\prime \prime} \mid s \notin t^{\prime} \backslash t^{\prime \prime}} \\
\frac{s \in t^{\prime}}{s \in t^{\prime} \cap t^{\prime \prime} \mid s \notin t^{\prime} \cap t^{\prime \prime}}(c 2 . i i i)
\end{gathered}
$$

The idea is that only branching rules which cause a previously unfulfilled item to become fulfilled are allowed. More precisely, we impose the following further restriction:

R2. during the construction of a $\mathfrak{T}_{\text {MLss-tableau }} \mathbf{T}$ for an MLSS-sentence φ, the branching rules can be used to extend a branch ϑ of T only if they are applied to unfulfilled items of ϑ, where, by convention, when the cut rule (\in) is applied with the sentences $s \in t$ and $s \notin t$, we say that it has been applied to the ordered pair (s, t).

A further optimization can be achieved by imposing the following restriction on the first two $=$-rules:

R3. during the construction of a $\mathfrak{T}_{\text {MLSs-tableau }} \mathbf{T}$ for an MLSS-sentence φ, in the first two =-rules the substituted term is restricted to being a top-level term of the literal ℓ.

Thus, for instance, restriction R3 allows the substitution only of the terms t_{1} and t_{2} in the literal $t_{1} \notin t_{2}$ by means of $\mathrm{a}=$-rule.

Definition

A $\mathfrak{T}_{\text {mLss-tableau }}$ is restricted if, during its construction, the above restrictions R1 through R3 have been observed.

A Decidable Tableau Calculus for MLSS

00

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
2:\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
3: \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \\
\perp \\
\text { 7: } c_{1} \notin c_{1} \\
8: c_{1} \in c_{2}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$

A Decidable Tableau Calculus for MLSS

00

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

Table 1: A $\boldsymbol{T}_{\text {MLSS }}$-tableau proof of $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Definition

A branch of a $\mathfrak{T}_{\text {MLSs }}$-tableau is

- linearly saturated, if no new sentence can be added to it by any application of a linear rule complying with restrictions R1 and R3;
- saturated, if it is linearly saturated and it does not contain any unfulfilled item.
Likewise, a $\mathfrak{T}_{\text {MLss-tableau is }}$
- linearly saturated, if all its branches are linearly saturated;
- saturated, if all its branches are saturated.

A $\mathfrak{T}_{\text {mLss-tableau }}$ is s-restricted if it is restricted and saturated.

Completeness of the tableau calculus $\mathfrak{T}_{\text {mLss }}$ will be proved

- by exhibiting a saturation process which, given an MLSS-sentence φ, constructs a restricted $\mathfrak{T}_{\text {mLss-tableau }}$ for φ which is either closed or saturated; and
- by showing that any open and s-restricted $\mathfrak{T}_{\text {mlss-tableau }}$ is satisfiable, namely it has at least one satisfiable branch.

Let us consider the following procedure for the construction of restricted $\mathfrak{T}_{\text {MLss }}$-tableaux, based on the procedure
KE-Saturate

procedure \mathfrak{T}-Saturate (φ);

- let T be the initial tableau for φ;
repeat
- linearly saturate T;
if T has an unfulfilled branch ϑ then
- select an unfulfilled item χ of ϑ;
- apply the appropriate branching rule for χ on ϑ; end if;
until T is either closed or saturated;
return T ; end \mathfrak{T}-Saturate;

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Remark

We will assume that the linear saturation phase which takes place just at the beginning of the repeat-until block is regular, i.e., it never introduces on a branch a literal which already occurs in it.

Termination

- To prove that procedure \mathfrak{T}-Saturate terminates, by König's lemma it is enough to show that at any time during its execution for the construction of a tableau T for φ, each branch of T has bounded length.
- Accordingly, let ϑ be a branch of T and let T_{φ} and T_{ϑ} be the collections of set terms occurring in φ and ϑ, respectively.
- In view of restriction R1, the only new terms introduced in ϑ are the set constants added by the branching rule (ext).
- Since, by restriction R2, rule (ext) can be applied on ϑ at most $\left|T_{\varphi}\right|^{2}$ times, it follows that $\left|T_{\vartheta}\right| \leq\left|T_{\varphi}\right|+\left|T_{\varphi}\right|^{2}$.
- Hence, the number of literals in ϑ and, in turn the length of ϑ, can easily be bounded in terms of $\left|\boldsymbol{T}_{\varphi}\right|$.

Let $\mathbf{G}=\langle\boldsymbol{N}, \widehat{\in}\rangle$ be a directed acyclic graph (dag, for short), let $\{V, T\}$ be a partition of N, and let $\left\{u_{t}: t \in T\right\}$ be a family of sets indexed over T.

Edges can form any acyclic dyadic relation on \boldsymbol{N}, but we denote their collection as $\widehat{\in}$ to suggest that they will be interpreted as set-membership constraints.

Since the graph G is acyclic, the following definitions are well posed:

Definition (REALIZATIONS)

The REALIzATION of $G=\langle\boldsymbol{N}, \hat{\epsilon}\rangle$ relative to $\left\{\boldsymbol{u}_{\boldsymbol{t}}: \boldsymbol{t} \in \boldsymbol{T}\right\}$ and to V, T is the assignment R recursively defined over $N=V \cup T$ as follows:

$$
\begin{array}{lll}
\boldsymbol{R} \boldsymbol{x} & =_{\text {Def }} \quad\{\boldsymbol{R z}: \boldsymbol{z} \in \boldsymbol{V} \cup \boldsymbol{T} \mid \boldsymbol{z} \widehat{\in}\} \\
\boldsymbol{R t} & =_{\text {Def }} & \{\boldsymbol{R z}: \boldsymbol{z} \in \boldsymbol{V} \cup \boldsymbol{T} \mid \boldsymbol{z} \widehat{\in}\} \cup\left\{\boldsymbol{u}_{\boldsymbol{t}}\right\},
\end{array} \text { for } \boldsymbol{x} \text { in } \boldsymbol{V} \text { in } \text {; } .
$$

The HEIGHT of a v in N is

$$
\operatorname{height}(v)=_{\text {Def }}\left\{\begin{array}{l}
0 \quad \text { if } y \widehat{\notin v} \text { for any } \boldsymbol{y} \text { in } N \\
\max \{\operatorname{height}(y)+1: y \in \boldsymbol{N} \mid \boldsymbol{y} \widehat{\in} v\} \\
\text { otherwise }
\end{array}\right.
$$

Lemma (Realizations' Lemma)

Let $G=\langle V \cup T, \widehat{\in}\rangle$ be a dag with $V \cap T=\emptyset$. Also, let $\left\{u_{t}: t \in T\right\}$ be a given family of \mathcal{U}-sets, and let R be the realization of G relative to $\left\{u_{t}: t \in T\right\}$ and to V, T. Assume that
(a) $u_{t} \neq u_{d}$, for all distinct t, d in T;
(b) $u_{t} \neq R v$, for all t in T and all v in $V \cup T$.

Then:
(i) $R t \neq R t^{\prime}$, for all distinct $t, t^{\prime} \in T$;
(ii) if $\boldsymbol{R x}=\boldsymbol{R y}$, then height $(\boldsymbol{x})=$ height (\boldsymbol{y}), for $\boldsymbol{x}, \boldsymbol{y}$ in $\boldsymbol{V} \cup \boldsymbol{T}$;
(iii) if $R x \in R y$, then height $(x)<\operatorname{height}(\boldsymbol{y})$, for $\boldsymbol{x}, \boldsymbol{y}$ in $\boldsymbol{V} \cup \boldsymbol{T}$.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Proof of the Realizations' Lemma

(i) follows immediately from (a) and (b) above.

Concerning (ii), we can proceed by induction on

$$
\max \{\operatorname{height}(x), \text { height(y) }\}
$$

If $\max \{$ height (\boldsymbol{x}), height $(\boldsymbol{y})\}=0$, then (ii) is trivially true. As for the inductive step, notice that if $R x=R y$ then for each $w \widehat{\in} \boldsymbol{x}$ there exists a $\boldsymbol{v} \widehat{\in} y$ such that $R w=R v$, and symmetrically.
Therefore,

$$
\begin{aligned}
\text { height }(\boldsymbol{x}) & =\max \{\operatorname{height}(\boldsymbol{w})+1: \boldsymbol{w} \widehat{\in} \boldsymbol{x}\} \\
& =\max \{\operatorname{height}(\boldsymbol{v})+1: \boldsymbol{v} \widehat{\in} \boldsymbol{y}\}=\operatorname{height}(\boldsymbol{y}) .
\end{aligned}
$$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Proof of the Realizations' Lemma (cntd)

As for (iii), let $R x \in R y$. Then $R x=R z$, for some $z \hat{\in} y$. Hence, height($\boldsymbol{x})=\operatorname{height}(z)<\operatorname{height}(\boldsymbol{y})$.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Let T be an open and s-restricted $\mathfrak{T}_{\text {mLss-tableau for } \varphi} \varphi$ and let ϑ be an open branch of T . It is convenient to associate with ϑ and φ the following objects:
T_{φ} : the collection of all terms occurring in φ;
$\boldsymbol{C}_{\vartheta}$: the collection of the new set constants added to ϑ, namely those constants not occurring in φ;
C_{ϑ}^{\prime} : the collection of the set constants c in $\boldsymbol{C}_{\vartheta}$ such that for no term $t \in T_{\varphi}$ either $c=t$ or $t=c$ occurs in ϑ;
T_{ϑ}^{\prime} : the set $T_{\varphi} \cup\left(C_{\vartheta} \backslash C_{\vartheta}^{\prime}\right)$;
$\boldsymbol{G}_{\vartheta}$: the directed acyclic graph $\left\langle\boldsymbol{C}_{\vartheta}^{\prime} \cup \boldsymbol{T}_{\vartheta}^{\prime}, \widehat{\in}\right\rangle$, where $\boldsymbol{s} \hat{\in} \boldsymbol{t}$ iff the literal $\boldsymbol{s} \in \boldsymbol{t}$ occurs in ϑ; notice that the acyclicity of G_{ϑ} follows from the fact that the branch ϑ is open and therefore it cannot contain any membership cycle;

Completeness of $\mathfrak{T}_{\text {MLSS }}$

$\boldsymbol{R}_{\vartheta}$: a realization of \mathbf{G}_{ϑ} relative to $C_{\vartheta}^{\prime}, T_{\vartheta}^{\prime}$ and to pairwise distinct sets u_{c}, for $\boldsymbol{c} \in \boldsymbol{C}_{\vartheta}^{\prime}$, each having cardinality no less than $\left|C_{\vartheta}^{\prime} \cup T_{\vartheta}^{\prime}\right|$, defined by

$$
\begin{aligned}
& \boldsymbol{R}_{\vartheta} \boldsymbol{t}=_{\text {Det }} \\
&\left.\boldsymbol{R}_{\vartheta} \boldsymbol{C}=\boldsymbol{R}_{\vartheta} \boldsymbol{s}: \boldsymbol{s} \in \boldsymbol{T}_{\vartheta}^{\prime} \cup \boldsymbol{C}_{\vartheta}^{\prime} \mid \boldsymbol{s e f} \in \boldsymbol{t}\right\},\text { for } \left.\boldsymbol{t} \text { in } \boldsymbol{T}_{\vartheta}^{\prime} \boldsymbol{s}: \boldsymbol{s} \in \boldsymbol{T}_{\vartheta}^{\prime} \cup \boldsymbol{C}_{\vartheta}^{\prime} \mid \boldsymbol{s} \widehat{\in} \boldsymbol{c}\right\} \cup\left\{\mathbf{u}_{\boldsymbol{c}}\right\}, \\
& \text { for } \boldsymbol{c} \text { in } \boldsymbol{C}_{\vartheta}^{\prime}
\end{aligned}
$$

so that $\mathbf{u}_{c} \neq \boldsymbol{R}_{\vartheta} t$, for every $c \in C_{\vartheta}^{\prime}$ and $t \in \boldsymbol{T}_{\vartheta}^{\prime} \cup \boldsymbol{C}_{\vartheta}^{\prime}$.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

The following lemma can be proved by induction on the length of ϑ.

Lemma
If $\boldsymbol{c} \in \boldsymbol{C}_{\vartheta}^{\prime}$ then there can be no term \boldsymbol{t} in $\boldsymbol{T}_{\varphi} \cup \boldsymbol{C}_{\vartheta}$ such that either $c=t$, or $t=c$, or $t \in c$ occurs in ϑ.

Exercise

Prove the preceding lemma.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

In order to show that the realization $\boldsymbol{R}_{\vartheta}$ satisfies ϑ, we begin by proving that it models correctly all literals in ϑ, at least in the case in which compound terms are not interpreted, i.e. they are treated as if they were just "complex names" for constant symbols.

Lemma

The following assertions hold:
(i) if $\boldsymbol{s} \in \boldsymbol{t}$ occurs in ϑ, then $\boldsymbol{R}_{\vartheta} \boldsymbol{s} \in \boldsymbol{R}_{\vartheta} \boldsymbol{t}$;
(ii) if $\boldsymbol{s} \notin \boldsymbol{t}$ occurs in ϑ, then $\boldsymbol{R}_{\vartheta} \boldsymbol{s} \notin \boldsymbol{R}_{\vartheta} \boldsymbol{t}$;
(iii) if $t_{1}=t_{2}$ occurs in ϑ, then $\boldsymbol{R}_{\vartheta} t_{1}=\boldsymbol{R}_{\vartheta} t_{2}$;
(iv) if $t_{1} \neq t_{2}$ occurs in ϑ, then $\boldsymbol{R}_{\vartheta} t_{1} \neq \boldsymbol{R}_{\vartheta} t_{2}$.

Proof of (i) and (iii)

- Assertion (i) follows directly from the definition of $\boldsymbol{R}_{\vartheta}$.

It is more convenient to prove (iii) and (iv) before (ii).

- Concerning (iii), let $t_{1}=t_{2}$ be in ϑ. By the preceding lemma, $t_{1}, t_{2} \in T_{\vartheta}^{\prime}$. If, by contradiction, $\boldsymbol{R}_{\vartheta} t_{1} \neq \boldsymbol{R}_{\vartheta} t_{2}$, then without loss of generality we can assume that there exists a term s such that the literal $s \in \boldsymbol{t}_{1}$ is in ϑ and $\boldsymbol{R}_{\vartheta} \boldsymbol{s} \notin \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$. But ϑ is linearly saturated, thus it must also contain the literal $\boldsymbol{s} \in \boldsymbol{t}_{2}$, so that $\boldsymbol{R}_{\vartheta} \boldsymbol{s} \in \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$, a contradiction.

Completeness of \mathfrak{T} MLSS

Proof of (iv)

- To show that (iv) holds, let $t_{1} \neq t_{2}$ be in ϑ. Let us first assume that $t_{1} \in C_{\vartheta}^{\prime}$. Then, $\mathrm{u}_{t_{1}} \in \boldsymbol{R}_{\vartheta} t_{1}$. Since ϑ is open, it follows that the terms t_{1} and t_{2} are distinct, so that $\mathrm{u}_{t_{1}} \notin \boldsymbol{R}_{\vartheta} t_{2}$, which in turn yields $\boldsymbol{R}_{\vartheta} t_{1} \neq \boldsymbol{R}_{\vartheta} t_{2}$. Analogous conclusion can be reached in the case in which $t_{2} \in C_{\vartheta}^{\prime}$. To conclude the proof of (iv), it remains to show that the set
$\boldsymbol{\Delta}_{\vartheta}==_{\text {Def }}\left\{\left(\tau_{1}, \tau_{2}\right): \tau_{1}, \tau_{2} \in \boldsymbol{T}_{\vartheta}^{\prime} \mid \tau_{1} \neq \tau_{2}\right.$ is in ϑ and $\left.\boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1}=\boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}\right\}$ is empty.
Let us assume, by way of contradiction, that $\Delta_{\vartheta} \neq \emptyset$ and put

$$
\boldsymbol{h}_{\vartheta}\left(\tau_{1}, \tau_{2}\right)==_{\mathrm{Def}} \min \left\{\operatorname{height}\left(\tau_{1}\right), \text { height }\left(\tau_{2}\right)\right\}
$$

$$
\text { for } \tau_{1}, \tau_{2} \in T_{\vartheta}^{\prime}
$$

Proof of (iv) - cntd

- Let $\left(t_{1}, t_{2}\right) \in \Delta_{\vartheta}$ be such that

$$
h_{\vartheta}\left(t_{1}, t_{2}\right)=\min _{\left(\tau_{1}, \tau_{2}\right) \in \Delta_{\vartheta}} h\left(\tau_{1}, \tau_{2}\right)
$$

It is easy to see that since the tableau T is restricted, there must exist two terms $t_{1}^{\prime}, t_{2}^{\prime} \in \boldsymbol{T}_{\varphi}$ such that $\boldsymbol{R}_{\vartheta} t_{i}^{\prime}=\boldsymbol{R}_{\vartheta} \boldsymbol{t}_{\boldsymbol{i}}$, for $i=1,2$, and the literal $t_{1}^{\prime} \neq t_{2}^{\prime}$ occurs in ϑ. Hence,
$\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \in \Delta_{\vartheta}$ and, by (ii) of the Realizations' Lemma, $h_{\vartheta}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=h_{\vartheta}\left(t_{1}, t_{2}\right)$.
Due to the fact that the literal $t_{1}^{\prime} \neq t_{2}^{\prime}$ is a fulfilled item of ϑ, we can assume without loss of generality that there exists a term s_{2} such that both the literals $s_{2} \in t_{2}^{\prime}$ and $s_{2} \notin t_{1}^{\prime}$ occur in ϑ. Hence, $\boldsymbol{R}_{\vartheta} s_{2} \in \boldsymbol{R}_{\vartheta} t_{2}^{\prime}=\boldsymbol{R}_{\vartheta} t_{1}^{\prime}$, so that, since ϑ is open, there must exist a term s_{1} such that the literal $s_{1} \in t_{1}^{\prime}$ is in ϑ and $\boldsymbol{R}_{\vartheta} \boldsymbol{s}_{1}=\boldsymbol{R}_{\vartheta} \boldsymbol{s}_{2}$.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Proof of (iv) - cntd

- As ϑ is linearly saturated and open, it must contain the literal $s_{1} \neq s_{2}$ and we must also have that $s_{1}, s_{2} \in T_{\vartheta}^{\prime}$. Thus, $\left(s_{1}, s_{2}\right) \in \Delta_{\vartheta}$, which is a contradiction, as by (iii) of the Realizations' Lemma we have $h_{\vartheta}\left(s_{1}, s_{2}\right)<\boldsymbol{h}_{\vartheta}\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\right)$.

Proof of (ii)

- Finally, let us show that (ii) holds. Let the literal $t_{1} \notin t_{2}$ be in ϑ, but assume by contradiction that $R_{\vartheta} t_{1} \in R_{\vartheta} t_{2}$. Hence, there must exist a term s such that the literal $s \in t_{2}$ is in ϑ and $\boldsymbol{R}_{\vartheta} s=R_{\vartheta} t_{1}$. Owing to the fact that ϑ is linearly saturated, ϑ must also contain the literal $s \neq t_{1}$, so that, by (iv) above, $\boldsymbol{R}_{\vartheta} \boldsymbol{s} \neq \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1}$, which is a contradiction.

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Next we will show that even set operators are correctly modeled by R_{ϑ}.

Lemma

Every compound set term s occurring in ϑ is modeled correctly by the realization $\boldsymbol{R}_{\vartheta}$, namely if s has the form $t_{1} \star t_{2}$, with $\star \in\{\cup, \cap, \backslash\}$, then $\boldsymbol{R}_{\vartheta} \boldsymbol{s}=\boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1} \star \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$, whereas if \boldsymbol{s} has the form $\{\boldsymbol{t}\}$, then $\boldsymbol{R}_{\vartheta} \boldsymbol{s}=\left\{\boldsymbol{R}_{\vartheta} \boldsymbol{t}\right\}$.
In addition, $\boldsymbol{R}_{\vartheta} \emptyset=\emptyset$, provided that the constant \emptyset occurs in ϑ.

Proof

Plainly, since ϑ is open, no sentence of the form $s \in \emptyset$ can occur in ϑ, so that $\boldsymbol{R}_{\vartheta} \emptyset=\emptyset$, provided that the constant \emptyset occurs in ϑ.
Concerning compound terms t, we proceed by induction on the number of set operators occurring in t. Accordingly, let us assume that the realization $\boldsymbol{R}_{\vartheta}$ models correctly all terms in ϑ with fewer than k set operators, with $k \geq 1$, and let t be a term in ϑ containing exactly k operators.

We will consider only the case in which t has the form $t_{1} \cap t_{2}$ and leave the remaining cases to the reader as an exercise. To begin with, notice that, by restrictions R1 and R3, it follows that $t_{1}, t_{2} \in T_{\varphi}$.

Proof (cntd)

Let $\mathrm{e} \in \boldsymbol{R}_{\vartheta}\left(t_{1} \cap t_{2}\right)$. Then there exists a term s such that $\boldsymbol{R}_{\vartheta} \boldsymbol{s}=\mathrm{e}$ and the literal $\boldsymbol{s} \in \boldsymbol{t}_{1} \cap \boldsymbol{t}_{2}$ occurs in ϑ. Since ϑ is saturated, both literals $\boldsymbol{s} \in \boldsymbol{t}_{1}$ and $\boldsymbol{s} \in \boldsymbol{t}_{2}$ must also occur in ϑ, so that, by property (i) of the preceding lemma, $\mathrm{e}=\boldsymbol{R}_{\vartheta} \boldsymbol{s} \in \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1} \cap \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$, which in turn implies $\boldsymbol{R}_{\vartheta}\left(t_{1} \cap t_{2}\right) \subseteq \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1} \cap \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$.

Proof (cntd)

Conversely, let $\mathrm{e} \in \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{1} \cap \boldsymbol{R}_{\vartheta} \boldsymbol{t}_{2}$. Then, there must exist two terms s_{1} and s_{2} such that $R_{\vartheta} s_{1}=R_{\vartheta} s_{2}=e$ and the literals $s_{1} \in t_{1}, s_{2} \in t_{2}$ occur in ϑ. By saturation, either $s_{1} \in t_{1} \cap t_{2}$ or $s_{1} \notin t_{1} \cap t_{2}$ must occur in ϑ. In the latter case, $s_{1} \notin t_{2}$, and therefore also $s_{2} \neq s_{1}$, must occur in ϑ, so that, by property (iv) of the preceding lemma, we have $R_{\vartheta} s_{2} \neq R_{\vartheta} s_{1}$, a contradiction. Hence, the literal $s_{1} \in t_{1} \cap t_{2}$ must occur in ϑ, so that $\mathrm{e}=\boldsymbol{R}_{\vartheta} s_{1} \in \boldsymbol{R}_{\vartheta}\left(t_{1} \cap t_{2}\right)$. Thus, $\boldsymbol{R}_{\vartheta} t_{1} \cap \boldsymbol{R}_{\vartheta} t_{2} \subseteq \boldsymbol{R}_{\vartheta}\left(t_{1} \cap t_{2}\right)$ which, together with the inverse inclusion established earlier, yields $\boldsymbol{R}_{\vartheta}\left(t_{1} \cap t_{2}\right)=R_{\vartheta} t_{1} \cap R_{\vartheta} t_{2}$.

Exercise

Complete the proof of the lemma.

Completeness of \mathfrak{T} MLSS

So far we have shown that the realization $\boldsymbol{R}_{\vartheta}$ is a set model for all literals in ϑ. By induction, it can easily be shown that compound sentences in ϑ are also satisfied by $\boldsymbol{R}_{\vartheta}$, yielding:

Lemma

Let T be an open and s-restricted $\mathfrak{T}_{\text {MLSs-tableau for an MLSS }}$ sentence. Then any open branch of T is satisfiable.

Exercise

Complete the proof of the lemma.
Thus, in view of the saturation process \mathfrak{T}-Saturate described earlier, we have

Theorem (Completeness)

The tableau calculus $\mathfrak{T}_{\text {mLSs }}$ for MLSS is complete.

The results discussed above imply immediately that the following is a decision procedure for MLSS:
procedure MLSS-decision test(φ);

- let T be the initial tableau for $\neg \varphi$;

T := \mathfrak{T}-Saturate(T);
if T is closed then
return "T is a $\mathfrak{T}_{\text {MLSs }}$-tableau proof for $\varphi^{\prime \prime}$;
else

- let ϑ be an open branch of T and let $\boldsymbol{R}_{\vartheta}$ be a realization associated with ϑ;
return " R_{ϑ} is a set model which falsifies φ ";
end if;
end MLSS-decision test;

Remark

Notice that the $\mathfrak{T}_{\text {MLss }}$-tableau proof in our preceding example could be the possible output of the MLSS-decision test when applied to the MLSS-sentence
$\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$.
In conclusion we have:

Theorem (Decidability of MLSS)

The collection of MLSS-sentences has a solvable decision problem.

