Domenico Cantone

Dipartimento di Matematica e Informatica Università di Catania

Logica Computazionale, A.A. 2006/07

Outline

A Decidable Tableau Calculus for MLSS

- Syntax and semantics of MLSS
- A tableau calculus for MLSS
- Soundness of the tableaux calculus *I*_{MLSS}
- Completeness of \mathcal{T}_{MLSS}
 - A saturation process for *T_{MLSS}*-tableaux
 - Realizations of graphs by set-labelings
 - Satisfiability of open and s-restricted $\mathfrak{T}_{\textit{MLSS}}\text{-tableaux}$
 - A decision procedure for MLSS

Outline

A Decidable Tableau Calculus for MLSS

- Syntax and semantics of MLSS
- A tableau calculus for MLSS
- Soundness of the tableaux calculus \mathcal{T}_{MLSS}
- Completeness of $\mathfrak{T}_{\textit{MLSS}}$
 - A saturation process for \mathcal{T}_{MLSS} -tableaux
 - Realizations of graphs by set-labelings
 - Satisfiability of open and s-restricted $\mathfrak{T}_{\textit{MLSS}}\text{-tableaux}$
 - A decision procedure for MLSS

We present a fast tableau-based decision procedure for the ground set-theoretic fragment *Multi-Level Syllogistic with Singleton* (in short **MLSS**), a quantifier-free language with the basic *Boolean set operators* and the *singleton operator*.

The language of MLSS

The language of the fragment MLSS of set theory consists of

- a denumerable infinity of uninterpreted set constants
 *c*₀, *c*₁,...;
- the interpreted set constant ∅ (empty set),
- the operator symbols ∪ (union), ∩ (intersection), \ (set difference) and {_}-rule (singleton),
- the predicate symbols ∈ (membership) and = (equality), and
- propositional connectives.

Syntax and semantics of MLSS

Terms of MLSS

Set terms of **MLSS** are defined in the standard recursive way, namely

- any set constant is an MLSS-term;
- if t_1 and t_2 are MLSS-terms, so are $t_1 \cup t_2, t_1 \cap t_2, t_1 \setminus t_2$, and $\{t_1\}$.

Sentences of MLSS

Finally, MLSS-sentences are just propositional combinations of atoms of the form $t_1 \in t_2$ and $t_1 = t_2$, with t_1 and t_2 being any set terms.

The intended semantics of **MLSS** over the standard von Neumann universe V is defined as follows.

 A (standard) assignment over a collection V of variables is any function M from V into V.

Clearly, any set-theoretic formula φ all of whose variables belong to V becomes either *true* or *false* when each free occurrence x gets replaced by Mx within φ and set-theoretic operators and relators are interpreted according to their standard meaning.

- An assignment *M* which makes φ true is said to be a model of φ.
- A formula φ is said to be *satisfiable* if it has a model.

Syntax and semantics of MLSS

Remarks

Notice that the relator \subseteq and the enumerative set-former operator $\{-, -, \dots, -\}$ are easily expressible in **MLSS**. Indeed, $s \subseteq t$ is equivalent to $s \cup t = t$ and the term $\{t_1, t_2, \dots, t_k\}$ can be rewritten as $\{t_1\} \cup \dots \cup \{t_k\}$.

We will make use of the abbreviations $s \notin t$ and $s \neq t$ to denote the literals $\neg(s \in t)$ and $\neg(s = t)$, respectively.

Syntax and semantics of MLSS

The decision problem

The *(satisfiability) decision problem* for a collection C of set-theoretic formulas is the problem of establishing whether or not φ has a model, for any given formula φ in C.

To solve this problem positively, one must design an algorithm that can test any φ in \mathcal{C} for satisfiability. Of course, for a specific \mathcal{C} , such an algorithm may not exist.

A tableau calculus for MLSS

We present a tableau calculus for MLSS, denoted \mathfrak{T}_{MLSS} , which is based upon the system KE.

The *linear* rules of \mathfrak{T}_{MLSS} , namely those rules which do not cause branch splittings, are listed below. Note that the index *i* in the \cup - and \cap -rules can assume the values 1 and 2, whereas ℓ in the =-rules stands for any MLSS literal.

A tableau calculus for MLSS

prop rules:	$\frac{\alpha}{\alpha_1}$	$\frac{\alpha}{\alpha_2}$	$\frac{\frac{\beta}{\beta_1^c}}{\beta_2}$	$\frac{\frac{\beta}{\beta_2^c}}{\beta_1}$
∪- <i>rules:</i>	$ \begin{array}{c} \mathbf{s} \in \mathbf{t_1} \cup \mathbf{t_2} \\ \mathbf{s} \notin \mathbf{t_i} \\ \hline \mathbf{s} \in \mathbf{t_{3-i}} \end{array} $	$\frac{s \notin t_1 \cup t_2}{s \notin t_i}$	$\frac{s \in t_i}{s \in t_1 \cup t_2}$	$ \frac{s \notin t_1}{s \notin t_2} $
∩- <i>rules:</i>	$ \begin{array}{c} \mathbf{s} \notin \mathbf{t}_1 \cap \mathbf{t}_2 \\ \mathbf{s} \in \mathbf{t}_i \\ \hline \mathbf{s} \notin \mathbf{t}_{3-i} \end{array} $	$\frac{s \in t_1 \cap t_2}{s \in t_i}$	$\frac{s\notint_i}{s\notint_1\capt_2}$	$\frac{s \in t_1}{s \in t_2}$ $\frac{s \in t_2}{s \in t_1 \cap t_2}$

Table: \mathfrak{T}_{MLSS} -linear rules (part a)

A tableau calculus for MLSS

_rules:	$ \begin{array}{c} \boldsymbol{s} \notin \boldsymbol{t_1} \setminus \boldsymbol{t_2} \\ \boldsymbol{s} \in \boldsymbol{t_1} \\ \hline \boldsymbol{s} \in \boldsymbol{t_2} \end{array} $	$\frac{\boldsymbol{s} \in \boldsymbol{t_1} \setminus \boldsymbol{t_2}}{\boldsymbol{s} \in \boldsymbol{t_1}}$	$\frac{s \notin t_1}{s \notin t_1 \setminus t_2}$	$\frac{s \in t_1}{s \notin t_2}$ $\frac{s \notin t_2}{s \in t_1 \setminus t_2}$
\- <i>Tules</i> .	$ \begin{array}{c} s \notin t_1 \setminus t_2 \\ s \notin t_2 \\ \hline s \notin t_1 \end{array} $	$\frac{s \in t_1 \setminus t_2}{s \notin t_2}$	$\frac{s \in t_2}{s \notin t_1 \setminus t_2}$	
{_}- <i>rules</i> :	$\frac{\boldsymbol{s} \in \{\boldsymbol{t}_1\}}{\boldsymbol{s} = \boldsymbol{t}_1}$	$\frac{s \notin \{t_1\}}{s \neq t_1}$	$\overline{t_1 \in \{t_1\}}$	
=-rules:	$\frac{t_1 = t_2}{\ell}$	$\frac{t_1 = t_2}{\ell}$	$s \in t$ $s' \notin t$ $s \neq s'$	

Table: \mathfrak{T}_{MLSS} -linear rules (part b)

A tableau calculus for MLSS

The *branching* rules of \mathfrak{T}_{MLSS} are listed next. Note that rules $(\beta 1)$, $(\beta 2)$, and (\in) are cut rules, whereas rule (ext) is not. In particular, in rule (ext), the symbol *c* denotes a *new* set constant, one not already occurring in the branch to which the rule is applied.

A tableau calculus for MLSS

Table: \mathfrak{T}_{MLSS} -branching rules

Remark

In rule (ext), c stands for a new uninterpreted set constant.

A tableau calculus for MLSS

Next we define how to construct \mathfrak{T}_{MLSS} -tableaux.

Definition

Let φ be an MLSS-sentence. The *initial* \mathfrak{T}_{MLSS} -*tableau* for φ is the single-node tree whose root is labeled by φ . An \mathfrak{T}_{MLSS} -*tableau* for φ is a tableau labeled with MLSS-sentences, which can be constructed from the initial tableau for φ by a finite number of applications of the rules of \mathfrak{T}_{MLSS} .

Closure conditions must take into account also the semantics of set theory, as in the following definition.

Definition

A branch of a \mathfrak{T}_{MLSS} -tableau is *closed* if it contains either

- two complementary sentences ψ and $\neg \psi$, or
- a finite membership cycle of the form $t_0 \in t_1 \in \ldots \in t_n \in t_0$, or
- a literal of the form $t \neq t$, or
- a literal of the form $t \in \emptyset$.

A tableau is *closed* if all its branches are closed.

Tableau proofs and refutations are defined in the standard way.

Definition

A \mathfrak{T}_{MLSS} -tableau proof for an MLSS-sentence φ is any closed \mathfrak{T}_{MLSS} -tableau for $\neg \varphi$.

A \mathfrak{T}_{MLSS} -tableau refutation for φ is any closed \mathfrak{T}_{MLSS} -tableau for φ .

Our next task is to show that the tableau calculus \mathfrak{T}_{MLSS} captures the semantics of MLSS exactly, namely it is both *sound* and *complete*. In fact, completeness will be proved under some restrictions which will render the calculus suitable for effective use as a decision procedure for MLSS.

Soundness of the tableaux calculus $\mathfrak{T}_{\textit{MLSS}}$

Soundness of the tableau calculus $\mathfrak{T}_{\text{MLSS}}$ can easily be proved by showing that

- (a) at least one of the extensions of any satisfiable branch is satisfiable, and
- (b) no closed branch is satisfiable,

where a branch ϑ of a \mathfrak{T}_{MLSS} -tableau is said to be *satisfiable* it there exists a set model which makes true all sentences in ϑ .

Property (b) follows by observing that all closure conditions are unsatisfiable in the standard von Neumann universe.

Soundness of the tableaux calculus $\mathfrak{T}_{\textit{MLSS}}$

Concerning (a), for the sake of simplicity we will only consider the case in which a satisfiable branch ϑ is extended by an application of the branching rule (*ext*), with the literal $t_1 \neq t_2$ as premiss, using the set constant *c* (not occurring in ϑ).

Let ϑ_1 and ϑ_2 be the two branches which extend ϑ and let M be a set model satisfying ϑ . Since $Mt_1 \neq Mt_2$, by extensionality there exists a set **e** which belongs to the symmetric difference of Mt_1 and Mt_2 .

Let M' be the assignment such that M'c = e and otherwise takes the same values as M. Since the set constant c does not occur in any sentence in ϑ , it is plain that M' must satisfy either ϑ_1 or ϑ_2 .

Other cases can be treated similarly. Thus we have:

Theorem (Soundness)

The tableau calculus \mathfrak{T}_{MLSS} for MLSS is sound.

Soundness of the tableaux calculus $\mathfrak{T}_{\textit{MLSS}}$

Exercise

Complete the proof of soundness of the tableau calculus $\mathfrak{T}_{\textit{MLSS}}.$

Some of the rules of the tableau calculus \mathfrak{T}_{MLSS} , if not suitably restricted, can cause a combinatorial explosion of the number of branches in an attempt to find a closed tableau for a given MLSS-sentence.

This is the case, for instance, for the linear rules

$$\frac{s \in t_i}{s \in t_1 \cup t_2} \quad \frac{s \notin t_i}{s \notin t_1 \cap t_2} \quad \frac{s \notin t_1}{s \notin t_1 \setminus t_2} \quad \overline{t_1 \in \{t_1\}}$$

which can cause the introduction of an unbounded number of new terms.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Hence, some restrictions need to be imposed on rule applicability.

The following is a quite strong restriction which completely takes care of the first problem outlined above:

R1. during the construction of a \mathfrak{T}_{MLSS} -tableau **T** for an MILSS-sentence φ , *no* new compound set term can be introduced in **T** by any linear or branching rule.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

To further optimize our tableau system \mathfrak{T}_{MLSS} , we will impose some restrictions on the applicability of the branching rules (\in) and (*ext*).

It is convenient to introduce the following definition:

Definition

Let **T** be an \mathfrak{T}_{MLSS} -tableau for φ . An *unfulfilled item* of a branch ϑ of **T** is either

• a sentence β in ϑ such that *none* of its components β_1 and β_2 occurs in ϑ ;

or

- a literal $t_1 \neq t_2$ in ϑ such that
 - (b1) t_1 and t_2 occur in φ ; and
 - (b2) there exists no term *s* such that the branch ϑ contains both $s \in t_i$ and $s \notin t_{3-i}$, for some $i \in \{1, 2\}$; ./.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Definition (cntd)

or

- an ordered pair (s, t) of terms occurring in ϑ such that
 - (c1) neither $s \in t$ nor $s \notin t$ is in ϑ ; and
 - (c2) for some terms t' and t'' in φ , either
 - (c2.i) ϑ contains the literal $s \in t \cup t'$, or (c2.ii) t has the form $t' \setminus t''$ and $s \in t'$ occurs in ϑ , or (c2.iii) t has the form $t' \cap t''$ and $s \in t'$ occurs in ϑ .

A branch ϑ is *fulfilled* if it has no unfulfilled item. A tableau is *fulfilled* if all its branches are fulfilled.

$$\begin{array}{c|c} \underline{s \in t \cup t'} \\ \hline s \in t \mid s \notin t \end{array} (c2.i) & \underline{s \in t'} \\ \hline \underline{s \in t \mid s \notin t} \end{array} (c2.i) & \underline{s \in t' \setminus t'' \mid s \notin t' \setminus t''} \\ \hline \underline{s \in t'} \\ \hline \underline{s \in t' \cap t'' \mid s \notin t' \cap t''} \end{array} (c2.iii)$$

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

The idea is that only branching rules which cause a previously unfulfilled item to become fulfilled are allowed. More precisely, we impose the following further restriction:

R2. during the construction of a \mathfrak{T}_{MLSS} -tableau **T** for an MLSS-sentence φ , the branching rules can be used to extend a branch ϑ of **T** only if they are applied to *unfulfilled* items of ϑ , where, by convention, when the cut rule (\in) is applied with the sentences $s \in t$ and $s \notin t$, we say that it has been applied to the ordered pair (s, t).

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

A further optimization can be achieved by imposing the following restriction on the first two =-rules:

R3. during the construction of a \mathfrak{T}_{MLSS} -tableau **T** for an MLSS-sentence φ , in the first two =-rules the substituted term is restricted to being a top-level term of the literal ℓ .

Thus, for instance, restriction **R3** allows the substitution only of the terms t_1 and t_2 in the literal $t_1 \notin t_2$ by means of a =-rule.

Definition

A \mathfrak{T}_{MLSS} -tableau is *restricted* if, during its construction, the above restrictions **R1** through **R3** have been observed.

Completeness of \mathcal{T}_{MLSS}

Example

$$1: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$2: \{c_1\} = c_1 \cup c_2$$

$$3: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$4: c_1 \in \{c_1\}$$

$$5: c_1 \in c_1 \cup c_2$$

$$6: c_1 \in c_1 \quad 7: c_1 \notin c_1$$

$$\downarrow$$

$$8: c_1 \in c_2$$

$$\vdots$$

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$

Completeness of \mathcal{I}_{MLSS}

Example (cntd)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\}) \text{ (cntd)}$

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Definition

A branch of a \mathfrak{T}_{MLSS} -tableau is

- *linearly saturated*, if no new sentence can be added to it by any application of a linear rule complying with restrictions R1 and R3;
- saturated, if it is linearly saturated and it does not contain any unfulfilled item.
- Likewise, a \mathfrak{T}_{MLSS} -tableau is
 - linearly saturated, if all its branches are linearly saturated;
 - *saturated*, if all its branches are saturated.
- A \mathfrak{T}_{MLSS} -tableau is *s*-restricted if it is restricted and saturated.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Completeness of the tableau calculus \mathfrak{T}_{MLSS} will be proved

- by exhibiting a saturation process which, given an MLSS-sentence φ, constructs a restricted ³_{MLSS}-tableau for φ which is either closed or saturated; and
- by showing that any open and s-restricted S_{MLSS}-tableau is satisfiable, namely it has at least one satisfiable branch.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Let us consider the following procedure for the construction of restricted \mathfrak{T}_{MLSS} -tableaux, based on the procedure KE-Saturate

```
procedure ℑ-Saturate(φ);
- let T be the initial tableau for φ;
repeat
- linearly saturate T;
if T has an unfulfilled branch ϑ then
- select an unfulfilled item χ of ϑ;
- apply the appropriate branching rule for χ on ϑ;
end if;
until T is either closed or saturated;
return T;
```

end **T**-Saturate;

Completeness of \mathcal{T}_{MLSS}

Remark

We will assume that the linear saturation phase which takes place just at the beginning of the **repeat-until** block is *regular*, i.e., it never introduces on a branch a literal which already occurs in it.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Termination

- To prove that procedure *Σ*-Saturate terminates, by König's lemma it is enough to show that at any time during its execution for the construction of a tableau T for *φ*, each branch of T has bounded length.
- Accordingly, let θ be a branch of T and let T_φ and T_θ be the collections of set terms occurring in φ and θ, respectively.
- In view of restriction R1, the only new terms introduced in *θ* are the set constants added by the branching rule (*ext*).
- Since, by restriction R2, rule (*ext*) can be applied on ϑ at most |T_φ|² times, it follows that |T_ϑ| ≤ |T_φ| + |T_φ|².
- Hence, the number of literals in θ and, in turn the length of θ, can easily be bounded in terms of |T_φ|.

Completeness of \mathcal{T}_{MLSS}

Let $G = \langle N, \hat{\in} \rangle$ be a *directed acyclic* graph (*dag*, for short), let $\{V, T\}$ be a partition of N, and let $\{u_t : t \in T\}$ be a family of sets indexed over T.

Edges can form *any* acyclic dyadic relation on N, but we denote their collection as $\hat{\in}$ to suggest that they will be interpreted as *set-membership constraints*.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Since the graph *G* is *acyclic*, the following definitions are well posed:

Definition (REALIZATIONS)

The REALIZATION of $G = \langle N, \widehat{\in} \rangle$ relative to $\{u_t : t \in T\}$ and to V, T is the assignment R recursively defined over $N = V \cup T$ as follows:

 $\begin{array}{ll} \textit{Rx} & =_{\scriptscriptstyle \mathsf{Def}} & \{\textit{Rz} : z \in \textit{V} \cup \textit{T} \mid z \widehat{\in} \textit{x}\}, & \text{for } \textit{x} \text{ in } \textit{V}; \\ \textit{Rt} & =_{\scriptscriptstyle \mathsf{Def}} & \{\textit{Rz} : z \in \textit{V} \cup \textit{T} \mid z \widehat{\in} \textit{t}\} \cup \{\textit{u}_t\}, & \text{for } \textit{t} \text{ in } \textit{T}. \end{array}$

The HEIGHT of a **v** in **N** is

 $height(v) =_{Def} \begin{cases} 0 & \text{if } y \notin v \text{ for any } y \text{ in } N, \\ \max\{height(y) + 1 : y \in N \mid y \in v\} \\ \text{otherwise.} \end{cases}$

Completeness of \mathcal{T}_{MLSS}

Lemma (Realizations' Lemma)

Let $G = \langle V \cup T, \widehat{\in} \rangle$ be a dag with $V \cap T = \emptyset$. Also, let $\{u_t : t \in T\}$ be a given family of \mathcal{U} -sets, and let R be the realization of G relative to $\{u_t : t \in T\}$ and to V, T. Assume that

(a) $u_t \neq u_d$, for all distinct t, d in T;

(b) $u_t \neq Rv$, for all t in T and all v in $V \cup T$.

Then:

(i) $Rt \neq Rt'$, for all distinct $t, t' \in T$;

(ii) if Rx = Ry, then height(x) = height(y), for x, y in $V \cup T$;

(iii) if $\mathbf{Rx} \in \mathbf{Ry}$, then height $(\mathbf{x}) < \text{height}(\mathbf{y})$, for \mathbf{x}, \mathbf{y} in $\mathbf{V} \cup \mathbf{T}$.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Proof of the Realizations' Lemma

(i) follows immediately from (a) and (b) above.

Concerning (ii), we can proceed by induction on

max{height(x), height(y)}.

If $max{height(x), height(y)} = 0$, then *(ii)* is trivially true. As for the inductive step, notice that if Rx = Ry then for each $w \in x$ there exists a $v \in y$ such that Rw = Rv, and symmetrically. Therefore,

 $\begin{array}{rcl} height(\boldsymbol{x}) &=& \max\{height(\boldsymbol{w})+1: \boldsymbol{w} \widehat{\in} \boldsymbol{x}\} \\ &=& \max\{height(\boldsymbol{v})+1: \boldsymbol{v} \widehat{\in} \boldsymbol{y}\} &=& height(\boldsymbol{y}). \end{array}$

Completeness of \mathcal{T}_{MLSS}

Proof of the Realizations' Lemma (cntd)

As for (iii), let $Rx \in Ry$. Then Rx = Rz, for some $z \in y$. Hence, height(x) = height(z) < height(y).

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Let T be an open and s-restricted \mathfrak{T}_{MLSS} -tableau for φ and let ϑ be an open branch of T. It is convenient to associate with ϑ and φ the following objects:

- T_{φ} : the collection of all terms occurring in φ ;
- C_{ϑ} : the collection of the new set constants added to ϑ , namely those constants not occurring in φ ;
- C'_{ϑ} : the collection of the set constants *c* in C_{ϑ} such that for no term *t* ∈ T_{φ} either *c* = *t* or *t* = *c* occurs in ϑ ;
- T'_{ϑ} : the set $T_{\varphi} \cup (C_{\vartheta} \setminus C'_{\vartheta})$;
- **G**_{ϑ}: the directed acyclic graph $\langle C'_{\vartheta} \cup T'_{\vartheta}, \widehat{\in} \rangle$, where $\widehat{s \in t}$ iff the literal $s \in t$ occurs in ϑ ; notice that the acyclicity of G_{ϑ} follows from the fact that the branch ϑ is open and therefore it cannot contain any membership cycle;

Completeness of \mathfrak{T}_{MLSS}

R_{ϑ}: a *realization* of **G**_{ϑ} relative to **C**'_{ϑ}, **T**'_{ϑ} and to *pairwise distinct* sets **u**_{*c*}, for **c** \in **C**'_{ϑ}, each having cardinality *no less* than $|C'_{\vartheta} \cup T'_{\vartheta}|$, defined by

$$\begin{array}{ll} \boldsymbol{R}_{\vartheta}\boldsymbol{t} &=_{_{\mathrm{Def}}} & \{\boldsymbol{R}_{\vartheta}\boldsymbol{s}:\boldsymbol{s}\in\boldsymbol{T}_{\vartheta}^{\prime}\cup\boldsymbol{C}_{\vartheta}^{\prime}\mid\boldsymbol{s}\widehat{\in}\boldsymbol{t}\}\,, & \text{for }\boldsymbol{t}\text{ in }\boldsymbol{T}_{\vartheta}^{\prime}\\ \boldsymbol{R}_{\vartheta}\boldsymbol{c} &=_{_{\mathrm{Def}}} & \{\boldsymbol{R}_{\vartheta}\boldsymbol{s}:\boldsymbol{s}\in\boldsymbol{T}_{\vartheta}^{\prime}\cup\boldsymbol{C}_{\vartheta}^{\prime}\mid\boldsymbol{s}\widehat{\in}\boldsymbol{c}\}\cup\{\boldsymbol{u}_{\boldsymbol{c}}\}\,, & \text{for }\boldsymbol{c}\text{ in }\boldsymbol{C}_{\vartheta}^{\prime}\\ & & \text{for }\boldsymbol{c}\text{ in }\boldsymbol{C}_{\vartheta}^{\prime}\end{array}$$

so that $\mathbf{u}_{c} \neq \mathbf{R}_{\vartheta} t$, for every $c \in C'_{\vartheta}$ and $t \in T'_{\vartheta} \cup C'_{\vartheta}$.

Completeness of \mathcal{T}_{MLSS}

The following lemma can be proved by induction on the length of ϑ .

Lemma

If $\mathbf{c} \in \mathbf{C}'_{\vartheta}$ then there can be no term \mathbf{t} in $\mathbf{T}_{\varphi} \cup \mathbf{C}_{\vartheta}$ such that either $\mathbf{c} = \mathbf{t}$, or $\mathbf{t} = \mathbf{c}$, or $\mathbf{t} \in \mathbf{c}$ occurs in ϑ .

Exercise

Prove the preceding lemma.

In order to show that the realization R_{ϑ} satisfies ϑ , we begin by proving that it models correctly all literals in ϑ , at least in the case in which compound terms are not interpreted, i.e. they are treated as if they were just "complex names" for constant symbols.

Lemma

The following assertions hold: (i) if $\mathbf{s} \in \mathbf{t}$ occurs in ϑ , then $\mathbf{R}_{\vartheta}\mathbf{s} \in \mathbf{R}_{\vartheta}\mathbf{t}$; (ii) if $\mathbf{s} \notin \mathbf{t}$ occurs in ϑ , then $\mathbf{R}_{\vartheta}\mathbf{s} \notin \mathbf{R}_{\vartheta}\mathbf{t}$; (iii) if $\mathbf{t}_{1} = \mathbf{t}_{2}$ occurs in ϑ , then $\mathbf{R}_{\vartheta}\mathbf{t}_{1} = \mathbf{R}_{\vartheta}\mathbf{t}_{2}$; (iv) if $\mathbf{t}_{1} \neq \mathbf{t}_{2}$ occurs in ϑ , then $\mathbf{R}_{\vartheta}\mathbf{t}_{1} \neq \mathbf{R}_{\vartheta}\mathbf{t}_{2}$.

Completeness of \mathfrak{T}_{MLSS}

Proof of (i) and (iii)

Assertion (i) follows directly from the definition of *R*_θ.

It is more convenient to prove (iii) and (iv) before (ii).

• Concerning (iii), let $t_1 = t_2$ be in ϑ . By the preceding lemma, $t_1, t_2 \in T'_{\vartheta}$. If, by contradiction, $R_{\vartheta}t_1 \neq R_{\vartheta}t_2$, then without loss of generality we can assume that there exists a term *s* such that the literal $s \in t_1$ is in ϑ and $R_{\vartheta}s \notin R_{\vartheta}t_2$. But ϑ is linearly saturated, thus it must also contain the literal $s \in t_2$, so that $R_{\vartheta}s \in R_{\vartheta}t_2$, a contradiction.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Proof of (iv)

• To show that (iv) holds, let $t_1 \neq t_2$ be in ϑ . Let us first assume that $t_1 \in C'_{\vartheta}$. Then, $u_{t_1} \in R_{\vartheta}t_1$. Since ϑ is open, it follows that the terms t_1 and t_2 are distinct, so that $u_{t_1} \notin R_{\vartheta}t_2$, which in turn yields $R_{\vartheta}t_1 \neq R_{\vartheta}t_2$. Analogous conclusion can be reached in the case in which $t_2 \in C'_{\vartheta}$. To conclude the proof of (iv), it remains to show that the set

 $\Delta_{\vartheta} =_{_{\mathrm{Def}}} \{ (\tau_1, \tau_2) : \tau_1, \tau_2 \in T'_{\vartheta} \mid \tau_1 \neq \tau_2 \text{ is in } \vartheta \text{ and } R_{\vartheta} t_1 = R_{\vartheta} t_2 \}$

is empty.

Let us assume, by way of contradiction, that $\Delta_{\vartheta} \neq \emptyset$ and put

 $h_{\vartheta}(\tau_1, \tau_2) =_{\text{Def}} \min\{height(\tau_1), height(\tau_2)\},\$

for $\tau_1, \tau_2 \in T'_{\vartheta}$.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Proof of (iv) - cntd

• Let $(t_1, t_2) \in \Delta_{\vartheta}$ be such that

$$h_{\vartheta}(t_1, t_2) = \min_{(\tau_1, \tau_2) \in \Delta_{\vartheta}} h(\tau_1, \tau_2).$$

It is easy to see that since the tableau T is restricted, there must exist two terms $t'_1, t'_2 \in T_{\varphi}$ such that $R_{\vartheta}t'_i = R_{\vartheta}t_i$, for i = 1, 2, and the literal $t'_1 \neq t'_2$ occurs in ϑ . Hence, $(t'_1, t'_2) \in \Delta_{\vartheta}$ and, by (ii) of the *Realizations' Lemma*, $h_{\vartheta}(t_1',t_2')=h_{\vartheta}(t_1,t_2).$ Due to the fact that the literal $t'_1 \neq t'_2$ is a fulfilled item of ϑ , we can assume without loss of generality that there exists a term s_2 such that both the literals $s_2 \in t'_2$ and $s_2 \notin t'_1$ occur in ϑ . Hence, $R_{\vartheta}s_2 \in R_{\vartheta}t'_2 = R_{\vartheta}t'_1$, so that, since ϑ is open, there must exist a term s1 such that the literal $s_1 \in t'_1$ is in ϑ and $R_{\vartheta}s_1 = R_{\vartheta}s_2$.

Completeness of \mathcal{T}_{MLSS}

Proof of (iv) - cntd

As ϑ is linearly saturated and open, it must contain the literal s₁ ≠ s₂ and we must also have that s₁, s₂ ∈ T'_ϑ. Thus, (s₁, s₂) ∈ Δ_ϑ, which is a contradiction, as by (iii) of the *Realizations' Lemma* we have h_ϑ(s₁, s₂) < h_ϑ(t₁, t₂).

Completeness of \mathfrak{T}_{MLSS}

Proof of (ii)

• Finally, let us show that (ii) holds. Let the literal $t_1 \notin t_2$ be in ϑ , but assume by contradiction that $R_\vartheta t_1 \in R_\vartheta t_2$. Hence, there must exist a term **s** such that the literal $s \in t_2$ is in ϑ and $R_\vartheta s = R_\vartheta t_1$. Owing to the fact that ϑ is linearly saturated, ϑ must also contain the literal $s \neq t_1$, so that, by (iv) above, $R_\vartheta s \neq R_\vartheta t_1$, which is a contradiction.

Completeness of \mathfrak{T}_{MLSS}

Next we will show that even set operators are correctly modeled by R_{ϑ} .

Lemma

Every compound set term **s** occurring in ϑ is modeled correctly by the realization \mathbf{R}_{ϑ} , namely if **s** has the form $\mathbf{t}_1 \star \mathbf{t}_2$, with $\star \in \{\cup, \cap, \setminus\}$, then $\mathbf{R}_{\vartheta}\mathbf{s} = \mathbf{R}_{\vartheta}\mathbf{t}_1 \star \mathbf{R}_{\vartheta}\mathbf{t}_2$, whereas if **s** has the form $\{\mathbf{t}\}$, then $\mathbf{R}_{\vartheta}\mathbf{s} = \{\mathbf{R}_{\vartheta}\mathbf{t}\}$. In addition, $\mathbf{R}_{\vartheta}\emptyset = \emptyset$, provided that the constant \emptyset occurs in ϑ .

Completeness of \mathcal{T}_{MLSS}

Proof

Plainly, since ϑ is open, no sentence of the form $\mathbf{s} \in \emptyset$ can occur in ϑ , so that $\mathbf{R}_{\vartheta} \emptyset = \emptyset$, provided that the constant \emptyset occurs in ϑ .

Concerning compound terms t, we proceed by induction on the number of set operators occurring in t. Accordingly, let us assume that the realization R_{ϑ} models correctly all terms in ϑ with fewer than k set operators, with $k \ge 1$, and let t be a term in ϑ containing exactly k operators.

We will consider only the case in which t has the form $t_1 \cap t_2$ and leave the remaining cases to the reader as an exercise. To begin with, notice that, by restrictions **R1** and **R3**, it follows that $t_1, t_2 \in T_{\varphi}$.

Completeness of \mathfrak{T}_{MLSS}

Proof (cntd)

Let $\mathbf{e} \in R_{\vartheta}(t_1 \cap t_2)$. Then there exists a term s such that $R_{\vartheta}s = \mathbf{e}$ and the literal $s \in t_1 \cap t_2$ occurs in ϑ . Since ϑ is saturated, both literals $s \in t_1$ and $s \in t_2$ must also occur in ϑ , so that, by property (*i*) of the preceding lemma, $\mathbf{e} = R_{\vartheta}s \in R_{\vartheta}t_1 \cap R_{\vartheta}t_2$, which in turn implies $R_{\vartheta}(t_1 \cap t_2) \subseteq R_{\vartheta}t_1 \cap R_{\vartheta}t_2$.

Completeness of \mathfrak{T}_{MLSS}

Proof (cntd)

Conversely, let $\mathbf{e} \in R_{\vartheta}t_1 \cap R_{\vartheta}t_2$. Then, there must exist two terms \mathbf{s}_1 and \mathbf{s}_2 such that $R_{\vartheta}\mathbf{s}_1 = R_{\vartheta}\mathbf{s}_2 = \mathbf{e}$ and the literals $\mathbf{s}_1 \in t_1, \mathbf{s}_2 \in t_2$ occur in ϑ . By saturation, either $\mathbf{s}_1 \in t_1 \cap t_2$ or $\mathbf{s}_1 \notin t_1 \cap t_2$ must occur in ϑ . In the latter case, $\mathbf{s}_1 \notin t_2$, and therefore also $\mathbf{s}_2 \neq \mathbf{s}_1$, must occur in ϑ , so that, by property (iv) of the preceding lemma, we have $R_{\vartheta}\mathbf{s}_2 \neq R_{\vartheta}\mathbf{s}_1$, a contradiction. Hence, the literal $\mathbf{s}_1 \in t_1 \cap t_2$ must occur in ϑ , so that $\mathbf{e} = R_{\vartheta}\mathbf{s}_1 \in R_{\vartheta}(t_1 \cap t_2)$. Thus, $R_{\vartheta}t_1 \cap R_{\vartheta}t_2 \subseteq R_{\vartheta}(t_1 \cap t_2)$ which, together with the inverse inclusion established earlier, yields $R_{\vartheta}(t_1 \cap t_2) = R_{\vartheta}t_1 \cap R_{\vartheta}t_2$.

Exercise

Complete the proof of the lemma.

Completeness of \mathcal{T}_{MLSS}

So far we have shown that the realization R_{ϑ} is a set model for all literals in ϑ . By induction, it can easily be shown that compound sentences in ϑ are also satisfied by R_{ϑ} , yielding:

Lemma

Let **T** be an open and s-restricted \mathfrak{T}_{MLSS} -tableau for an MLSS sentence. Then any open branch of **T** is satisfiable.

Exercise

Complete the proof of the lemma.

Thus, in view of the saturation process $\boldsymbol{\mathfrak{T}}\mbox{-}Saturate$ described earlier, we have

Theorem (Completeness)

The tableau calculus \mathfrak{T}_{MLSS} for MLSS is complete.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

The results discussed above imply immediately that the following is a decision procedure for **MLSS**:

```
procedure MLSS-decision test(\varphi);
   - let T be the initial tableau for \neg \varphi;
   T := \mathfrak{T}-Saturate(T);
   if T is closed then
       return "T is a \mathfrak{T}_{MLSS}-tableau proof for \varphi";
   else
       - let \vartheta be an open branch of T and let R_{\vartheta} be a realization
         associated with \vartheta:
       return "R_{\theta} is a set model which falsifies \varphi";
   end if:
end MLSS-decision test:
```


Completeness of \mathfrak{T}_{MLSS}

Remark

Notice that the \mathfrak{T}_{MLSS} -tableau proof in our preceding example could be the possible output of the MLSS-decision test when applied to the MLSS-sentence $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\}).$

In conclusion we have:

Theorem (Decidability of MLSS)

The collection of *MLSS*-sentences has a solvable decision problem.

