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A Decidable Tableau Calculus for MLSS

We present a fast tableau-based decision procedure for the
ground set-theoretic fragment Multi-Level Syllogistic with
Singleton (in short MLSS), a quantifier-free language with the
basic Boolean set operators and the singleton operator.
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Syntax and semantics of MLSS

The language of MLSS
The language of the fragment MLSS of set theory consists of

a denumerable infinity of uninterpreted set constants
c0, c1, . . .;
the interpreted set constant ∅ (empty set),
the operator symbols ∪ (union), ∩ (intersection), \ (set
difference) and { }-rule (singleton),
the predicate symbols ∈ (membership) and = (equality),
and
propositional connectives.
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Syntax and semantics of MLSS

Terms of MLSS
Set terms of MLSS are defined in the standard recursive way,
namely

any set constant is an MLSS-term;
if t1 and t2 are MLSS-terms, so are
t1 ∪ t2, t1 ∩ t2, t1 \ t2, and {t1}.

Sentences of MLSS
Finally, MLSS-sentences are just propositional combinations of
atoms of the form t1 ∈ t2 and t1 = t2, with t1 and t2 being any
set terms.
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Syntax and semantics of MLSS

The intended semantics of MLSS over the standard von
Neumann universe V is defined as follows.

A (standard) assignment over a collection V of variables is
any function M from V into V.

Clearly, any set-theoretic formula ϕ all of whose variables
belong to V becomes either true or false when each free
occurrence x gets replaced by Mx within ϕ and set-theoretic
operators and relators are interpreted according to their
standard meaning.

An assignment M which makes ϕ true is said to be a
model of ϕ.
A formula ϕ is said to be satisfiable if it has a model.
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Syntax and semantics of MLSS

Remarks
Notice that the relator ⊆ and the enumerative set-former
operator { , , . . . , } are easily expressible in MLSS.
Indeed, s ⊆ t is equivalent to s ∪ t = t and the term
{t1, t2, . . . , tk} can be rewritten as {t1} ∪ . . . ∪ {tk}.

We will make use of the abbreviations s /∈ t and s 6= t to
denote the literals ¬(s ∈ t) and ¬(s = t), respectively.
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Syntax and semantics of MLSS

The decision problem
The (satisfiability) decision problem for a collection C of
set-theoretic formulas is the problem of establishing whether or
not ϕ has a model, for any given formula ϕ in C.

To solve this problem positively, one must design an algorithm
that can test any ϕ in C for satisfiability. Of course, for a specific
C, such an algorithm may not exist.
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A tableau calculus for MLSS

We present a tableau calculus for MLSS, denoted TMLSS,
which is based upon the system KE.

The linear rules of TMLSS, namely those rules which do not
cause branch splittings, are listed below. Note that the index i
in the ∪- and ∩-rules can assume the values 1 and 2, whereas
` in the =-rules stands for any MLSS literal.



A Decidable Tableau Calculus for MLSS

A tableau calculus for MLSS

prop
rules: α

α1

α

α2

β
βc

1

β2

β
βc

2

β1

∪-rules:

s ∈ t1 ∪ t2
s /∈ ti

s ∈ t3−i

s /∈ t1 ∪ t2

s /∈ ti

s ∈ ti
s ∈ t1 ∪ t2

s /∈ t1
s /∈ t2

s /∈ t1 ∪ t2

∩-rules:

s /∈ t1 ∩ t2
s ∈ ti

s /∈ t3−i

s ∈ t1 ∩ t2

s ∈ ti

s /∈ ti
s /∈ t1 ∩ t2

s ∈ t1
s ∈ t2

s ∈ t1 ∩ t2

Table: TMLSS-linear rules (part a)
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A tableau calculus for MLSS

\-rules:

s /∈ t1 \ t2
s ∈ t1

s ∈ t2

s ∈ t1 \ t2

s ∈ t1

s /∈ t1

s /∈ t1 \ t2

s ∈ t1
s /∈ t2

s ∈ t1 \ t2

s /∈ t1 \ t2
s /∈ t2

s /∈ t1

s ∈ t1 \ t2

s /∈ t2

s ∈ t2

s /∈ t1 \ t2

{ }-rules:
s ∈ {t1}
s = t1

s /∈ {t1}
s 6= t1 t1 ∈ {t1}

=-rules:

t1 = t2
`

`t1
t2

t1 = t2
`

`t2
t1

s ∈ t
s′ /∈ t
s 6= s′

Table: TMLSS-linear rules (part b)
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A tableau calculus for MLSS

The branching rules of TMLSS are listed next. Note that rules
(β1), (β2), and (∈) are cut rules, whereas rule (ext) is not. In
particular, in rule (ext), the symbol c denotes a new set
constant, one not already occurring in the branch to which the
rule is applied.
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A tableau calculus for MLSS

β

β1 βc
1

(β1)
β

β2 βc
2

(β2)

s ∈ t s /∈ t
(∈) t1 6= t2

c ∈ t1 c /∈ t1
c /∈ t2 c ∈ t2

(ext)

Table: TMLSS-branching rules

Remark
In rule (ext), c stands for a new uninterpreted set constant.
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A tableau calculus for MLSS

Next we define how to construct TMLSS-tableaux.

Definition
Let ϕ be an MLSS-sentence. The initial TMLSS-tableau for ϕ is
the single-node tree whose root is labeled by ϕ.
An TMLSS-tableau for ϕ is a tableau labeled with
MLSS-sentences, which can be constructed from the initial
tableau for ϕ by a finite number of applications of the rules of
TMLSS.
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A tableau calculus for MLSS

Closure conditions must take into account also the semantics of
set theory, as in the following definition.

Definition
A branch of a TMLSS-tableau is closed if it contains either

two complementary sentences ψ and ¬ψ, or
a finite membership cycle of the form
t0 ∈ t1 ∈ . . . ∈ tn ∈ t0, or
a literal of the form t 6= t , or
a literal of the form t ∈ ∅.

A tableau is closed if all its branches are closed.
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A tableau calculus for MLSS

Tableau proofs and refutations are defined in the standard way.

Definition

A TMLSS-tableau proof for an MLSS-sentence ϕ is any closed
TMLSS-tableau for ¬ϕ.

A TMLSS-tableau refutation for ϕ is any closed TMLSS-tableau
for ϕ.

Our next task is to show that the tableau calculus TMLSS
captures the semantics of MLSS exactly, namely it is both
sound and complete. In fact, completeness will be proved
under some restrictions which will render the calculus suitable
for effective use as a decision procedure for MLSS.
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Soundness of the tableaux calculus TMLSS

Soundness of the tableau calculus TMLSS can easily be proved
by showing that
(a) at least one of the extensions of any satisfiable branch is

satisfiable, and
(b) no closed branch is satisfiable,
where a branch ϑ of a TMLSS-tableau is said to be satisfiable it
there exists a set model which makes true all sentences in ϑ.

Property (b) follows by observing that
all closure conditions are unsatisfiable in the standard von
Neumann universe.
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Soundness of the tableaux calculus TMLSS

Concerning (a), for the sake of simplicity we will only consider
the case in which a satisfiable branch ϑ is extended by an
application of the branching rule (ext), with the literal t1 6= t2 as
premiss, using the set constant c (not occurring in ϑ).
Let ϑ1 and ϑ2 be the two branches which extend ϑ and let M
be a set model satisfying ϑ. Since Mt1 6= Mt2, by extensionality
there exists a set e which belongs to the symmetric difference
of Mt1 and Mt2.
Let M ′ be the assignment such that M ′c = e and otherwise
takes the same values as M . Since the set constant c does not
occur in any sentence in ϑ, it is plain that M ′ must satisfy either
ϑ1 or ϑ2.

Other cases can be treated similarly. Thus we have:

Theorem (Soundness)
The tableau calculus TMLSS for MLSS is sound.
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Soundness of the tableaux calculus TMLSS

Exercise
Complete the proof of soundness of the tableau calculus
TMLSS.
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Completeness of TMLSS

Some of the rules of the tableau calculus TMLSS, if not suitably
restricted, can cause a combinatorial explosion of the number
of branches in an attempt to find a closed tableau for a given
MLSS-sentence.
This is the case, for instance, for the linear rules

s ∈ ti
s ∈ t1 ∪ t2

s /∈ ti
s /∈ t1 ∩ t2

s /∈ t1

s /∈ t1 \ t2 t1 ∈ {t1}

which can cause the introduction of an unbounded number of
new terms.
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Completeness of TMLSS

Hence, some restrictions need to be imposed on rule
applicability.
The following is a quite strong restriction which completely
takes care of the first problem outlined above:

R1. during the construction of a TMLSS-tableau T for an
MLSS-sentence ϕ, no new compound set term can be
introduced in T by any linear or branching rule.
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Completeness of TMLSS

To further optimize our tableau system TMLSS, we will impose
some restrictions on the applicability of the branching rules (∈)
and (ext).
It is convenient to introduce the following definition:

Definition
Let T be an TMLSS-tableau for ϕ. An unfulfilled item of a branch
ϑ of T is either

a sentence β in ϑ such that none of its components β1 and
β2 occurs in ϑ;
or
a literal t1 6= t2 in ϑ such that
(b1) t1 and t2 occur in ϕ; and
(b2) there exists no term s such that the branch ϑ contains both

s ∈ ti and s /∈ t3−i , for some i ∈ {1, 2}; ./.
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Completeness of TMLSS

Definition (cntd)
or

an ordered pair (s, t) of terms occurring in ϑ such that
(c1) neither s ∈ t nor s /∈ t is in ϑ; and
(c2) for some terms t ′ and t ′′ in ϕ, either

(c2.i) ϑ contains the literal s ∈ t ∪ t ′, or
(c2.ii) t has the form t ′ \ t ′′ and s ∈ t ′ occurs in ϑ, or

(c2.iii) t has the form t ′ ∩ t ′′ and s ∈ t ′ occurs in ϑ.

A branch ϑ is fulfilled if it has no unfulfilled item.
A tableau is fulfilled if all its branches are fulfilled.

s ∈ t ∪ t ′

s ∈ t s /∈ t
(c2.i) s ∈ t ′

s ∈ t ′ \ t ′′ s /∈ t ′ \ t ′′ (c2.ii)

s ∈ t ′

s ∈ t ′ ∩ t ′′ s /∈ t ′ ∩ t ′′ (c2.iii)
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Completeness of TMLSS

The idea is that only branching rules which cause a previously
unfulfilled item to become fulfilled are allowed. More precisely,
we impose the following further restriction:

R2. during the construction of a TMLSS-tableau T for an
MLSS-sentence ϕ, the branching rules can be used to
extend a branch ϑ of T only if they are applied to unfulfilled
items of ϑ, where, by convention, when the cut rule (∈) is
applied with the sentences s ∈ t and s /∈ t , we say that it
has been applied to the ordered pair (s, t).
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Completeness of TMLSS

A further optimization can be achieved by imposing the
following restriction on the first two =-rules:

R3. during the construction of a TMLSS-tableau T for an
MLSS-sentence ϕ, in the first two =-rules the substituted
term is restricted to being a top-level term of the literal `.

Thus, for instance, restriction R3 allows the substitution only of
the terms t1 and t2 in the literal t1 /∈ t2 by means of a =-rule.

Definition
A TMLSS-tableau is restricted if, during its construction, the
above restrictions R1 through R3 have been observed.
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Completeness of TMLSS

Example

1: ¬({c1} = c1 ∪ c2 → (c1 = ∅ ∧ c2 = {c1}))

2: {c1} = c1 ∪ c2

3: ¬(c1 = ∅ ∧ c2 = {c1})

4: c1 ∈ {c1}

5: c1 ∈ c1 ∪ c2

6: c1 ∈ c1

⊥
7: c1 /∈ c1

8: c1 ∈ c2

...

Table 1: A TMLSS-tableau proof of
{c1} = c1 ∪ c2 → (c1 = ∅ ∧ c2 = {c1})

1
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Completeness of TMLSS

Example (cntd)

7: c1 /∈ c1

8: c1 ∈ c2

9: c1 6= ∅

10: c3 ∈ c1

11: c3 ∈ c1 ∪ c2

12: c3 ∈ {c1}

13: c3 = c1

14: c1 ∈ c1

⊥

15: c1 = ∅

16: c2 6= {c1}

17: c3 ∈ c2

18: c3 /∈ {c1}

19: c3 ∈ c1 ∪ c2

20: c3 ∈ {c1}
⊥

21: c3 /∈ c2

22: c3 ∈ {c1}

23: c3 = c1

24: c1 /∈ c2

⊥

Table 1: A TMLSS-tableau proof of
{c1} = c1 ∪ c2 → (c1 = ∅ ∧ c2 = {c1}) (cntd)

1
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Completeness of TMLSS

Definition

A branch of a TMLSS-tableau is
linearly saturated, if no new sentence can be added to it by
any application of a linear rule complying with restrictions
R1 and R3;
saturated, if it is linearly saturated and it does not contain
any unfulfilled item.

Likewise, a TMLSS-tableau is
linearly saturated, if all its branches are linearly saturated;
saturated, if all its branches are saturated.

A TMLSS-tableau is s-restricted if it is restricted and saturated.
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Completeness of TMLSS

Completeness of the tableau calculus TMLSS will be proved
by exhibiting a saturation process which, given an
MLSS-sentence ϕ, constructs a restricted TMLSS-tableau
for ϕ which is either closed or saturated; and
by showing that any open and s-restricted TMLSS-tableau
is satisfiable, namely it has at least one satisfiable branch.
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Completeness of TMLSS

Let us consider the following procedure for the construction of
restricted TMLSS-tableaux, based on the procedure
KE-Saturate

procedure T-Saturate( ϕ );
- let T be the initial tableau for ϕ;
repeat

- linearly saturate T;
if T has an unfulfilled branch ϑ then

- select an unfulfilled item χ of ϑ;
- apply the appropriate branching rule for χ on ϑ;

end if;
until T is either closed or saturated;
return T;

end T-Saturate;
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Completeness of TMLSS

Remark
We will assume that the linear saturation phase which takes
place just at the beginning of the repeat-until block is regular,
i.e., it never introduces on a branch a literal which already
occurs in it.
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Completeness of TMLSS

Termination
To prove that procedure T-Saturate terminates, by König’s
lemma it is enough to show that at any time during its
execution for the construction of a tableau T for ϕ, each
branch of T has bounded length.
Accordingly, let ϑ be a branch of T and let Tϕ and Tϑ be
the collections of set terms occurring in ϕ and ϑ,
respectively.
In view of restriction R1, the only new terms introduced in
ϑ are the set constants added by the branching rule (ext).
Since, by restriction R2, rule (ext) can be applied on ϑ at
most |Tϕ|2 times, it follows that |Tϑ| ≤ |Tϕ| + |Tϕ|2.
Hence, the number of literals in ϑ and, in turn the length of
ϑ, can easily be bounded in terms of |Tϕ|.
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Completeness of TMLSS

Let G = 〈N, ∈̂〉 be a directed acyclic graph (dag, for short), let
{V , T} be a partition of N , and let {ut : t ∈ T} be a family of
sets indexed over T .

Edges can form any acyclic dyadic relation on N , but we denote
their collection as ∈̂ to suggest that they will be interpreted as
set-membership constraints.



A Decidable Tableau Calculus for MLSS

Completeness of TMLSS

Since the graph G is acyclic, the following definitions are well
posed:

Definition (REALIZATIONS)

The REALIZATION of G = 〈N, ∈̂〉 relative to {ut : t ∈ T} and to
V , T is the assignment R recursively defined over N = V ∪ T
as follows:

Rx =Def {Rz : z ∈ V ∪ T | z∈̂x} , for x in V ;
Rt =Def {Rz : z ∈ V ∪ T | z∈̂t} ∪ {ut} , for t in T .

The HEIGHT of a v in N is

height(v) =Def


0 if y /̂∈ v for any y in N ,

max{height(y) + 1 : y ∈ N | y∈̂v}
otherwise.
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Completeness of TMLSS

Lemma (Realizations’ Lemma)

Let G = 〈V ∪ T , ∈̂〉 be a dag with V ∩ T = ∅. Also, let
{ut : t ∈ T} be a given family of U -sets, and let R be the
realization of G relative to {ut : t ∈ T} and to V , T .
Assume that

(a) ut 6= ud , for all distinct t, d in T ;
(b) ut 6= Rv , for all t in T and all v in V ∪ T .

Then:
(i) Rt 6= Rt ′, for all distinct t, t ′ ∈ T ;
(ii) if Rx = Ry , then height(x) = height(y), for x, y in V ∪ T ;

(iii) if Rx ∈ Ry , then height(x) < height(y), for x, y in V ∪ T .
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Completeness of TMLSS

Proof of the Realizations’ Lemma
(i) follows immediately from (a) and (b) above.

Concerning (ii), we can proceed by induction on

max{height(x), height(y)} .

If max{height(x), height(y)} = 0, then (ii) is trivially true.
As for the inductive step, notice that if Rx = Ry then for each
w∈̂x there exists a v∈̂y such that Rw = Rv , and
symmetrically.
Therefore,

height(x) = max{height(w) + 1 : w∈̂x}
= max{height(v) + 1 : v∈̂y} = height(y) .

./.
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Completeness of TMLSS

Proof of the Realizations’ Lemma (cntd)

As for (iii), let Rx ∈ Ry . Then Rx = Rz, for some z∈̂y .
Hence, height(x) = height(z) < height(y).
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Completeness of TMLSS

Let T be an open and s-restricted TMLSS-tableau for ϕ and let
ϑ be an open branch of T. It is convenient to associate with ϑ
and ϕ the following objects:

Tϕ: the collection of all terms occurring in ϕ;
Cϑ: the collection of the new set constants added to ϑ, namely

those constants not occurring in ϕ;
C′

ϑ: the collection of the set constants c in Cϑ such that for no
term t ∈ Tϕ either c = t or t = c occurs in ϑ;

T ′
ϑ: the set Tϕ ∪ (Cϑ \ C′

ϑ);
Gϑ: the directed acyclic graph 〈C′

ϑ ∪ T ′
ϑ, ∈̂〉, where s∈̂t iff the

literal s ∈ t occurs in ϑ; notice that the acyclicity of Gϑ

follows from the fact that the branch ϑ is open and
therefore it cannot contain any membership cycle;

./.
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Completeness of TMLSS

Rϑ: a realization of Gϑ relative to C′
ϑ, T ′

ϑ and to pairwise
distinct sets uc, for c ∈ C′

ϑ, each having cardinality no less
than |C′

ϑ ∪ T ′
ϑ|, defined by

Rϑt =Def {Rϑs : s ∈ T ′
ϑ ∪ C′

ϑ | s∈̂t} , for t in T ′
ϑ

Rϑc =Def {Rϑs : s ∈ T ′
ϑ ∪ C′

ϑ | s∈̂c} ∪ {uc} ,
for c in C′

ϑ

so that uc 6= Rϑt , for every c ∈ C′
ϑ and t ∈ T ′

ϑ ∪ C′
ϑ.
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Completeness of TMLSS

The following lemma can be proved by induction on the length
of ϑ.

Lemma
If c ∈ C′

ϑ then there can be no term t in Tϕ ∪ Cϑ such that
either c = t , or t = c, or t ∈ c occurs in ϑ.

Exercise
Prove the preceding lemma.



A Decidable Tableau Calculus for MLSS

Completeness of TMLSS

In order to show that the realization Rϑ satisfies ϑ, we begin by
proving that it models correctly all literals in ϑ, at least in the
case in which compound terms are not interpreted, i.e. they are
treated as if they were just “complex names” for constant
symbols.

Lemma
The following assertions hold:

(i) if s ∈ t occurs in ϑ, then Rϑs ∈ Rϑt ;
(ii) if s /∈ t occurs in ϑ, then Rϑs /∈ Rϑt ;
(iii) if t1 = t2 occurs in ϑ, then Rϑt1 = Rϑt2;
(iv) if t1 6= t2 occurs in ϑ, then Rϑt1 6= Rϑt2.
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Completeness of TMLSS

Proof of (i) and (iii)
Assertion (i) follows directly from the definition of Rϑ.

It is more convenient to prove (iii) and (iv) before (ii).
Concerning (iii), let t1 = t2 be in ϑ. By the preceding
lemma, t1, t2 ∈ T ′

ϑ. If, by contradiction, Rϑt1 6= Rϑt2, then
without loss of generality we can assume that there exists a
term s such that the literal s ∈ t1 is in ϑ and Rϑs /∈ Rϑt2.
But ϑ is linearly saturated, thus it must also contain the
literal s ∈ t2, so that Rϑs ∈ Rϑt2, a contradiction.
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Completeness of TMLSS

Proof of (iv)
To show that (iv) holds, let t1 6= t2 be in ϑ. Let us first
assume that t1 ∈ C′

ϑ. Then, ut1 ∈ Rϑt1. Since ϑ is open, it
follows that the terms t1 and t2 are distinct, so that
ut1 /∈ Rϑt2, which in turn yields Rϑt1 6= Rϑt2. Analogous
conclusion can be reached in the case in which t2 ∈ C′

ϑ.
To conclude the proof of (iv), it remains to show that the set

∆ϑ=Def{(τ1, τ2) : τ1, τ2 ∈ T ′
ϑ |τ1 6= τ2 is in ϑ and Rϑt1 = Rϑt2}

is empty.
Let us assume, by way of contradiction, that ∆ϑ 6= ∅ and
put

hϑ(τ1, τ2) =Def min{height(τ1), height(τ2)} ,

for τ1, τ2 ∈ T ′
ϑ. ./.
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Completeness of TMLSS

Proof of (iv) - cntd
Let (t1, t2) ∈ ∆ϑ be such that

hϑ(t1, t2) = min
(τ1,τ2)∈∆ϑ

h(τ1, τ2) .

It is easy to see that since the tableau T is restricted, there
must exist two terms t ′

1, t
′
2 ∈ Tϕ such that Rϑt ′

i = Rϑti , for
i = 1, 2, and the literal t ′

1 6= t ′
2 occurs in ϑ. Hence,

(t ′
1, t

′
2) ∈ ∆ϑ and, by (ii) of the Realizations’ Lemma,

hϑ(t ′
1, t

′
2) = hϑ(t1, t2).

Due to the fact that the literal t ′
1 6= t ′

2 is a fulfilled item of ϑ,
we can assume without loss of generality that there exists
a term s2 such that both the literals s2 ∈ t ′

2 and s2 /∈ t ′
1

occur in ϑ. Hence, Rϑs2 ∈ Rϑt ′
2 = Rϑt ′

1, so that, since ϑ
is open, there must exist a term s1 such that the literal
s1 ∈ t ′

1 is in ϑ and Rϑs1 = Rϑs2. ./.
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Completeness of TMLSS

Proof of (iv) - cntd
As ϑ is linearly saturated and open, it must contain the
literal s1 6= s2 and we must also have that s1, s2 ∈ T ′

ϑ.
Thus, (s1, s2) ∈ ∆ϑ, which is a contradiction, as by (iii) of
the Realizations’ Lemma we have hϑ(s1, s2) < hϑ(t1, t2).
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Completeness of TMLSS

Proof of (ii)
Finally, let us show that (ii) holds. Let the literal t1 /∈ t2 be
in ϑ, but assume by contradiction that Rϑt1 ∈ Rϑt2.
Hence, there must exist a term s such that the literal s ∈ t2
is in ϑ and Rϑs = Rϑt1. Owing to the fact that ϑ is linearly
saturated, ϑ must also contain the literal s 6= t1, so that, by
(iv) above, Rϑs 6= Rϑt1, which is a contradiction.
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Next we will show that even set operators are correctly modeled
by Rϑ.

Lemma
Every compound set term s occurring in ϑ is modeled correctly
by the realization Rϑ, namely if s has the form t1 ? t2, with
? ∈ {∪,∩, \}, then Rϑs = Rϑt1 ? Rϑt2, whereas if s has the
form {t}, then Rϑs = {Rϑt}.
In addition, Rϑ∅ = ∅, provided that the constant ∅ occurs in ϑ.
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Proof
Plainly, since ϑ is open, no sentence of the form s ∈ ∅ can
occur in ϑ, so that Rϑ∅ = ∅, provided that the constant ∅
occurs in ϑ.
Concerning compound terms t , we proceed by induction on the
number of set operators occurring in t . Accordingly, let us
assume that the realization Rϑ models correctly all terms in ϑ
with fewer than k set operators, with k ≥ 1, and let t be a term
in ϑ containing exactly k operators.

We will consider only the case in which t has the form t1 ∩ t2
and leave the remaining cases to the reader as an exercise. To
begin with, notice that, by restrictions R1 and R3, it follows that
t1, t2 ∈ Tϕ. ./.
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Proof (cntd)
Let e ∈ Rϑ(t1 ∩ t2). Then there exists a term s such that
Rϑs = e and the literal s ∈ t1 ∩ t2 occurs in ϑ. Since ϑ is
saturated, both literals s ∈ t1 and s ∈ t2 must also occur in ϑ,
so that, by property (i) of the preceding lemma,
e = Rϑs ∈ Rϑt1 ∩ Rϑt2, which in turn implies
Rϑ(t1 ∩ t2) ⊆ Rϑt1 ∩ Rϑt2. ./.
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Proof (cntd)
Conversely, let e ∈ Rϑt1 ∩ Rϑt2. Then, there must exist two
terms s1 and s2 such that Rϑs1 = Rϑs2 = e and the literals
s1 ∈ t1, s2 ∈ t2 occur in ϑ. By saturation, either s1 ∈ t1 ∩ t2 or
s1 /∈ t1 ∩ t2 must occur in ϑ. In the latter case, s1 /∈ t2, and
therefore also s2 6= s1, must occur in ϑ, so that, by property (iv)
of the preceding lemma, we have Rϑs2 6= Rϑs1, a
contradiction. Hence, the literal s1 ∈ t1 ∩ t2 must occur in ϑ, so
that e = Rϑs1 ∈ Rϑ(t1 ∩ t2). Thus, Rϑt1 ∩ Rϑt2 ⊆ Rϑ(t1 ∩ t2)
which, together with the inverse inclusion established earlier,
yields Rϑ(t1 ∩ t2) = Rϑt1 ∩ Rϑt2.

Exercise
Complete the proof of the lemma.
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So far we have shown that the realization Rϑ is a set model for
all literals in ϑ. By induction, it can easily be shown that
compound sentences in ϑ are also satisfied by Rϑ, yielding:

Lemma

Let T be an open and s-restricted TMLSS-tableau for an MLSS
sentence. Then any open branch of T is satisfiable.

Exercise
Complete the proof of the lemma.

Thus, in view of the saturation process T-Saturate described
earlier, we have

Theorem (Completeness)
The tableau calculus TMLSS for MLSS is complete.
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The results discussed above imply immediately that the
following is a decision procedure for MLSS:

procedure MLSS-decision test( ϕ );
- let T be the initial tableau for ¬ϕ;
T := T-Saturate(T);
if T is closed then

return “T is a TMLSS-tableau proof for ϕ”;
else

- let ϑ be an open branch of T and let Rϑ be a realization
associated with ϑ;

return “Rϑ is a set model which falsifies ϕ”;
end if;

end MLSS-decision test;
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Remark
Notice that the TMLSS-tableau proof in our preceding example
could be the possible output of the MLSS-decision test when
applied to the MLSS-sentence
{c1} = c1 ∪ c2 → (c1 = ∅ ∧ c2 = {c1}).

In conclusion we have:

Theorem (Decidability of MLSS)
The collection of MLSS-sentences has a solvable decision
problem.
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