A Decidable Tableau Calculus for MLSS

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
2:\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
3: \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \\
\perp \\
\text { 7: } c_{1} \notin c_{1} \\
8: c_{1} \in c_{2}
\end{gathered}
$$

Table 1: A $\mathfrak{T}_{\text {MLSs-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
\text { 2: }\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
\text { 3: } \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \\
\perp \\
\text { 7: } c_{1} \notin c_{1} \\
\text { 8: } c_{1} \in c_{2}
\end{gathered}
$$

Table 1: A $\mathfrak{T}_{\text {MLSS- }}$ tableau proof of $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$
φ_{2} and φ_{3} are obtained by an application of the α-rule to φ_{1}

Example

$$
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right)
$$

$$
\text { 2: }\left\{c_{1}\right\}=c_{1} \cup c_{2}
$$

$$
\text { 3: } \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)
$$

$$
\text { 4: } c_{1} \in\left\{c_{1}\right\}
$$

$$
\text { 6: } c_{1} \in c_{1}+c_{1}
$$

Table 1: A $\mathfrak{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$
φ_{4} is obtained by an application of the \{_\}-rule

$$
\overline{t_{1} \in\left\{t_{1}\right\}}
$$

under restriction R1

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
\text { 2: }\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
\text { 3: } \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \\
\perp \\
\text { 7: } c_{1} \notin c_{1} \\
\text { 8: } c_{1} \in c_{2}
\end{gathered}
$$

Table 1: A $\mathfrak{T}_{\text {MLSs-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$
φ_{5} is obtained from φ_{2} and φ_{4} by an application of the $=$-rule

$$
\begin{gathered}
t_{1}=t_{2} \\
\ell \\
\hline \ell_{t_{2}}^{t_{1}}
\end{gathered}
$$

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
\text { 2: }\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
\text { 3: } \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \quad \text { 7: } c_{1} \notin c_{1} \\
\perp \\
\text { 8: } c_{1} \in c_{2}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$

φ_{6} and φ_{7} are

 obtained from the (ϵ)-branching rule$$
\boldsymbol{s} \in \boldsymbol{t} \mid \boldsymbol{s} \notin \boldsymbol{t}
$$

applied to the pair (c_{1}, c_{1}), under restriction R2

Example

$$
\begin{gathered}
\text { 1: } \neg\left(\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)\right) \\
\text { 2: }\left\{c_{1}\right\}=c_{1} \cup c_{2} \\
\text { 3: } \neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right) \\
\text { 4: } c_{1} \in\left\{c_{1}\right\} \\
\text { 5: } c_{1} \in c_{1} \cup c_{2} \\
\text { 6: } c_{1} \in c_{1} \\
\perp \\
\text { 7: } c_{1} \notin c_{1} \\
\text { 8: } c_{1} \in c_{2} \\
\vdots
\end{gathered}
$$

Table 1: A $\mathfrak{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$
φ_{8} is obtained from φ_{5} and φ_{7} by an application of the U-rule

$$
\begin{gathered}
s \in t_{1} \cup t_{2} \\
s \notin t_{i} \\
s \in t_{3-i}
\end{gathered}
$$

A Decidable Tableau Calculus for MLSS

$0 \cdot$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

Table 1: A $\boldsymbol{T}_{\text {MLSS }}$-tableau proof of $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Example (cntd)

φ_{9} and φ_{15} are obtained from φ_{3} :
$\neg\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$ by an application of the $\beta 1$-rule

Table 1: A $\mathfrak{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Example (cntd)

φ_{10} is obtained from φ_{9} by an application of the following derived rule

$$
\frac{y \neq \emptyset}{c \in y}
$$

where c denotes a new set constant.

Table 1: A $\mathfrak{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)($ cntd $)$

Example (cntd)

φ_{11} is obtained from φ_{10} by an application of the \cup-rule

$$
\frac{s \in t_{i}}{s \in t_{1} \cup t_{2}}
$$

under restriction R1

Table 1: A $\mathfrak{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)($ (ntd)

Example (cntd)

φ_{12} is obtained from $\varphi_{2}:\left\{c_{1}\right\}=c_{1} \cup c_{2}$ and φ_{11} by an application of the =-rule

$$
\begin{gathered}
t_{1}=t_{2} \\
\ell \\
\frac{\ell_{t_{1}}^{t_{2}}}{}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

A Decidable Tableau Calculus for MLSS

$0 \bullet$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

φ_{13} is obtained from φ_{12} by an application of the \{-\}-rule

$$
\frac{s \in\left\{t_{1}\right\}}{s=t_{1}}
$$

Table 1: A $\mathfrak{T}_{\text {MLSs-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

A Decidable Tableau Calculus for MLSS

$0 \cdot$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

φ_{14} is obtained from φ_{13} and φ_{10} by an application of the =-rule

$$
\begin{gathered}
t_{1}=t_{2} \\
\ell \\
\ell_{t_{2}}^{t_{1}}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Example (cntd)

φ_{16} is obtained from
$\varphi_{3}: \neg\left(c_{1}=\emptyset \wedge c_{2}=\right.$ $\left\{c_{1}\right\}$)
and φ_{15} by an application of the β-rule

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Example (cntd)

$\varphi_{17}, \varphi_{18}, \varphi_{21}$, and φ_{22} are obtained from φ_{16} by an application of the (ext)-branching rule

$t_{1} \neq t_{2}$	
$c \in t_{1}$	$c \notin t_{1}$
$c \notin t_{1}$	$c \in t_{2}$

Table 1: $\boldsymbol{T}^{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)$ (cntd)

Example (cntd)

φ_{19} is obtained from φ_{17} by an application of the \cup-rule

$$
\frac{s \in t_{i}}{s \in t_{1} \cup t_{2}}
$$

under restriction $\mathbf{R 1}$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

Example (cntd)

φ_{20} is obtained from $\varphi_{2}:\left\{c_{1}\right\}=c_{1} \cup c_{2}$ and φ_{19} by an application of the =-rule

$$
\begin{gathered}
t_{1}=t_{2} \\
\ell \\
\hline \ell_{t_{1}}^{t_{2}}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

A Decidable Tableau Calculus for MLSS

$0 \bullet$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

φ_{23} is obtained from φ_{22} by an application of the \{-\}-rule

$$
\frac{s \in\left\{t_{1}\right\}}{s=t_{1}}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSs-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

A Decidable Tableau Calculus for MLSS

$0 \cdot$

Completeness of $\mathfrak{T}_{\text {MLSS }}$

Example (cntd)

φ_{24} is obtained from φ_{23} and φ_{21} by an application of the =-rule

$$
\begin{gathered}
t_{1}=t_{2} \\
\ell \\
\ell_{t_{2}}^{t_{1}}
\end{gathered}
$$

Table 1: A $\boldsymbol{T}_{\text {MLSS-tableau proof of }}$ $\left\{c_{1}\right\}=c_{1} \cup c_{2} \rightarrow\left(c_{1}=\emptyset \wedge c_{2}=\left\{c_{1}\right\}\right)(\mathrm{cntd})$

