Completeness of \mathcal{T}_{MLSS}

Example

$$I: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$I: \neg (\{c_1\} = c_1 \cup c_2 \land c_1 = \emptyset \land c_2 = \{c_1\})$$

$$I: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$I: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$I: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$I: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$I: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$I: \neg (c_1 \in c_1 \land c_2 \land c_2 \cap c_2)$$

$$I: \neg (c_1 \in c_1 \land c_2 \cap c_2)$$

$$I: \neg (c_1 \in c_2 \cap c_2)$$

$$I: \neg (c_1 \in c_2 \cap c_2)$$

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$

э

ヘロト 人間 とくほ とくほ とう

Completeness of \mathcal{T}_{MLSS}

Example

$$l: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$l: \neg (\{c_1\} = c_1 \cup c_2 \land c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 \in [c_1] \land c_2 \land c_1 \in [c_2] \land c_2 \land c_1 \in [c_2] \land c_2 \land c_2$$

 φ_2 and φ_3 are obtained by an application of the α -rule to φ_1

・ロット (雪) (日) (日)

Completeness of \mathcal{T}_{MLSS}

Example

$$l: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$l: \neg (\{c_1\} = c_1 \cup c_2$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 \in c_1 \cup c_2)$$

\$\varphi_4\$ is obtained by an
application of the
{_}-rule

$t_1 \in \{t_1\}$

under restriction R1

Completeness of \mathcal{T}_{MLSS}

Example

$$l: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$l: \neg (\{c_1\} = c_1 \cup c_2 \land c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 \in c_1 \cup c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2)$$

 φ_5 is obtained from φ_2 and φ_4 by an application of the =-rule

$$\frac{t_1 = t_2}{\ell}$$

・ロット (雪) ・ (日) ・ (日)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$

э

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example

$$l: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$l: \neg (\{c_1\} = c_1 \cup c_2 \land c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 \in [c_1] \land c_2 \land c_1 \in [c_2] \land c_1 \in [c_2] \land c_2 \land c_1 \in [c_2] \land c_2 \land c$$

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$

 φ_6 and φ_7 are obtained from the (\in) -branching rule

$s \in t \mid s \notin t$

applied to the pair (*c*₁, *c*₁), under restriction **R2**

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Completeness of \mathcal{T}_{MLSS}

Example

$$l: \neg (\{c_1\} = c_1 \cup c_2 \to (c_1 = \emptyset \land c_2 = \{c_1\}))$$

$$l: \neg (\{c_1\} = c_1 \cup c_2 \land c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 = \emptyset \land c_2 = \{c_1\})$$

$$l: \neg (c_1 \in c_1 \cup c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1 \in c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1)$$

$$l: \neg (c_1 \in c_1 \land c_2 \land c_1)$$

 φ_8 is obtained from φ_5 and φ_7 by an application of the U-rule

$$s \in t_1 \cup t_2$$
$$s \notin t_i$$
$$s \in t_{2-i}$$

・ロット (雪) ・ (日) ・ (日)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$

э

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$ (cntd)

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$ (cntd)

(日) (雪) (日) (日) (日)

Completeness of \mathcal{T}_{MLSS}

Example (cntd)

 φ_{10} is obtained from φ_{9} by an application of the following derived rule

$$rac{m{y}
eq \emptyset}{m{c}
eq m{y}}$$
 (Ø)

where *c* denotes a *new* set constant.

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

Table 1: A \mathfrak{T}_{MLSS} -tableau proof of $\{c_1\} = c_1 \cup c_2 \rightarrow (c_1 = \emptyset \land c_2 = \{c_1\})$ (cntd)

(日) (雪) (日) (日) (日)

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{12} is obtained from $\varphi_2: \{\boldsymbol{c}_1\} = \boldsymbol{c}_1 \cup \boldsymbol{c}_2$ and φ_{11} by an application of the =-rule $t_1 = t_2$ $\ell_t^{t_2}$

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{13} is obtained from φ_{12} by an application of the $\{ _ \}$ -rule

$$\frac{\boldsymbol{s} \in \{\boldsymbol{t}_1\}}{\boldsymbol{s} = \boldsymbol{t}_1}$$

(日) (雪) (日) (日) (日)

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{14} is obtained from φ_{13} and φ_{10} by an application of the =-rule

$$\frac{t_1 = t_2}{\ell}$$

Completeness of \mathcal{T}_{MLSS}

Example (cntd)

 $\{c_1\}$ and φ_{15} by an application of the *B*-rule B

 β_1^c

Bo

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 目 マ

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 $\varphi_{17}, \varphi_{18}, \varphi_{21}, \text{ and } \varphi_{22}$ are obtained from φ_{16} by an application of the (*ext*)-branching rule

$$\begin{aligned}
 t_1 \neq t_2 \\
 c \in t_1 \mid c \notin t_1 \\
 c \notin t_1 \mid c \in t_2
 \end{aligned}$$

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{20} is obtained from $\varphi_2: \{\boldsymbol{c}_1\} = \boldsymbol{c}_1 \cup \boldsymbol{c}_2$ and φ_{19} by an application of the =-rule $t_1 = t_2$ $\ell_t^{t_2}$

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{23} is obtained from φ_{22} by an application of the $\{ _ \}$ -rule

$$\frac{\boldsymbol{s} \in \{\boldsymbol{t}_1\}}{\boldsymbol{s} = \boldsymbol{t}_1}$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 目 マ

Completeness of $\mathfrak{T}_{\textit{MLSS}}$

Example (cntd)

 φ_{24} is obtained from φ_{23} and φ_{21} by an application of the =-rule

$$\frac{t_1 = t_2}{\ell}$$

