```
ALGORITMI PER IL CALCOLD DELLE DISTANZE E DEI CAMMINI MINIMI DA UNA DATA SORGENTE
```

- descriveremo algoritmi basati sulla tecnica label CORRECTING
- in pratica, dato un grafo $G=(V, e)$, con funzione peso wie $\rightarrow \mathbb{R}$ e sorciente S, viene mantenuta UNA FUNZIONE $d: V \rightarrow \mathbb{R U}\{+\infty\}$ (STIMA DELLA DISTANZA) In mOdD talle che valga sempre $d \geqslant \delta_{G S}$, GIDE' $d[v] \geqslant \delta_{G_{5}}(v)=\delta_{G}(S, v)$, PER OGNI $v \in V$,
e che alla fine della computazidne valga $d=\delta_{G_{S}}$, CIOE $d[v]=\delta_{G_{S}}(v)$, PER OGNI $v \in V$.

INIZIALIZ2AZIONE

- qual é la migliore stima di d che possiamo fare inizialmente, primi ancora di consultare la funzionew?
- e che cosa si puó dire inizialmente dell' albero DEI CAMMINI MINIMI?

INIZIALIZ2AZIONE

- qual é la migliore stima di d che possiamo fare INI IALMENTE, PRIMIA ANCORA DI CONSULTARE LA FUNZIONE W?
RISPOSTA

$$
\begin{aligned}
& d[s]:=0 \\
& d[v]:=+\infty, \text { PER OGNI } v \in V,\{s\} \\
& - \\
& \text { OVVIAMENTE, IN TAL CASO VALE } d \geqslant \delta_{G_{S}}
\end{aligned}
$$

- L'ALBERD DEI CAMMINI MINIMI, RAPPRESENTATO IMPLICITAMENTE MEDIANTE UN ARRAY Pred, PUO' ESSERE COSTRUITO CONTESTUALMENTE AL CALCOLD DELLA DISTANZA $\delta_{G S}$ inizialmente bastera' porre.

$$
\operatorname{Pred}[v]:=\text { NIL, PER OGNI } v \in V
$$

procedure Initidize-Single-Source (G, s)
for $v \in V[G]$ do

$$
\begin{aligned}
& d[v]:=+\infty \\
& \operatorname{Pred}[v]:=N / L \\
& d[s]:=0
\end{aligned}
$$

AGGIORNAMENTO DELLE FUNZIONI d E RRed

- supponiamo che $d \geqslant \delta_{G_{s}}$ e che per ognt nodo vev TALE CHE $d[V] \neq+\infty$ LA FUNZIONE Pred CONSENTA DI COSTRUIRE UN CAMMINO DA S A V DI PESO $\leqslant d[O]$.
- é possibile migliorare la stima ol d mantenends La PROPRIETA deLla funzione Pred?
- se G ammette cammini minimi da s la risposta E^{\prime} AFFERMATIVA,
- si consideri la situazione

CON $w\left(\pi_{1}\right) \leqslant d[u] \quad E \quad w\left(\pi_{2}\right) \leqslant d[v]$.

- SI OSSERVI CHE $\pi_{2} E \pi_{1}^{\prime}=\pi_{i} ;(u, v)$ SOND DUE CAAMINI DISTINTI DA S A v, CON $w\left(\pi_{1}^{\prime}\right) \leqslant d[u]+w(u, v)$,
- QUINDI, SE $d[v]>d[u)+w(u, v)$ CONVERRA' PORRE:

$$
\begin{aligned}
& d[v]:=d[u]+w(u, v) \\
& \operatorname{Pred}[v]:=u
\end{aligned}
$$

nota: 14 canmino π_{2} potrebbe non esistere (se d[0] $=+\infty$)

Procedure $\operatorname{RELAX}(u, v ; w)$
if $d[v)>d[u]+w(u, v)$ then

$$
d[v):=d[u]+w(u, v)
$$

Pred [v]: $=u$
ALGORITMO GENERIC SINGLE-SOURCE SHORTEST-PATH
Procedure $\operatorname{GSSSP}(G, s, w)$
Initialize-Single-Source (G, s)
while $\exists(u, v) \in E[G]$ TALE CHE $d[u)+w(u, v)<d[v)$ do

- $\operatorname{sia}(u, v)$ tale che $d[u)+w(u, v)<d[v)$
$\operatorname{RELAX}(u, v ; w)$

LEMMA DURANTE L'ESECUZIONE DI GSSsp(c, s, w), SI ha:
(a) LA FUNZIONE d DECRESCE MONOTONICAMENTE
(b) VALE SEMPRE $d \geqslant \delta_{G_{s}}$
(ANCHE IN ASSENZA DI CAMMINI MINIMI DA S)
dim la (a) seque immediatamente per induzione, PER QUANTO RIGUARDA LA (b), OSSERVIAMO CHE immediatamente popo L'inizializzazione vale $d \geqslant \delta_{G_{s}}$.
PER ASSURDO, SIA RELAX ($u, v ; w$) LA PRIMA CHIAHATA A RELAX DOPD LA QUALE $d \neq \delta_{G_{s}}\left(E\right.$ QUINDI SI ABBIA $\left.d[J]<\delta_{G_{s}}(J)\right)$, SIHA:

- $+\infty>d[u] \geqslant \delta_{G}(u)$, PER CUI ESISTE UN CATIMINO π DA $S A \cup \mathbb{N} G$ tale $(H E w(\pi) \leqslant d[w]$
- $d[v]=d[u]+w(u, v) \geqslant w(\pi)+w(u, v)=w(\pi ;(u, v)) \geqslant \delta_{G_{s}}(v)$, in quanto $\pi i(u, v)$ é un carmino da s a v. ASSURDD.
$-S I A d: V \rightarrow \mathbb{R} \cup\{+\infty\}$ TALE CHE $d \geqslant \delta_{G_{S}} E d[s] \leq 0$
- si ponga

$$
P_{d}=\{\pi \in \operatorname{PATHS}(G ; s): d[\operatorname{tail}(\pi)]>W(\pi)\}
$$

LEMMA $P_{d}=\phi \leftrightarrow(\forall(u, v) \in E) \quad d[v] \leqslant d[u)+w(u, v)$
DIM (\Rightarrow) SIA $(u, v) \in E$ TALE CHE $d[v)>d[u]+w(u, v)$. PDICHE $\quad \delta_{G_{S}}(u) \leq d[u)<+\infty$, ESISTE $\pi_{S u} \in \operatorname{PATHS}(G ; s, u)$ TALE CHE $W\left(\pi_{\text {Su }}\right) \leqslant d[u)$.
SIA $\pi_{S O}=\pi_{\text {Su }} ;(u, v) \in \operatorname{PATHS}\left(G_{i} ;, v\right)$,
ALLDRA $\quad d[v]>d[u)+w(u, v) \geqslant w\left(\pi_{s u}\right)+w(u, v)=w\left(\pi_{s v}\right)$ E QUINDI $\pi_{s v} \in P_{d}$, CIOE $P_{d} \neq \phi$.
$\left(\Leftarrow\right.$ SE $P_{d} \neq \Phi$, SI SELEZIONI $\pi \in P_{d}$ DI LUNGHEZZA MINIMA.
SI HA: length $(\pi)>0$, IN QUANTO ALTRIMENT SI AVREBBE $\pi=(S), 0 \geqslant d[S]>W(\pi)=0$, ASSURDO. SIA $K=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, CON $v_{0}=5$ E $k \geqslant 1$. (QUINDI: $d\left[v_{k}\right]>w(\pi)$) SI CONSIDERI $\pi^{\prime}=\left(v_{0}, v_{1}, \ldots, v_{k-1}\right)$,
PER LA minimmita' di lenght (π), vale $\pi^{\prime} \notin P_{d}$, dA col: $d\left[v_{k-1}\right] \leqslant w\left(\pi^{\prime}\right)$,
PERTANTO: $d\left[v_{k}\right]>w(\pi)=w\left(\pi^{\prime}\right)+w\left(v_{k-1}, v_{k}\right) \geqslant d\left[v_{k-1}\right]+w\left(v_{k-1}, v_{k}\right)$.

LEMMA CONDIZIDNE NECESSARIA E SUFFICIENTE PERCHE' L'ESECUZIONE DI GSSSP (G, S, W) TERMINI E' CHE $d=\delta_{G_{5}}$. DIM (NECESSITA') SE GSSSP (G, S, W) SI FERMMA, ALLORA VALE $(\forall(u, v) \in E) d[v] \leq d[u)+w(u, v)$, DA CUI PER IL LEMMA PRECE DENTE SI HA: $P_{d}=\phi$.
SE PER ASSURDO $d \neq \delta_{G_{S}}$, mllora esisterebbe $v \in V$ tale che $d t v]>\delta_{G}(v) \in \operatorname{QUINOI}$ Un carminino $\pi_{s v} \in \operatorname{PATHS}(G ; s, v)$ tale che $d[v]>W_{S}\left(\pi_{S V}\right)$, PERTANTO $\pi_{S O} \in P_{d} \neq \phi$, ASSURDS.
(SUFFICIENZA) SE NEL CORSO DI UNA ESECUZIONE DI GSSSP (G,SNW) VALE $d=\delta_{G_{s}}$, ALLORA $\sigma_{d}=\phi$. INFATTI, SE PER ASSURDO ESISTESSE $\pi \in P_{d}$, SI AVREBBE: $d[\operatorname{tail}(\pi)]>w(\pi) \geqslant \delta_{G_{5}}(\operatorname{tail}(\pi))$ E QUINDI $d \neq \delta_{G_{S}}$, ASSURDD, PFR IL LEMDA PRECEOENTE SI MA

LEMMA SUPPONIAMO CHE (G, W) AMMETTA CAMMINI MINIMI DA UNA SORGENTE S. SIANO $d: V \rightarrow \mathbb{R} \cup\{+\infty\} E$ Pred: $V \rightarrow V \cup\{N I L\} E$ SIA $T=\left(V_{T}, E_{T}\right)$ K GRAFO INDOTTO DA Pred, CON $V_{T}=\{x \in V: d[x] \neq+\infty\} \quad E \quad E_{T}=\left\{(\operatorname{Pred}[x), x): x \in V_{T} \backslash\{s\}\right\}$. SUPPONIATID CHE
(1) T SIA UN albero radicato in s
(2) PER OGNI $x, y \in V_{T}$ TALI CHE Y SIA RAGGIUNGIBILE $D A x \operatorname{IN} T$ SI ABBIA $d[x]+w\left(T_{x y}\right) \leqslant d[y]$ (Dove $T_{x y} E^{\prime} l l$ carmino in T da $a A y$)
ALLORA, PER OGNI ARCD ($u, v)$ DI G, DOPD L'ESECUZIDNE dI RELAX $(u, v ; w)$ LE proprieta' (1) e (2) continuand a valere per il nuovo grafo indotto da Pred.

DIM. DOPD L'ESECUZLONE DI RELAX $(u, v ; w)$, indichitmo con

- d' $l l$ nuovo valore della funzione d
- Pred' $l l$ nuovo valore della funzione Pred
- SE $d[J] \leqslant d[u]+w(u, \sigma)$, AlDDRA: $d^{\prime}=d$, Pred' $=$ Pred E Quindi
il lemia el banalmente verd,
- supponiamo che $d[v]>d[u]+w(u, v)$, cosicché si ha:
- $d^{\prime}[v]=d[u]+w(u, v) \quad E \quad d^{\prime}[z]=d[z]$, PER OGN1 $z \neq v$
- Pred ${ }^{\prime}[v]=u \quad E$ Pred ${ }^{\prime}[z]=\operatorname{Pred}[z]$, PER OGM $z \neq \sigma$
- sia t' ll grafo indotto da Pred'.
- sia $T_{\text {su }}$ ll cammino da s ad u neu'alberd T indotto DA Pred.
(1) SE T^{\prime} NON FOSSE UN ALBERO RADICATO IN S. ALLDRA v OCCORREREBBE NECESSARIAMENTE SU TSQ E SI AVREBBE:

$$
d[v]+w\left(T_{v u}\right) \leqslant d[u]
$$

$$
\begin{aligned}
& d[v]+w\left(T_{v u}\right) \leqslant d[u] \\
& d(v)+w\left(T_{v u}\right)+w(u, v) \leqslant d[u)+w(u, v)
\end{aligned}
$$

$$
w\left(T_{v u}\right)+w(u, v) \leq d[u]+w(u, v)-d[v)<0
$$

CIOE $T_{\text {vuj }}(u, v)$ saresbe un ciclo di peso negativo
RAgGiUnGIbILE DA S E QUINDI (G, W) NON AMMETTGEEBBE CAMMINI MINIMI DA S, ASSURDO.
PERTANTO T' E^{\prime} UN ALBERO RADICATO ins.
(2) E' SUFFICIENTE VERIFICARE LA PROPRIETA' (2) SOLTANTD PER TUTTE LE COPPIE $x, y \in V$ TRI CHE

- $x \neq v$
- voccorre sul cammino $T_{x y}^{\prime}$ da x a y in T^{\prime}
siano quindi $T_{x y}^{\prime}, T_{x u}$, Toy come in figura

SI HA:

$$
\begin{aligned}
d^{\prime}[x]+w\left(T_{x y}^{\prime}\right) & =d[x]+w\left(T_{x u}\right)+w(u, v)+w\left(T_{v y}\right) \\
& \leqslant d[u)+w(u, v)+w\left(T_{v y}\right) \\
& =d^{\prime}[v]+w\left(T_{v y}\right)
\end{aligned}
$$

-SE $y=v, \quad d^{\prime}[v]+w\left(T_{v y}\right)=d^{\prime}[v]=d^{\prime}[y]$,
-SE $y \neq v, \quad d^{\prime}[v]+w\left(T_{v y}\right)<d[v]+w\left(T_{v y}\right) \leq d[y]=d^{\prime}[y]$.
in OGNI CASO SI HA: $d^{\prime}[V]+w\left(T_{0 y}\right) \leqslant d^{\prime}[y]$, E QUINDI:
$d^{\prime}[x]+w\left(T_{x y}^{\prime}\right) \leqslant d^{\prime}[y]$.

COROLLARID NELLE IPOTESI CHE (G,W) AMMETTA CAMMINI MINIMI DA UNA DATA SORGENTE S, LE PROPRIETA (1) E (2) DEL LEMMA PRECEDENTE SONO SODDISFATTE DURANTE OGNI ESECUZIONE DELA PROCEDURA $G S S S P(G, S, W)$ (ED in Particolare alla fine, nel casi in $\operatorname{CUI} \operatorname{GSSSP}(G, S, W)$ sia terminante).

COROLLARIR SE $\operatorname{GSSSP}(G, S, W)$ TERMINA, $d=\delta_{G S}$ E L'ALBERD T indotto dalla funzione pred é un alberd di cammini MINIMI IN $(G, W) D A S$.

DIM.

- SIA x un nodo ragaiungibilé da s in G. - SIA $T_{S x}$ Il carmino dA sa x NELL'ALBERO T
- per la (2) del lemima precedente si ha:
$\delta_{G_{s}}(x) \leqslant w\left(T_{s x}\right)=d[s]+w\left(T_{s \pi}\right) \leqslant d[x]=\delta_{G_{s}}(x)$,
DA CUI $w\left(T_{S x}\right)=\delta_{G_{S}}(x)$,
CIOE' IL CAMMINO $T_{S X}$ dA S A x E' MINIMO
E QUINDI $T E^{\prime}$ UN ALBERD DI CAMMINI MINIMI.

LEMMA SE (G, w) AMMETTE CATIMINI MINIMI DA S, ALLQRA L'ESECU210NE DI $\operatorname{GSSSP}(G, S, w)$ TERMINA DOPO AL PIU $\&(V[G]-1)!$ PASSI.

ES, SI CONSIDERI IL


```
\(\operatorname{RELAX}(a, b ; w)\)
\(\operatorname{RELAX}(b, c ; w)\)
\(\operatorname{RELAX}(c, d ; w)\)
\(\operatorname{RELAX}(b, d ; w)\)
\(\operatorname{RELAX}(d, c ; w)\)
\(\operatorname{RELAX}(a, c ; w)\)
\(\operatorname{RELAX}(c, b ; w)\)
\(\operatorname{RELAX}(b, d ; w)\)
\(\operatorname{RELAX}(c, d ; w)\)
\(\operatorname{RELAX}(d, b ; w)\)
\(\operatorname{RELAX}(a, d ; w)\)
\(\operatorname{RELAX}(d, b ; w)\)
\(\operatorname{RELAX}(b, c ; w)\)
\(\operatorname{RELAX}(d, c ; w)\)
```


OTTIMIZZAZIONI DI GSSSP

LEMTA SE $\pi: \overbrace{s} \pi_{s u} \sim_{u} \rightarrow 0$ E' UN CAMMIND MINIMO DA S A V IN (G, W) E AD UN CERTO PUNTO DI UN'ESECUZLONE DI $G \operatorname{SSSP}(G, w, s)$ VALE $d[u]=\delta_{G}(u)$, ALLORA DOPD L'ESECUZCONE DI RELAX $(u, v ; w)$ VARRA' $d[v]=\delta_{G_{s}}(v)$,
DIM. INFATHI DOPD LA Chiamata a $\operatorname{REL} A X(u, v ; w)$ SI arra':

$$
\begin{aligned}
\delta_{G_{s}}(v) \leqslant d[v] \leqslant d[u]+w(u, v) & =\delta_{G_{s}}(u)+w(u, v)=w\left(\pi_{s u}\right)+w(u, v) \\
& =w(\pi)=\delta_{G_{s}}(v),
\end{aligned}
$$

$D A$ CUI $d[v]=\delta_{G_{s}}(v)$,

- PERCIO', SE SI ACCERTA CHE $d t u)=\delta_{G_{S}}(u)$, PER quALCHE $u \in V[G]$, converral chlamare relax $(u, v ; w)$ PER ogni $v \in A_{G}[u]$.

Procedure SCAN $(u ; G, w)$
for $v \in A d j_{G}[u]$ do
RELAX $(u, v ; w)$

- nell' podtesi che esistand cammini minimi da sin (G, w) converra utilizzare la sequente variante ottimizzata DI GSSSP.

Procedure $\operatorname{OGSSSP}(G, s, w)$
Initialize-Single-Source (G, s)
$S:=\varnothing$ // rappresenta l'insieme deinodi a per cuir é stecto
I/ accertato che vale $d[x]=\delta_{G_{5}}[x]$
while $\exists v \in V[G] \backslash S$ tale doe $d[v]=\delta_{G_{S}}[\sigma]$ do

- sid $v \in V[G] \backslash S$ tale de $d[v]=\delta_{G_{c}}[v]$ $\operatorname{SCAN}(v ; G, w)$

$$
s:=5 \cup\{v\}
$$

- per la correttezza di ogsssp occorre stabilure che
ad oqni iterazione del ciclo whike valga:

$$
V S \neq \phi \longrightarrow(\exists v \in W S)\left(d[v]=\delta_{G_{S}}(v)\right)
$$

- SIA VS车 E SIA ueVS.
.SE $d[u]=\delta_{G_{S}}(u)$ ABBIAMO FINITO
- SE $d[u]>\delta_{G_{S}}(u)$, SIA $\pi=\left(u_{0}, u_{1}, \ldots, u_{k}\right)$, $\operatorname{CON} u_{0}=S E u_{k}=u$,
un cammind minimo da S Ad u in (G, w),
- SIA $i_{0}=\min _{j} u_{j} \in W S$, ALIDRA: $d\left[u_{i}\right]=\delta_{G_{s}}\left(u_{i_{0}}\right)$.
$\begin{aligned} & \text { NFATT1: } \\ & \text { CASO } i_{0}=0:\end{aligned} \quad d\left[u_{i_{0}}\right]=d[s]=0=\delta_{G_{S}}(s)=\delta_{G_{S S}}\left(u_{i_{0}}\right)$
CASO $i_{0}>0: u_{i_{0}-1} \in S$. QUINDI E^{\prime} STATA ESEGUITA
RELAX $\left(u_{i_{0}-1}, u_{i_{0}} i \omega\right)$ CON $d\left[u_{i_{0}-1}\right]=\delta \sigma_{\sigma_{5}}\left(u_{i_{0}-1}\right)$,
PER CUI DOPO SI HA: $d\left[u_{i_{0}}\right]=8 G_{S}\left(u_{i_{0}}\right)$.
- La complessita deul procedura ogsssp el O(V+e) PIÜ IL TEMPD NECESSARID A SELEZIONARE AD OGNT ITERAZIDNE DEL CICLO while UN NODO vEVS TALE CHE $d[J]=d_{G_{s}}(v)$
- quindi per ottenere da ogsssp algoritmi EFFETTIVI, OCCORRE TROVARE $I L$ MODO PIU' EFFIGIENTE PER EFFETTUARE TALI SELEZIONI
- considereremo 1 seguent casi:
- caso pí cenerale (algoritmo di bellman-ford)
- w: $E \rightarrow \mathbb{R}_{0}^{+}$(ALGORITMO DI DIJKSTRA)
- G aciclico

ALGDRITMO DI BELLMAN -FERD

- la strategia pio semplice per selezionare il nodo GIUSTO CONSISTE NEL... SELEZLONARE AD OGNI CICLO TUTTI I POSSIBILI NODI!
Procedure Bellmon-Ford (G, s, w) Funziona nellipotesi

Initialize-Single-Source (G, s)
for $i:=1$ to $|V[G]|$ do for $(u, v) \in E[G]$ do

RELAX ($u, v ; w)$

$$
\left[\begin{array}{l}
: \\
\hline
\end{array}\right.
$$

che (G, W) ammetta cammini minimi das.
? COME VERIFICARE SE
? (G, W) AMMETTE carmini minimida

ALGORITMO DI BELLMAN-FERD

- la strategia più semplice per selezionare il nodo GIUSTO CONSISTE NEL "I SELEZLONARE AD OGNI CICLO TUTTI I POSSIBILI NODI!

Procedure Bellmon-Ford (G, s, w)
Initidize-Single-Source (G, s)
for $i:=1$ to $|V[G]| d_{2}$
for $(u, v) \in E[G]$ do

$$
\operatorname{RELAX}(u, v ; w)
$$

for $(u, v) \in E[G]$ do
if $d[v]>d[u)+w(u, v)$ then
print ("cicli di peso negativo"): QUIT]

COMPLESSITA:
$O(V)+$ [$O(v) \cdot$ $O(E)]$
$O(E)$
\qquad
O(VE)

ESEMPIO

ESEMPIO (cutd)

ALGORITMO DI DIJKSTRA

- SUPPONIATID CHE W:E $\rightarrow \mathbb{R}_{0}^{+}$(CIOE' NON CI SOND ARCHI NECATIVI) - qual é un possibile criterio efficiente per selezionare $v \in V S$ taLE CHE $d[0]=\delta_{G_{S}}(5)$?

ALGORITMO DI DIJKSTRA

- SUPPONIATIO CHE W: $\rightarrow \mathbb{R}_{0}^{+}$(CIOE NON CI SOND ARCHI NEGATIVI)
- qual é un possibile criterio efficiente per selezionare

$$
v \in V S \text { TALE CHE } d[J]=\delta_{G_{S}}(5) \text { ? }
$$

PROPRIETA': SE $v \in V, S$ E TALE $C H E d[\sigma]=\min \{d[u]: u \in V, S\}$

$$
A L L O R A d[J]=\delta_{G_{s}}(v)
$$

DIM. INFATTI, SE $d[0]>\delta_{G_{s}}(v)$, SIA $\pi=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, CON $r_{0}=S, v_{k}=v$ UN CAMMIND MINIMD IN $(G, w) D A S$ $A v, \quad$ SIA $i_{0}=\min _{j} v_{j} \in V S$. AllORA $d\left[v_{i}\right]=\delta_{G_{S}}\left(v_{i_{0}}\right)$.
QUINDI

$$
\begin{aligned}
d[v]>\delta_{G_{S}}(v) & =w(\pi)=w\left(v_{0}, v_{1}, \ldots, v_{i_{0}}\right)+w\left(v_{i_{0}}, \ldots, v_{k}\right) \\
& =\delta_{G_{S}}\left(v_{i_{0}}\right)+\sum_{j=i_{0}} w\left(v_{j}, v_{j+1}\right) \geqslant \delta_{G_{S}}\left(v_{i_{0}}\right)=d\left[v_{i j}\right],
\end{aligned}
$$

CONTRADDICENDO LA MINIMALITA DI $1[F O]$.

ALGORITMO DI DIJKSTRA
Procedure Dijkstro (G, s, w)
Initialize-Single-Source (G, s)

$$
S:=\phi
$$

while $V[G], S \neq \varnothing$ do

- sid $v \in V[G], S$ tale de $d[v]=\min \{d[u] ; u \in V, S\}]$

$$
\begin{aligned}
& \operatorname{SCAN}(V ; G, W) \\
& S:=\operatorname{SU\{ v\} }
\end{aligned}
$$

ALGORITMO DI DIJKSTRA

Procedure Dijkstro (G, s, w)

$$
\text { Initialize-Single-Source }(G, s)
$$

$$
Q:=\text { moke-queue }(V[G], d)
$$

while $Q \neq \varnothing$ do

$$
\begin{aligned}
& v:=\operatorname{Extract}-\operatorname{Min}(Q, d) \\
& \operatorname{SCAN}(v ; G, w)
\end{aligned}
$$

ALGORITMO DI DIJKSTRA
Procedure Dijkstrc (G, s, w)
Initialize-Single-Source (G, s)
$Q:=$ moke-queue $(V[G], d)$
while $Q \neq \varnothing$ do

$$
\begin{aligned}
& v:=\operatorname{Extract}-\operatorname{Min}(Q, d) \\
& \operatorname{SCAN}(v ; G, w)
\end{aligned}
$$

COMPLESSITA'

$$
\begin{aligned}
& O(V)+ \\
& O(V)+ \\
& {\left[|V| \cdot \cos t_{0}(\text { Extract_Min })+\right.} \\
& |E| \cdot \text { costo (Decrease_Key) }]
\end{aligned}
$$

DIVERSE IMPLEMENTAZIONI DELLA CODA Q

DELLA CODA R		
ARRAY	BEAP BINARIO	HEAP FIBONACCI
$O(V)$	$O(V)$	$O(V)$
$O(1)$	$O(V)$	$O(V)$
$O\left(V^{2}\right)$	$O(V / V V)$	$O(V g V)$
$O(E)$	$O(E L V)$	$O(E)$
$O\left(V^{2}\right)$	$O((V+E) \operatorname{Og} V)$	$O(E+U g V)$

- supponiatio che G sia aciclico.
- qual é un possibile criterio efficiente per selezionare $v \in V S$ TALE CHE $d[J]=\delta_{G_{S}}(5)$?

CAMMINI MINIMI DA UNA SORGENTE IN CRAFI ACICLICI

- supponiatio che g sia aciclico.
- qual é un possibile criterio efficiente per selezionare $v \in V S$ TALE CHE $d[J]=\delta_{G_{S}}(5)$?
PROPRIETA' SE TUTTI I PREDECESSORI IMMEDIATI DI vEVIS SOND IN S, ALLDRA $d[v]=\delta_{G_{S}}(v)$.
DIM, INFATTG, SE $d[0]>\delta_{G_{s}}(v)$, SIA $\pi=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, CON $v_{0}=S, v_{k}=v$ UN CAMMINO MINIMD IN $(G, w) D A S$ A v, si HA $k \geqslant 1$, in qUANTD $d\left[J_{0}\right]=d[s]=\delta_{C_{5}}(s)=0$. POICHE $v_{k-1} \in S, d\left[v_{k-1}\right]=\delta_{G_{s}}\left(v_{k-1}\right)$. INOLTRE, SUBITD PRIMA DI inserire v_{k-1} NS VIENE ESEGUITA RELAX $\left(\sigma_{k-1}, V_{k} ; w\right)$, E QUINDI UALE $\quad d[v]=d\left[v_{k}\right]=\delta_{G_{s}}\left(v_{k}\right)=\delta_{G_{s}}(v)$, ASSURDD.

CAMMINI MINIMI DA UNA SORCIENTE IN CRAFI ACICLICI
Procedure DAG-Shortest-Paths'(G, s, w)
Initialize-Single-Source (G, s)

$$
S:=\phi
$$

while $V[G], S \neq \varnothing$ do
sid $v \in V[G] \backslash S$ tale de tulti i predecessoridi v stidenón S

$$
\begin{aligned}
& \operatorname{SCAN}(v ; G, w) \\
& S:=\operatorname{Su\{ v\} }
\end{aligned}
$$

come selezionare v in maniera efficiente?

CAMMINI MINIMI DA UNA SORCENTE IN CRAFI ACICLICI complessita'
Procedure DAG-Shortest-Pths (G, s, w)
Initialize-Single-Source (G, s)
sid a un ordinamento topologico di G
for $v \in V[G]$ sequendo l^{\prime} ordinaments $<d \underline{o}$

$$
\begin{aligned}
& \operatorname{SCAN}(V ; G, w) \\
& S:=\operatorname{SU\{ v\} }
\end{aligned}
$$

$$
\begin{aligned}
&] O(V) \\
& \frac{O(V+E)}{} \frac{O(V+E)}{O(V+E)}
\end{aligned}
$$

ESEMPIO

$$
\underbrace{5}
$$

ESEMPIO (cutd)

ESEMPIO (cutd)

