"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

Terza sessione di esami - 21 settembre 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1 (Equazione di ricorrenza)

Si enuncino il Teorema Master ed il suo Corollorio, quindi si risolva la seguente equazione di ricorrenza al variare del parametro $\alpha > 1$:

 $T(n) = \alpha \cdot T\left(\frac{n}{3}\right) + n^2 \log n$.

Per quali valori di α si ha: (a) $T(n) = \Theta(n^3)$; (b) $T(n) = \Theta(n^2 \log^2 n)$?

ESERCIZIO 2 (Ordinamento)

Si descrivano la struttura dati MAX-HEAP e le procedure MAX-HEAPIFY, BUILD-MAX-HEAP e HEAPSORT, determinandone le complessità computazionali.

ESERCIZIO 3

Sia dato il grafo non orientato \mathcal{G} rappresentato dalle seguenti liste di adiacenza

$A \to B, C, E$	$\mathrm{D} o \mathrm{A}$	$G \to A, E$
$\mathrm{B} \to \mathrm{A}$	$\mathrm{E} o \mathrm{B}$	$H \rightarrow G, I$
$C \to D, E$	$F \rightarrow G, H$	$I \to F$

Dopo aver descritto l'algoritmo di visita in profondità, si effettui la visita in profondità del grafo \mathcal{G} a partire dal vertice A, indicando per ogni vertice i tempi di inizio e fine visita, e la classificazione di tutti gli archi (es. archi d'albero, all'indietro, ecc.).

ESERCIZIO 4 (Tavole hash)

(a) Data la funzione $h(x,i) = Def(x+3i) \mod 17$, si illustri l'inserimento delle chiavi

in una tabella hash di dimensione 17, inizialmente vuota e organizzata con l'indirizzamento aperto, utilizzando h(x,i) come funzione hash.

(b) Si enunci l'ipotesi di hashing uniforme, si forniscano dei limiti superiori al numero medio di scansioni in ricerche con e senza successo in una tabella hash con fattore di carico α , assumendo l'ipotesi di hashing uniforme.

ESERCIZIO 5 (Algoritmi greedy)

Nel contesto della metodologia greedy, si enunci il problema di ottimizzazione relativo alla selezione di attività e se ne discuta una soluzione efficiente, valutandone la complessità computazionale e illustrandola sul seguente insieme $S = \{a_1, \ldots, a_{10}\}$ di attività, caratterizzate dai seguenti tempi iniziali e finali:

	i	1	2	3	4	5	6	7	8	9	10
_	s_i	11	4	1	2	12	5	7	13	10	6 9
	f_i	12	7	6	5	13	10	9	14	12	9