Fissiamo nel piano un sistema di riferimento cartesiano ortogonale $O, \vec{x}, \vec{y}, u.$

Definizione

Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x', y', t') soddisfano un'equazione di secondo grado omogenea nelle variabili x', y', t':

$$a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + 2a_{13}x't' + 2a_{23}y't' + a_{33}t'^2 = 0.$$

Per considerare i punti propri della conica teniamo conto del fatto che $x = \frac{x'}{t'}$ e $y = \frac{y'}{t'}$. Allora, dividendo per t'^2 :

$$a_{11}\frac{{x'}^2}{{t'}^2} + 2a_{12}\frac{{x'}}{{t'}}\frac{{y'}}{{t'}} + a_{22}\frac{{y'}^2}{{t'}^2} + 2a_{13}\frac{{x'}}{{t'}} + 2a_{23}\frac{{y'}}{{t'}} + a_{33} = 0$$

$$\Rightarrow a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0.$$

Questa è l'equazione della conica in forma non omogenea.

Ad ogni conica associamo la matrice simmetrica:

$$B = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array}\right).$$

Se poniamo:

$$\underline{x'} = \begin{pmatrix} x' \\ y' \\ t' \end{pmatrix} \quad \mathbf{e} \quad \underline{x} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix},$$

allora l'equazione della conica può essere scritta in forma compatta. La forma omogenea può essere scritta in questo modo:

$${}^{t}\!\underline{x}'B\underline{x}'=0,$$

mentre quella non omogenea in quest'altro:

$${}^{t}\underline{x}B\underline{x}=0.$$

Definizione

Se il polinomio $a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + 2a_{13}x't' + 2a_{23}y't' + a_{33}t'^2$ si spezza nel prodotto di due fattori lineari, distinti o meno, la conica si dice riducibile o spezzata ed i suoi punti sono quelli delle due rette di cui è unione. Se una conica non è riducibile, si dice che è irriducibile.

Sia Γ la conica di equazione:

$$a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + 2a_{13}x't' + 2a_{23}y't' + a_{33}t'^2 = 0.$$

I suoi punti impropri sono determinati dal sistema:

$$\begin{cases} a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + 2a_{13}x't' + 2a_{23}y't' + a_{33}t'^2 = 0 \\ t' = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 = 0 \\ t' = 0. \end{cases}$$

Se $a_{11}=a_{12}=a_{22}=0$, allora la conica è riducibile e contiene la retta impropria t'=0. Supponiamo $a_{11}\neq 0$. Dividiamo l'equazione per y'^2 :

$$\begin{cases} a_{11} \left(\frac{x'}{y'}\right)^2 + 2a_{12}\frac{x'}{y'} + a_{22} = 0\\ t' = 0. \end{cases}$$

In questo caso otteniamo i punti impropri $(-a_{12} + \sqrt{a_{12}^2 - a_{11}a_{22}}, a_{11}, 0)$ e $(-a_{12} - \sqrt{a_{12}^2 - a_{11}a_{22}}, a_{11}, 0)$.

Se $a_{11} = 0$, abbiamo:

$$\begin{cases} 2a_{12}x'y' + a_{22}y'^2 = 0 \\ t' = 0. \end{cases}$$

e otteniamo i punti impropri (1,0,0) e $(a_{22},-2a_{12},0)$.

In ogni caso, si ottiene che i punti impropri di una conica che non contiene la retta impropria sono sempre 2 e sono:

- reali e distinti se $a_{12}^2 a_{11}a_{22} > 0$
- reali e coincidenti se $a_{12}^2 a_{11}a_{22} = 0$
- immaginari e coniugati se $a_{12}^2 a_{11}a_{22} < 0$.

Definizione

Una conica irriducibile si dice:

- ▶ iperbole, se ha due punti impropri reali e distinti
- parabola, se ha due punti impropri reali e coincidenti
- ellisse, se ha due punti impropri immaginari e coniugati.

Osservazione

Consideriamo la matrice:

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right).$$

Allora $|A| = a_{11}a_{22} - a_{12}^2 = -(a_{12}^2 - a_{11}a_{22})$. Dunque, possiamo dire che una conica irriducibile è:

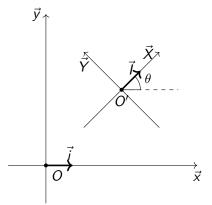
- ▶ un'iperbole se |A| < 0
- ightharpoonup una parabola se |A|=0
- ▶ un'ellisse se |A| > 0.

Fare esercizi da 2.1 a 2.3 dal libro di esercizi.

Fissiamo nel piano due sistemi di riferimento O, \vec{x}, \vec{y}, u e O', \vec{X}, \vec{Y}, u . Sia P = (x, y) un punto del piano. Se vogliamo passare da O', \vec{X}, \vec{Y} a O, \vec{x}, \vec{y} occorre effettuare una rototraslazione, cioè una composizione tra una rotazione e una traslazione:

$$\begin{cases} x = X \cos \theta - Y \sin \theta + a \\ y = X \sin \theta + Y \cos \theta + b, \end{cases}$$

dove O'=(a,b) in O, \vec{x}, \vec{y} e θ è l'angolo formato da \vec{i} e \vec{l} .



Se:

$$\underline{x} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \quad \mathbf{e} \quad \underline{X} = \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix},$$

allora le equazioni del cambiamento di coordinate si possono scrivere nella forma:

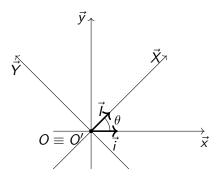
$$\underline{x} = Q\underline{X},$$

con:

$$Q = \begin{pmatrix} \cos \theta & -\sin \theta & a \\ \sin \theta & \cos \theta & b \\ 0 & 0 & 1 \end{pmatrix}$$

matrice della rototraslazione.

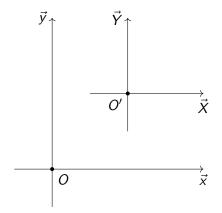
Se a = b = 0, allora abbiamo una rotazione.



Le equazioni di una rotazione sono:

$$\begin{cases} x = X \cos \theta - Y \sin \theta \\ y = X \sin \theta + Y \cos \theta. \end{cases}$$

Se $\theta = 0$, allora abbiamo una traslazione.



Le equazioni di una traslazione sono:

$$\begin{cases} x = X + a \\ y = Y + b. \end{cases}$$

Teorema

Data una conica Γ a coefficienti reali di equazione ${}^t\!\underline{x}B\underline{x}=0$, è sempre possibile effettuare una rototraslazione, di matrice Q, tale che Γ nel nuovo riferimento O', \vec{X}, \vec{Y}, u abbia una delle due forme:

- $1) \alpha X^2 + \beta Y^2 = \gamma$
- II) $\beta Y^2 = 2\gamma X$.

Inoltre, dette B e A la matrice della conica e la sottomatrice dei termini di secondo grado in x e y, rispettivamente, e B' e A' le corrispondenti matrici per la conica in forma canonica, si ha:

- a) B e B' hanno lo stesso determinante e lo stesso rango
- b) A e A' sono simili, e, quindi, hanno lo stesso polinomio caratteristico, stesso determinante e stessa traccia.

Osservazione

Se:

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right),$$

allora $Tr(A) = a_{11} + a_{22}$ è la traccia di A.

Definizione

I numeri $\det(B), \det(A), \rho(B), \operatorname{Tr}(A)$ si dicono invarianti ortogonali, in quanto si mantengono inalterati dopo una rototraslazione.

Teorema

Sia data una conica Γ di equazione ${}^{t}\underline{x}B\underline{x}=0$. Allora:

- 1. Γ è spezzata in due rette coincidenti $\iff \rho(B) = 1$
- 2. Γ è spezzata in due rette distinte $\iff \rho(B) = 2$
- 3. Γ è irriducibile $\iff \rho(B) = 3$.

Studio dell'ellisse in forma canonica

L'equazione canonica dell'ellisse reale è del tipo:

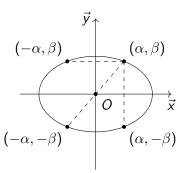
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Essa rientra tra le coniche del tipo I $\alpha x^2 + \beta y^2 = \gamma$, con $\frac{\alpha}{\gamma} = \frac{1}{a^2}$ e $\frac{\beta}{\gamma} = \frac{1}{b^2}$. L'equazione canonica dell'ellisse immaginaria è:

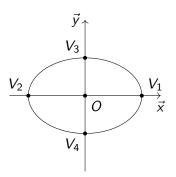
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1.$$

Notiamo che per l'ellisse reale $\text{Tr}(A) \cdot |B| < 0$, mentre per l'ellisse immaginaria $\text{Tr}(A) \cdot |B| > 0$.

- 1. L'origine O = (0,0) è il centro di simmetria, perché se $(\alpha,\beta) \in \Gamma \Longrightarrow (-\alpha,-\beta) \in \Gamma$.
- 2. L'asse \vec{x} è asse di simmetria, perché se $(\alpha, \beta) \in \Gamma \Longrightarrow (\alpha, -\beta) \in \Gamma$.
- 3. L'asse \vec{y} è asse di simmetria, perché se $(\alpha, \beta) \in \Gamma \Longrightarrow (-\alpha, \beta) \in \Gamma$.



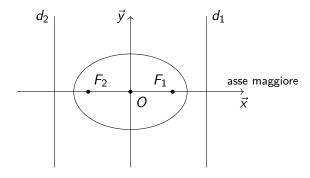
I vertici dell'ellisse sono i punti che l'ellisse ha in comune con i suoi assi di simmetria. Essi sono $V_1=(a,0),\ V_2=(-a,0),\ V_3=(0,b)$ e $V_4=(0,-b).$



Sia a > b. In tal caso, consideriamo i punti $F_1 = (c,0)$ e $F_2 = (-c,0)$, con $c = \sqrt{a^2 - b^2}$. F_1 e F_2 sono detti fuochi dell'ellisse. Si dimostra che l'ellisse si può ottenere come il luogo dei punti P = (x,y) del piano tali che:

$$\overline{PF_1} + \overline{PF_2} = 2a$$
.

Le rette d_1 : $x = \frac{a^2}{c}$ e d_2 : $x = -\frac{a^2}{c}$ sono dette direttrici relative ai fuochi F_1 e F_2 . Sull'asse maggiore vi sono i due fuochi.



Proposizione

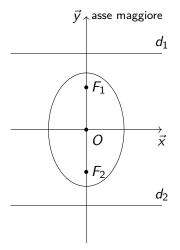
I rapporti:

$$\frac{\overline{PF_1}}{d(P,d_1)}$$
 e $\frac{\overline{PF_2}}{d(P,d_2)}$

sono, al variare di P sull'ellisse Γ , costanti e uguali a una costante $e = \frac{c}{a}$, detta eccentricità dell'ellisse. Inoltre si prova che e < 1, cioè:

$$\frac{\overline{PF_1}}{d(P,d_1)} = \frac{\overline{PF_2}}{d(P,d_2)} = e = \frac{c}{a} < 1 \quad \forall P \in \Gamma.$$

Se b > a, tutto si ripete in maniera analoga, solo che $c = \sqrt{b^2 - a^2}$, $F_1 = (0, c)$ e $F_2 = (0, -c)$. Le direttrici sono le rette $d_1 : y = \frac{b^2}{c}$ e $d_2 : y = -\frac{b^2}{c}$. Inoltre, l'ellisse è il luogo dei punti del piano tali che $\overline{PF_1} + \overline{PF_2} = 2b$.



Fare esercizi 2.9, 2.11 e 2.13 dal libro di esercizi.

Studio dell'iperbole in forma canonica

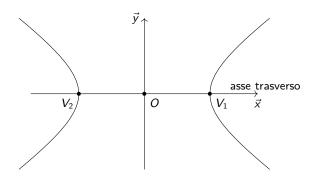
L'equazione canonica dell'iperbole è del tipo:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

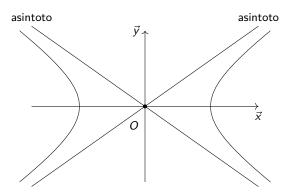
Essa rientra tra le coniche del tipo I $\alpha x^2 + \beta y^2 = \gamma$, con $\frac{\alpha}{\gamma} = \frac{1}{a^2}$ e $\frac{\beta}{\gamma} = -\frac{1}{b^2}$.

- 1. L'origine O = (0,0) è il centro di simmetria, perché se $(\alpha,\beta) \in \Gamma \Longrightarrow (-\alpha,-\beta) \in \Gamma$.
- 2. L'asse \vec{x} è asse di simmetria, perché se $(\alpha, \beta) \in \Gamma \Longrightarrow (\alpha, -\beta) \in \Gamma$.
- 3. L'asse \vec{y} è asse di simmetria, perché se $(\alpha, \beta) \in \Gamma \Longrightarrow (-\alpha, \beta) \in \Gamma$.

L'asse \vec{x} è l'unico dei due assi di simmetria che incontra l'iperbole in due punti reali, $V_1=(a,0)$ e $V_2=(-a,0)$. Sono i due vertici dell'iperbole e l'asse \vec{x} è detto asse trasverso.



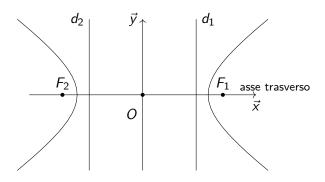
I punti impropri dell'iperbole sono $(1,\frac{b}{a},0)$ e $(1,-\frac{b}{a},0)$. Le rette che congiungono l'origine con questi punti, cioè le rette $y=\frac{b}{a}x$ e $y=-\frac{b}{a}x$, cioè le due rette che congiungono il centro di simmetria con i punti impropri, sono dette asintoti dell'iperbole e sono tangenti all'iperbole nei punti impropri. Inoltre, gli assi di simmetria sono le bisettrici degli asintoti.



Sia $c = \sqrt{a^2 + b^2}$. I punti $F_1 = (c,0)$ e $F_2 = (-c,0)$ sono detti fuochi dell'iperbole. Si dimostra che l'iperbole si può ottenere come il luogo dei punti P = (x,y) del piano tali che:

$$|\overline{PF_1} - \overline{PF_2}| = 2a.$$

Le rette d_1 : $x = \frac{a^2}{c}$ e d_2 : $x = -\frac{a^2}{c}$ sono dette direttrici relative ai fuochi F_1 e F_2 . Essi si trovano sull'asse trasverso.



Proposizione

I rapporti:

$$\frac{\overline{PF_1}}{d(P,d_1)} \quad e \quad \frac{\overline{PF_2}}{d(P,d_2)}$$

sono, al variare di P sull'iperbole Γ , costanti e uguali a una costante $e = \frac{c}{2}$, detta eccentricità dell'iperbole. Inoltre si prova che e > 1, cioè:

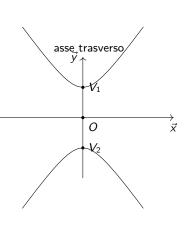
$$\frac{\overline{PF_1}}{d(P,d_1)} = \frac{\overline{PF_2}}{d(P,d_2)} = e = \frac{c}{a} > 1 \quad \forall P \in \Gamma.$$

Se l'equazione dell'iperbole è:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1,$$

allora i vertici sono i punti $V_1=(0,b)$ e $V_2=(0,-b)$, l'asse \vec{y} è l'asse trasverso, gli asintoti sono sempre le rette $y=\frac{b}{a}x$ e $y=-\frac{b}{a}x$, $c=\sqrt{a^2+b^2}$, i fuochi sono $F_1=(0,c)$ e $F_2=(0,-c)$, le direttrici sono $d_1\colon y=\frac{b^2}{c}$ e $d_2\colon y=-\frac{b^2}{c}$ e l'eccentricità è $e=\frac{c}{b}$. Inoltre, l'iperbole è in tal caso il luogo dei punti P del piano tali che:

$$|\overline{PF_1} - \overline{PF_2}| = 2b.$$



Definizione

Un conica irriducibile si dice che è un'iperbole equilatera se ha i punti impropri che individuano direzioni ortogonali.

Proposizione

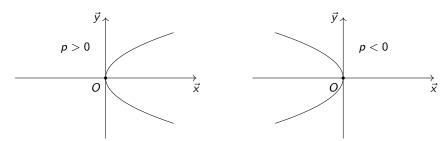
La condizione $\operatorname{Tr}(A)=0$ caratterizza le coniche contenenti come parte la retta impropria oppure che hanno due punti impropri reali e in direzioni ortogonali. In particolare, le coniche irriducibili tali che $\operatorname{Tr}(A)=0$ sono tutte e sole iperboli equilatere.

Fare esercizi 2.8, 2.12 e 2.14 dal libro di esercizi.

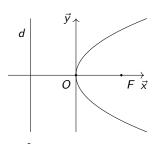
Studio della parabola in forma canonica

L'equazione della parabola in forma canonica è $y^2=2px$. È una conica del tipo II $\beta y^2=2\gamma x$, con $p=\frac{\gamma}{\beta}$.

- 1. La parabola non ha centro di simmetria.
- 2. L'asse \vec{x} è asse di simmetria, perché se $(\alpha, \beta) \in \Gamma \Longrightarrow (\alpha, -\beta) \in \Gamma$.
- 3. L'asse \vec{y} è tangente alla parabola nell'origine O = (0,0).
- 4. L'asse \vec{x} incontra la parabola in O=(0,0) e nel suo punto improprio.
- 5. Il punto O = (0,0) è detto vertice e la retta passante per il vertice della parabola e ortogonale all'asse di simmetria è tangente alla parabola nel vertice.



Il punto $F = (\frac{p}{2}, 0)$ è il fuoco della parabola e la retta $d: x = -\frac{p}{2}$ è la direttrice.



L'equazione della parabola $y^2 = 2px$ si ottiene come il luogo dei punti P = (x, y) del piano tali che $\overline{PF} = d(P, d)$.

Proposizione

Il rapporto $e = \frac{\overline{PF}}{d(P,d)}$ è costante per ogni punto P della parabola Γ e si chiama eccentricità, cioè:

$$e = \frac{\overline{PF}}{d(P,d)} = 1 \quad \forall P \in \Gamma.$$

Fare esercizi 2.10 e 2.15 dal libro di esercizi.

Circonferenze

Una circonferenza è il luogo dei punti P=(x,y) del piano che distano r>0 da un punto (α,β) :

$$(x - \alpha)^2 + (y - \beta)^2 = r^2.$$

r è il raggio e C=(lpha,eta) è il centro della circonferenza, che ha equazione:

$$x^{2} + y^{2} - 2\alpha x - 2\beta y + \alpha^{2} + \beta^{2} - \gamma^{2} = 0.$$

Le circonferenze, allora, sono coniche tali che $a_{11}=a_{22}\neq 0$ e $a_{12}=0$. Inoltre, se $x^2+y^2+ax+by+c=0$ è una circonferenza, allora $C=\left(-\frac{a}{2},-\frac{b}{2}\right)$ e $r=\sqrt{\frac{a^2}{4}+\frac{b^2}{4}-c}$.

- ► Se $\frac{a^2}{4} + \frac{b^2}{4} c > 0$, la circonferenza è reale.
- ▶ Se $\frac{a^2}{4} + \frac{b^2}{4} c = 0$, la conica è spezzata in due rette immaginarie e coniugate aventi in comune il punto $\left(-\frac{a}{2}, -\frac{b}{2}\right)$ e la chiamiamo circonferenza di raggio nullo.
- ▶ Se $\frac{a^2}{4} + \frac{b^2}{4} c < 0$, la conica è irriducibile, ma è priva di punti reali: diremo che abbiamo una circonferenza immaginaria.

Le circonferenze hanno gli stessi punti impropri, (1, i, 0) e (1, -i, 0), che vengono detti punti ciclici del piano.

Fare esercizi da 2.4 a 2.7.

Proposizione

Se una conica passa per i punti ciclici del piano, allora o contiene come parte la retta impropria oppure è una circonferenza.

Riepilogando:

- se $\rho(B) = 1$, abbiamo una conica spezzata in due rette coincidenti;
- se $\rho(B) = 2$, abbiamo una conica spezzata in due rette distinte;
- ▶ se $\rho(B) = 3$, cioè se $|B| \neq 0$, abbiamo una conica irriducibile. In tal caso:
 - ▶ se |A| > 0, abbiamo un'ellisse; essa sarà reale se $Tr(A) \cdot |B| < 0$, immaginaria se $Tr(A) \cdot |B| > 0$; se, inoltre, $a_{11} = a_{22} \neq 0$ e $a_{12} = 0$, abbiamo una circonferenza;
 - ightharpoonup se |A|=0, abbiamo una parabola;
 - ▶ se |A| < 0, abbiamo un'iperbole; se, inoltre, Tr(A) = 0, abbiamo un'iperbole equilatera.

Centro e assi di simmetria

Sia Γ una conica e supponiamo che sia un'ellisse o un'iperbole. Si può dimostrare che, se C=(a,b) è il centro di simmetria della conica, allora le sue coordinate verificano le condizioni:

$$\begin{cases} a_{11}a + a_{12}b + a_{13} = 0 \\ a_{12}a + a_{22}b + a_{23} = 0, \end{cases}$$

cioè sono soluzioni del seguente sistema associato alle prime due righe della matrice B:

$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0 \\ a_{12}x + a_{22}y + a_{23} = 0. \end{cases}$$

Inoltre, gli assi di simmetria sono le rette parallele agli autospazi associati alla matrice A e passano per il centro di simmetria C.

Nel caso della parabola, gli autovalori della matrice A sono 0 e β , in quanto |A|=0. In questo caso, si prova che l'autospazio associato all'autovalore 0 è una retta parallela all'asse di simmetria.

Osservazione

- Per un'iperbole o un'ellisse avente $a_{12} = 0$, gli assi di simmetria sono paralleli agli assi cartesiani e, ovviamente, passano per il centro di simmetria.
- ▶ Una parabola di equazione $y = ax^2 + bx + c$ ha vertice $V = (-\frac{b}{2a}, -\frac{\Delta}{4a})$, fuoco $F = (-\frac{b}{2a}, \frac{1-\Delta}{4a})$, direttrice $y = -\frac{1+\Delta}{4a}$ e asse di simmetria $x = -\frac{b}{2a}$, dove $\Delta = b^2 4ac$.
- ▶ Una parabola di equazione $x = ay^2 + by + c$ ha vertice $V = (-\frac{\Delta}{4a}, -\frac{b}{2a})$, fuoco $F = (\frac{1-\Delta}{4a}, -\frac{b}{2a})$, direttrice $x = -\frac{1+\Delta}{4a}$ e asse di simmetria $y = -\frac{b}{2a}$, dove $\Delta = b^2 4ac$.

Tangenza

Definizione

Data una conica Γ , diremo che una retta r è tangente a Γ in un suo punto P_0 se essa incontra Γ in due punti coincidenti in P_0 .

Teorema

Data una conica Γ irriducibile di equazione ${}^t\underline{x}B\underline{x}=0$, sia P_0 un suo punto di coordinate \underline{x}_0 . Allora esiste la tangente a Γ in P_0 e la sua equazione è ${}^t\underline{x}_0B\underline{x}=0$.

Definizione

Chiamiamo curva algebrica C di ordine n il luogo dei punti propri o impropri, reali o immaginari, che con le loro coordinate omogenee soddisfano un polinomio omogeneo F(x',y',t')=0 di grado n nelle variabili x',y',t'.

Osservazione

Se $F = F_1^{n_1} F_2^{n_2} \dots F_k^{n_k}$, con F_1, F_2, \dots, F_k irriducibili, allora la curva C è costituita dai punti di $F_1 = 0$ contati n_1 volte, dai punti $F_2 = 0$ contati n_2 volte, ..., dai punti di $F_k = 0$, contati n_k volte. $F_1 = 0$, $F_2 = 0, \dots$, $F_k = 0$ sono le componenti irriducibili della curva di equazione F = 0.

Teorema (Teorema di Bezout)

Due curve algebriche C_1 e C_2 di ordini m e n si incontrano in $m \cdot n$ punti oppure hanno una componente in comune.

Osservazione

Due coniche hanno in comune 4 punti oppure hanno in comune una retta.

Teorema

Dati 5 punti distinti nel piano, per questi punti passa una sola conica o ne passano infinite. Se ne passano infinite, almeno 4 dei 5 punti sono allineati. DIMOSTRAZIONE.

Fasci di coniche

Definizione

Date due coniche Γ_1 : $f_1=0$ e Γ_2 : $f_2=0$, chiamiamo fascio di coniche individuato da Γ_1 e Γ_2 la totalità delle coniche la cui equazione si ottiene dalla combinazione lineare $\lambda f_1 + \mu f_2 = 0$, al variare di λ e μ non entrambi nulli.

Osservazione

Per determinare una conica del fascio è sufficiente determinare $\frac{\lambda}{\mu}$ oppure $\frac{\mu}{\lambda}$.

Definizione

Un punto $P \in \Gamma_1 \cap \Gamma_2$ è detto punto base del fascio.

Osservazione

Tutte le coniche del fascio passano per i punti base. Per un punto P_0 non base del fascio passa una sola conica del fascio.

Proposizione

In un fascio di coniche $\lambda f_1 + \mu f_2 = 0$ ci sono 3 coniche spezzate oppure tutte le coniche del fascio sono spezzate.

DIMOSTRAZIONE.

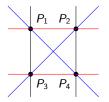
Teorema

Un fascio di coniche è individuato da due sue coniche qualsiasi.

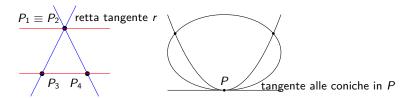
Coniche spezzate di un fascio

Se un fascio di coniche è individuato da due coniche prive di rette in comune, i punti base del fascio sono 4, più o meno coincidenti, e le coniche spezzate appartenenti al fascio sono 3, più o meno coincidenti.

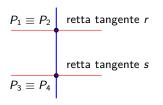
1. Punti base tutti distinti tra loro. In tal caso, le coniche spezzate distinte sono 3 e sono $P_1P_2 \cup P_3P_4$, $P_1P_3 \cup P_2P_4$ e $P_1P_4 \cup P_2P_3$:



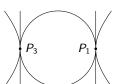
2. Tangenza: 2 dei 4 punti coincidenti tra loro. In questo caso le coniche del fascio hanno tutte la stessa retta tangente r in un punto $P_1 \equiv P_2$. Le coniche spezzate del fascio sono $r \cup P_3P_4$ e $P_1P_3 \cup P_1P_4$, contata due volte nel computo delle coniche spezzate del fascio.



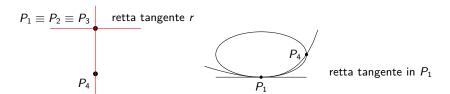
3. Bitangenza: i 4 punti coincidono a due a due. In tal caso, le coniche del fascio hanno tutte la stessa retta tangente r in $P_1 \equiv P_2$ e la stessa retta tangente s in $P_3 \equiv P_4$. Le coniche spezzate del fascio sono $r \cup s$ e la conica spezzata in due rette coincidenti con P_1P_3 (tale conica è contata due volte nel computo delle coniche spezzate.)



rette tangenti alle due coniche in P_1 e P_3



4. Coniche che si osculano: 3 dei 4 punti coincidono. In tal caso le coniche hanno tutte la stessa retta tangente r in P₁ ≡ P₂ ≡ P₃. L'unica conica spezzata del fascio è r ∪ P₁P₄, contata 3 volte nel computo delle coniche spezzate:



5. Coniche che si iperosculano: i 4 punti sono tutti coincidenti. In tal caso le coniche hanno tutte la stessa retta tangente r in $P_1 \equiv P_2 \equiv P_3 \equiv P_4$. L'unica conica spezzata del fascio è quella spezzata in due rette coincidenti con r e tale conica è contata tre volte nel computo delle coniche spezzate:

Fare esercizi da 2.16 a 2.51 dal libro ed esercizi da "Competenze minime UDE6" e "Tutte le competenze UDE6", reperibili su studium.