Corso di Laurea in Ingegneria Industriale (F-O)

Prova di **Algebra lineare e Geometria** - Appello 23 Febbraio 2024

Durata della prova: 3 ore.

È vietato uscire dall'aula prima di aver consegnato definitivamente il compito.

È vietato consultare libri o appunti.

I

Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'endomorfismo definito dall'assegnazione:

$$f(x, y, z, t) = ((h+3)x + (2h-1)y + z + t, 2y + z + t, y + 2z + t, hy + hz + (h+1)t) \quad \forall (x, y, z, t) \in \mathbb{R}^4,$$

al variare di $h \in \mathbb{R}$.

- 1. **5 punti.** Studiare f, determinando in ciascun caso Im f e Ker f e le loro equazioni cartesiane.
- 2. **5 punti.** Diagonalizzare, se possibile, la matrice M(f) nei casi h = -1 e h = 0.
- 3. **5 punti.** È dato il sottospazio $V = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + z = 0, y + t = 0\}$. Calcolare, al variare di $h \in \mathbb{R}$, f(V) e la somma V + f(V), specificandone in ciascun caso la dimensione e determinando, in particolare, le equazioni cartesiane di V + f(V).

Soluzione

1. È facile vedere che:

$$M(f) = \left(\begin{array}{cccc} h+3 & 2h-1 & 1 & 1\\ 0 & 2 & 1 & 1\\ 0 & 1 & 2 & 1\\ 0 & h & h & h+1 \end{array}\right).$$

Dal momento che $|M(f)| = (h+3)^2$, per $h \neq -3$ abbiamo un isomorfismo, cioè f è iniettiva e suriettiva, per cui Ker $f = \{(0,0,0,0)\}$ e Im $f = \mathbb{R}^4$.

Sia h = -3. In questo caso:

$$M(f) = \begin{pmatrix} 0 & -7 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & -3 & -3 & -2 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 0 & -7 & 1 & 1 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi, dim Im $f = \rho(M(f)) = 3$ e una sua base è data da [(-7,2,1,-3),(1,1,2,-3),(1,1,1,-2)]. Da:

$$\begin{pmatrix}
-7 & 2 & 1 & -3 \\
1 & 1 & 2 & -3 \\
1 & 1 & 1 & -2 \\
x & y & z & t
\end{pmatrix}
\xrightarrow{\text{riducendo}}
\begin{pmatrix}
-7 & 2 & 1 & -3 \\
15 & -3 & 0 & 3 \\
3 & 0 & 0 & 0 \\
0 & 0 & 0 & y+z+t
\end{pmatrix}$$

vediamo che:

Im
$$f = \{(x, y, z, t) \in \mathbb{R}^4 \mid y + z + t = 0\}.$$

Inoltre, dim Ker $f = 4 - \dim \operatorname{Im} f = 1$ e si ha:

Ker
$$f = \{(x, y, z, t) \in \mathbb{R}^4 \mid -7y + z + t = 0, y = 0, z = 0\} = \mathcal{L}((1, 0, 0, 0)).$$

2. Sia h = -1. In questo caso abbiamo:

$$P(T) = \begin{vmatrix} 2-T & -3 & 1 & 1\\ 0 & 2-T & 1 & 1\\ 0 & 1 & 2-T & 1\\ 0 & -1 & -1 & -T \end{vmatrix} = (2-T)^2 (1-T)^2.$$

Quindi, gli autovalori sono 1 e 2, con $m_1 = 2$ e $m_2 = 2$. Sappiamo che f è semplice e che, dunque, M(f) è diagonalizzabile se e solo se si ha contemporaneamente dim $V_1 = m_1 = 2$ e dim $V_2 = m_2 = 2$.

Sia T = 1. Abbiamo $V_1 = \text{Ker } f_1$, dove $f_1 = f - i$ e:

$$M(f_1) = M(f) - I = \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi, si ha $\rho(M(f_1)) = 2$, per cui dim $V_1 = 4 - 2 = 2 = m_1$. Affinché f sia semplice, rimane da stabilire se dim $V_2 = m_2 = 2$.

Sia T = 2. Abbiamo $V_2 = \text{Ker } f_2$, dove $f_2 = f - 2i$ e:

$$M(f_2) = M(f) - 2I = \begin{pmatrix} 0 & -3 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & -1 & -2 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 0 & -3 & 1 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi, si ha $\rho(M(f_2)) = 3$ e dim $V_2 = 4 - 3 = 1 < 2 = m_2$, per cui per h = -1 f non è semplice e la matrice M(f) non è diagonalizzabile.

Sia h = 0. In questo caso:

$$P(T) = \begin{vmatrix} 3-T & -1 & 1 & 1\\ 0 & 2-T & 1 & 1\\ 0 & 1 & 2-T & 1\\ 0 & 0 & 0 & 1-T \end{vmatrix} = (3-T)^2 (1-T)^2.$$

Quindi, gli autovalori sono 1 e 3, con $m_1 = 2$ e $m_3 = 2$. Questo vuol dire che in questo caso f è semplice e, perciò, che M(f) è diagonalizzabile se e solo se si ha contemporaneamente dim $V_1 = m_1 = 2$ e dim $V_3 = m_3 = 2$

Sia T = 1. Abbiamo che $V_1 = \text{Ker } f_1$, dove $f_1 = f - i$ e:

$$M(f_1) = M(f) - I = \begin{pmatrix} 2 & -1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 2 & -1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

per cui $\rho(M(f_1)) = 2$ e dim $V_1 = 4 - 2 = 2 = m_1$. Questo vuol dire che, se dovesse essere dim $V_3 = m_3 = 2$, f sarà semplice e sarà possibile diagonalizzare M(f).

Sia T = 3. In questo caso, abbiamo $V_3 = \text{Ker } f_3$, dove $f_3 = f - 3i$ e:

$$M(f_3) = M(f) - 3I = \begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -2 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi, $\rho(M(f_3)) = 2$ e si ha dim $V_3 = 4 - 2 = 2 = m_3$, per cui per h = 0 f è semplice e la matrice M(f) risulta diagonalizzabile. Dalle matrici precedenti otteniamo subito che:

$$V_1 = \{(x,y,z,t) \in \mathbb{R}^4 \mid 2x-y+z+t=0, \ y+z+t=0\} = \{(y,y,z,-y-z) \in \mathbb{R}^4\} = \mathcal{L}((1,1,0,-1),(0,0,1,-1)) = \{(y,y,z,-y-z) \in \mathbb{R}^4\} = \mathcal{L}((1,1,0,-1),(0,0,1)) = \{(y,y,z,-y-z) \in \mathbb{R}^4\} = \mathcal{L}((1,1,0,$$

e che:

$$V_3 = \{(x, y, z, t) \in \mathbb{R}^4 \mid -y + z + t = 0, \ t = 0\} = \{(x, y, y, 0) \in \mathbb{R}^4\} = \mathcal{L}((1, 0, 0, 0), (0, 1, 1, 0)).$$

Quindi, una base di autovettori è [(1,1,0,-1),(0,0,1,-1),(1,0,0,0),(0,1,1,0)] e possiamo dire che $P^{-1}M(f)P = D$, dove:

$$P = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ -1 & -1 & 0 & 0 \end{array}\right) \quad \text{e} \quad D = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right).$$

3. Dal momento che $V = \mathcal{L}((1,0,-1,0),(0,1,0,-1))$, possiamo dire che:

$$f(V) = \mathcal{L}(f(1,0,-1,0), f(0,1,0,-1)) = \mathcal{L}((h+2,-1,-2,-h), (2h-2,1,0,-1)).$$

Dato che la matrice:

$$\left(\begin{array}{cccc}
h+2 & -1 & -2 & -h \\
2h-2 & 1 & 0 & -1
\end{array}\right)$$

ha rango 2 per ogni $h \in \mathbb{R}$, possiamo dire che dim f(V) = 2 per ogni $h \in \mathbb{R}$. Inoltre:

$$V + f(V) = \mathcal{L}((1,0,-1,0),(0,1,0,-1),(h+2,-1,-2,-h),(2h-2,1,0,-1)).$$

Da:

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ h+2 & -1 & -2 & -h \\ 2h-2 & 1 & 0 & -1 \end{pmatrix} \xrightarrow{\text{riducendo, per } h \neq -1} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ h & 0 & 0 & -h-1 \\ 2h-2 & 0 & 0 & 0 \end{pmatrix}$$

vediamo che per $h \neq 1, -1$ si ha dim(V + f(V)) = 4 e, essendo $V + f(V) \subseteq \mathbb{R}^4$, concludiamo che in tal caso $V + f(V) = \mathbb{R}^4$.

Sia h=1. La riduzione precedente ci porta alla conclusione che dim(V+f(V))=3. Dal momento che le prime tre righe della matrice ridotta ci forniscono una base di V+f(V), otteniamo la sua equazione cartesiana da:

$$\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & -2 \\
x & y & z & t
\end{pmatrix}
\xrightarrow{\text{riducendo}}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & -2 \\
0 & 0 & 0 & 2x + y + 2z + t
\end{pmatrix}$$

$$V + f(V) = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y + 2z + t = 0\}.$$

Sia h = -. In questo caso, da:

$$\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & -1 & -2 & 1 \\
-4 & 1 & 0 & -1
\end{pmatrix}
\xrightarrow{\text{riducendo}}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

vediamo che anche in questo caso abbiamo $\dim(V + f(V)) = 3$ e ricaviamo la sua equazione cartesiana da:

$$\begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ x & y & z & t \end{vmatrix} = 0 \Leftrightarrow y + t = 0,$$

per cui $V + f(V) = \{(x, y, z, t) \in \mathbb{R}^4 \mid y + t = 0\}.$

1. **5 punti.** È assegnato nello spazio un sistema di riferimento cartesiano ortogonale $O, \vec{x}, \vec{y}, \vec{z}, u$. Sono dati i piani:

$$\pi_1$$
: $x + y - z + 1 = 0$ e π_2 : $2x - y + 4z + 1 = 0$

e il punto P=(-1,-1,-1). Determinare il piano π ortogonale a π_1 e π_2 e passante per P. Data $r=\pi_1\cap\pi_2$, calcolare d(P,r).

2. **5 punti.** È assegnato nel piano un sistema di riferimento cartesiano ortogonale O, \vec{x}, \vec{y}, u . Studiare il fascio di coniche di equazione:

$$x^2 - 2hxy - y^2 + 2y - 1 = 0$$
,

determinandone, in particolare, punti base e coniche spezzate. Determinare gli asintoti della conica del fascio tangente alla retta di equazione x + y = 0.

3. **5 punti.** È assegnato nello spazio un sistema di riferimento cartesiano ortogonale $O, \vec{x}, \vec{y}, \vec{z}, u$. Determinare il cono e il cilindro aventi vertici, rispettivamente, V = (0, 1, 1) e V' = (1, -1, 1, 0) e contenenti la conica:

$$\Gamma \colon \begin{cases} x^2 - y^2 - 1 = 0 \\ z = 0. \end{cases}$$

Stabilire la natura del cilindro.

4. **ESERCIZIO BONUS: 5 PUNTI.** È assegnato nel piano un sistema di riferimento cartesiano ortogonale O, \vec{x}, \vec{y}, u . Determinare il vertice e l'asse di simmetria della parabola di equazione:

$$x^2 - 2xy + y^2 - x = 0.$$

Soluzione

1. Un vettore di componenti (a, b, c) ortogonale al piano π è tale che:

$$\begin{cases} a+b-c=0\\ 2a-b+4c=0, \end{cases}$$

da cui segue che (1, -2, -1) sono componenti di un vettore ortogonale al piano π e si ha:

$$\pi$$
: $x-2y-z-2=0$.

Inoltre, dato che $r = \pi_1 \cap \pi_2$ e che π è ortogonale ai due piani, allora r e π sono ortogonali. Inoltre, poiché $P \in \pi$, se $H = r \cap \pi$, si ha che $d(P, r) = \overline{PH}$. Da:

$$H = \pi \cap r : \begin{cases} x - 2y - z - 2 = 0 \\ x + y - z + 1 = 0 \\ 2x - y + 4z + 1 = 0 \end{cases} \Rightarrow \begin{cases} x = -\frac{1}{3} \\ y = -1 \\ z = -\frac{1}{3} \end{cases}$$

segue che $H = (-\frac{1}{3}, -1, -\frac{1}{3})$ e che $d(P, r) = \overline{PH} = \frac{2}{3}\sqrt{2}$.

2. Osserviamo che la conica nascosta ha equazione xy = 0, per cui è una conica spezzata. Inoltre, da:

$$B = \left(\begin{array}{rrr} 1 & -h & 0 \\ -h & -1 & 1 \\ 0 & 1 & -1 \end{array} \right)$$

vediamo che $|B| = h^2$, per cui l'altra conica spezzata del fascio si ottiene per h = 0 ed ha equazione:

$$x^{2} - y^{2} + 2y - 1 = 0 \Rightarrow (x + y - 1)(x - y + 1) = 0.$$

Inoltre, per $h \neq 0$ abbiamo coniche irriducibili. I punti base del fascio sono dati da:

$$\begin{cases} xy = 0 \\ (x+y-1)(x-y+1) = 0, \end{cases}$$

per cui abbiamo il punto (0,1) contato due volte e i punti (1,0) e (-1,0). Infine, dato che:

$$|A| = \begin{vmatrix} 1 & -h \\ -h & -1 \end{vmatrix} = -1 - h^2 < 0 \quad \forall h \in \mathbb{R},$$

abbiamo che per $h \neq 0$ le coniche sono tutte delle iperboli ed esse sono anche tutte equilatere, poiché Tr(A) = 0 per ogni $h \in \mathbb{R}$.

Cerchiamo la conica del fascio tangente alla retta x + y = 0:

$$\begin{cases} x^2 - 2hxy - y^2 + 2y - 1 = 0 \\ x + y = 0 \end{cases} \Rightarrow \begin{cases} 2hx^2 - 2x - 1 = 0 \\ y = -x. \end{cases}$$

Affinché la retta sia tangente dobbiamo avere due soluzioni coincidenti ed è facile vedere che questo avviene solo se $h = -\frac{1}{2}$. Quindi, la conica cercata ha equazione:

$$x^2 + xy - y^2 + 2y - 1 = 0.$$

Da:

$$B = \left(\begin{array}{ccc} 1 & \frac{1}{2} & 0\\ \frac{1}{2} & -1 & 1\\ 0 & 1 & -1 \end{array}\right)$$

otteniamo il sistema:

$$\begin{cases} x + \frac{1}{2}y = 0 \\ \frac{1}{2}x - y + 1 = 0 \end{cases} \Rightarrow \begin{cases} x = -\frac{2}{5} \\ y = \frac{4}{5}. \end{cases}$$

Quindi, $C = (-\frac{2}{5}, \frac{4}{5})$ è il centro di simmetria dell'iperbole data. Per determinarne gli asintoti occorre calcolarne i punti impropri:

$$\begin{cases} x^2 + xy - y^2 + 2yt - t^2 = 0 \\ t = 0 \end{cases} \Rightarrow P_1^{\infty} = (-1 + \sqrt{5}, 2, 0) \quad \text{e} \quad P_2^{\infty} = (-1 - \sqrt{5}, 2, 0).$$

Gli asintoti sono le rette:

$$CP_1^{\infty}$$
: $10x - (5\sqrt{5} - 5)y + 4\sqrt{5} = 0$

e

$$CP_2^{\infty}$$
: $10x + (5\sqrt{5} + 5)y - 4\sqrt{5} = 0$.

3. Il generico punto della conica Γ è $P=(\alpha,\beta,0)$, dove $\alpha^2-\beta^2-1=0$. Il cono cercato è il luogo delle rette:

$$PV \colon \frac{x}{\alpha} = \frac{y-1}{\beta-1} = 1-z \Rightarrow \begin{cases} \frac{x}{\alpha} = 1-z \\ \frac{y-1}{\beta-1} = 1-z \end{cases} \Rightarrow \begin{cases} \alpha = \frac{x}{1-z} \\ \beta = \frac{y-z}{1-z}. \end{cases}$$

Quindi, sostituendo in $\alpha^2 - \beta^2 - 1 = 0$ otteniamo:

$$\frac{x^2}{(1-z)^2} - \frac{(y-z)^2}{(1-z)^2} - 1 = 0 \Rightarrow x^2 - (y-z)^2 - (1-z)^2 = 0 \Rightarrow x^2 - y^2 + 2yz - 2z^2 + 2z - 1 = 0,$$

che è l'equazione del cono.

Il cilindro (che sarà iperbolico, dato che Γ è un'iperbole) è il luogo delle rette PV':

$$PV'$$
: $x - \alpha = -y + \beta = z \Rightarrow \begin{cases} \alpha = x - z \\ \beta = y + z. \end{cases}$

Sostituendo come fatto in precedenza otteniamo l'equazione del cilindro:

$$(x-z)^2 - (y+z)^2 - 1 = 0 \Rightarrow x^2 - y^2 - 2xz - 2yz - 1 = 0.$$

4. Il punto improprio della parabola è dato dal sistema:

$$\begin{cases} x^2 - 2xy + y^2 - xt = 0 \\ t = 0, \end{cases}$$

per cui esso è P_{∞} = (1,1,0). Questo vuol dire che le rette ortogonali all'asse di simmetria hanno equazione x + y + k = 0. Tra tutte queste rette cerchiamo quella tangente alla parabola e lo sarà nel suo vertice:

$$\begin{cases} x^2 - 2xy + y^2 - x = 0 \\ y = -x - k \end{cases} \Rightarrow \begin{cases} 4x^2 + (4k - 1)x + k^2 = 0 \\ y = -x - k. \end{cases}$$

Affinché la retta sia tangente deve accadere che:

$$\Delta = 0 \Leftrightarrow -8k + 1 = 0 \Leftrightarrow k = \frac{1}{8}.$$

Quindi, il vertice si ottiene risolvendo il sistema:

$$\begin{cases} 4x^2 - \frac{1}{2}x + \frac{1}{64} = 0 \\ y = -x - \frac{1}{8} \end{cases} \Rightarrow \begin{cases} x = \frac{1}{16} \\ y = -\frac{3}{16}. \end{cases}$$

Quindi, il vertice della parabola è il punto $V=(\frac{1}{16},-\frac{3}{16})$ e l'asse di simmetria della parabola è la retta:

$$VP_{\infty} \colon x - y - \frac{1}{4} = 0.$$