Corso di Laurea in Ingegneria Elettronica

Prova di Algebra lineare e Geometria- Appello 23 Gennaio 2023

Durata della prova: 3 ore.

È vietato uscire dall'aula prima di aver consegnato definitivamente il compito.

È vietato consultare libri o appunti.

Compito A

Ι

1. **5 punti.** Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito dalle assegnazioni:

$$f(1,0,1) = (0,1,-1-h)$$

$$f(1,1,0) = (h,h,h)$$

$$f(0,0,1) = (0,0,h-1),$$

al variare di $h \in \mathbb{R}$. Studiare la semplicità di f al variare di $h \in \mathbb{R}$, determinando, ove possibile, una base di autovettori per f.

2. **5 punti.** Sia $g: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito da:

$$g(x, y, z) = (-x - y + hz, x + 2y + z, x + hy + z),$$

al variare di $h \in \mathbb{R}$. Studiare l'endomorfismo g, determinando in ciascun caso Im f e Ker f e le loro equazioni cartesiane.

- 3. **5 punti.** Dato l'endomorfismo g del punto precedente, determinare, al variare di $h \in \mathbb{R}$, $g^{-1}(0,1,1)$.
- 4. **ESERCIZIO BONUS: 5 punti.** Sono dati i vettori $v_1 = (1,0,1,0), v_2 = (0,1,0,0), v_3 = (0,0,2,1) \in \mathbb{R}^4$ e lo spazio $V = \mathcal{L}(v_1,v_2,v_3)$. Determinare l'endomorfismo $\varphi \colon V \to V$ tale che:
 - $v_1 \in V_{-1}$
 - $v_2 \in \operatorname{Ker} \varphi$
 - $\varphi(v_3) = (1, 1, -1, -1).$

Determinare l'endomorfismo $\psi \colon \mathbb{R}^4 \to \mathbb{R}^4$ tale che la restrizione $\psi|_V$ induce φ e per il quale si ha $\psi(0,0,0,1) = (0,0,0,1)$.

Solutione

1. Dalle assegnazioni è immediato vedere che:

$$M(f) = \begin{pmatrix} 0 & h & 0 \\ 1 & h-1 & 0 \\ -2h & 3h & h-1 \end{pmatrix},$$

per cui:

$$P(T) = \begin{vmatrix} -T & h & 0 \\ 1 & h - 1 - T & 0 \\ -2h & 3h & h - 1 - T \end{vmatrix} = (h - 1 - T)[T^2 - (h - 1)T - h],$$

per cui gli autovalori sono h-1, h, -1. Essi sono tutti distinti di molteplicità algebrica 1 per $h \neq 0, -1$. Questo vuol dire che per $h \neq 0, -1$ l'endomorfismo è sicuramente semplice ed è possibile determinare una base di autovettori.

Sia, dunque, $h \neq 0, -1$. In tal caso, dato che $m_h = m_{h-1} = m_{-1} = 1$, possiamo dire che tutti gli autospazi hanno dimensione 1. Osservato poi, che, sapendo che f(0,0,1) = (0,0,h-1), possiamo dire che $(0,0,1) \in V_{h-1}$ e, dovendo essere dim $V_{h-1} = 1$, concludiamo immediatamente che $V_{h-1} = \mathcal{L}((0,0,1))$.

Sia T = h. In tal caso, sappiamo che $V_h = \text{Ker } f_h$, dove $f_h = f - hi$ e:

$$M(f_h) = M(f) - hI = \begin{pmatrix} -h & h & 0 \\ 1 & -1 & 0 \\ -2h & 3h & -1 \end{pmatrix} \xrightarrow{\text{riducendo, dato che } h \neq 0} \begin{pmatrix} -h & h & 0 \\ 0 & 0 & 0 \\ 0 & h & -1 \end{pmatrix},$$

per cui:

$$V_h = \{(x, y, z) \in \mathbb{R}^3 \mid -hx + hy = 0, hy - z = 0\} = \mathcal{L}((1, 1, h)).$$

Sia T = -1. Sappiamo che $f_{-1} = f + i$ e:

$$M(f_{-1}) = M(f) + I = \begin{pmatrix} 1 & h & 0 \\ 1 & h & 0 \\ -2h & 3h & h \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} 1 & h & 0 \\ 0 & 0 & 0 \\ 0 & 2h^2 + 3h & h \end{pmatrix},$$

per cui, ricordando che $h \neq 0$, abbiamo:

$$V_{-1} = \{(x, y, z) \in \mathbb{R}^3 \mid x + hy = 0, (2h^2 + 3h)y + hz = 0\} = \mathcal{L}((-h, 1, -2h - 3)).$$

Quindi, per $h \neq 0, -1$ una base di autovettori è data da [(0,0,1),(1,1,h),(-h,1,-2h-3)].

Sia h = 0. In tal caso gli autovalori sono 0 e -1, con $m_0 = 1$ e $m_{-1} = 2$, per cui possiamo dire che in questo caso f è semplice se e solo se dim $V_{-1} = m_{-1} = 2$.

Sia, dunque, T = -1. Sappiamo che $V_{-1} = \text{Ker } f_{-1}$, dove $f_{-1} = f + i$ e:

$$M(f_{-1}) = M(f) + I = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

È evidente che dim $V_{-1}=2$, per cui anche per h=-1 l'endomorfismo è semplice e possiamo determinare una base di autovettori. Dalla matrice precedente vediamo che:

$$V_{-1} = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\} = \mathcal{L}((0, 1, 0), (0, 0, 1)).$$

Sia T=0. Sappiamo che $V_0=\operatorname{Ker} f$:

$$M(f) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right),$$

per cui:

$$V_0 = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = 0, z = 0\} = \mathcal{L}((1, 1, 0)).$$

Quindi, per h = 0 una base di autovettori è [(0, 1, 0), (0, 0, 1), (1, 1, 0)].

Infine, sia h = -1. In questo caso gli autovalori sono -2 e -1, con $m_{-1} = 2$ e $m_{-2} = 1$. Questo significa che f è semplice se e solo se dim $V_{-1} = m_{-1} = 2$.

Sia, dunque, T = -1. Sappiamo che $V_{-1} = \operatorname{Ker} f_{-1}$, dove $f_{-1} = f + i$ e:

$$M(f_{-1}) = M(f) + I = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 2 & -3 & -1 \end{pmatrix}.$$

Quindi, in questo caso si ha dim $V_{-1} = 1 < 2 = m_{-1}$, per cui per h = -1 l'endomorfismo non è semplice e non possiamo determinare in questo caso una base di autovettori.

2. È chiaro che:

$$M(g) = \left(\begin{array}{ccc} -1 & -1 & h \\ 1 & 2 & 1 \\ 1 & h & 1 \end{array}\right),$$

per cui, essendo $|M(g)| = h^2 - h - 2$, possiamo dire che per $h \neq 2, -1$ l'endomorfismo g è un isomorfismo. Questo vuol dire che g è iniettiva e suriettiva, per cui Ker $g = \{(0,0,0)\}$ e Im $g = \mathbb{R}^3$.

Sia h = -1. In questo caso:

$$M(g) = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Quindi, dim Im $g = \rho(M(g)) = 2$ e una sua base è data da [(-1, 1, 1), (-1, 2, -1)]. Inoltre, da:

$$\begin{vmatrix} -1 & 1 & 1 \\ -1 & 2 & -1 \\ x & y & z \end{vmatrix} = 0 \Leftrightarrow -3x - 2y - z = 0$$

vediamo che:

Im
$$g = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 2y + z = 0\}.$$

Inoltre, dim Ker $g = \dim \mathbb{R}^3 - \dim \operatorname{Im} g = 1$ e:

$$\operatorname{Ker} g = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y - z = 0, y = 0\} = \mathcal{L}((1, 0, -1)).$$

Sia h = 2. In questo caso:

$$M(g) = \begin{pmatrix} -1 & -1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Quindi, dim Im $g = \rho(M(g)) = 2$ e una sua base è data da [(-1, 1, 1), (-1, 2, 2)]. Inoltre, da:

$$\begin{vmatrix} -1 & -1 & 1 \\ -1 & 2 & 2 \\ x & y & z \end{vmatrix} = 0 \Leftrightarrow y - z = 0$$

vediamo che:

Im
$$g = \{(x, y, z) \in \mathbb{R}^3 \mid y - z = 0\}.$$

Inoltre, dim Ker $g = \dim \mathbb{R}^3 - \dim \operatorname{Im} g = 1$ e:

$$\operatorname{Ker} g = \{(x, y, z) \in \mathbb{R}^3 \mid -x - y + 2z = 0, \ y + 3z = 0\} = \mathcal{L}((5, -3, 1)).$$

3. Per calcolare la controimmagine del vettore occorre risolvere il sistema la cui matrice completa associata è:

$$\begin{pmatrix} -1 & -1 & h & 0 \\ 1 & 2 & 1 & 1 \\ 1 & h & 1 & 1 \end{pmatrix} \xrightarrow{\text{riducendo, per } h \neq -1} \begin{pmatrix} -1 & -1 & h & 0 \\ 0 & 1 & h + 1 & 1 \\ 0 & h - 2 & 0 & 0 \end{pmatrix}.$$

Quindi, per $h \neq 2, -1$ abbiamo una sola soluzione:

$$\begin{cases}
-x - y + hz = 0 \\
y + (h+1)z = 1 \Rightarrow \begin{cases}
x = \frac{h}{h+1} \\
y = 0 \\
z = \frac{1}{h+1}
\end{cases}$$

Quindi, per $h \neq 2, -1$ abbiamo:

$$g^{-1}(0,1,1) = \left\{ \left(\frac{h}{h+1}, 0, \frac{1}{h+1} \right) \right\}.$$

Sia h = 2. In tal caso, la matrice precedente diventa:

$$\left(\begin{array}{ccc|c} -1 & -1 & 2 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right),$$

per cui il sistema ha ∞^1 soluzioni e abbiamo:

$$g^{-1}(0,1,1) = \{(x,y,z) \in \mathbb{R}^3 \mid -x-y+2z = 0, \ y+3z = 1\} = \{(5z-1,-3z+1,z) \in \mathbb{R}^3\}.$$

Sia h = -1. In questo caso abbiamo:

$$\begin{pmatrix} -1 & -1 & -1 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{riducendo}} \begin{pmatrix} -1 & -1 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Quindi, il sistema è impossibile, per cui in questo caso $g^{-1}(0,1,1) = \emptyset$.

4. Dalle condizioni date si evince che:

$$\varphi(v_1) = -v_1$$

$$\varphi(v_2) = (0, 0, 0, 0)$$

$$\varphi(v_3) = (1, 1, -1, -1).$$

Queste condizioni determinano ϕ in quanto v_1, v_2, v_3 , come si può facilmente verificare, sono linearmente indipendenti e costituiscono, perciò, una base di V. Inoltre, se la restrizione di ψ a V induce φ , dalle condizioni date abbiamo:

$$\psi(v_1) = \varphi(v_1) = -v_1$$

$$\psi(v_2) = \varphi(v_2) = (0, 0, 0, 0)$$

$$\psi(v_3) = \varphi(v_3) = (1, 1, -1, -1)$$

$$\psi(0, 0, 0, 1) = (0, 0, 0, 1).$$

Anche queste condizioni assegnano perfettamente l'endomorfismo cercato in quanto, $v_1, v_2, v_3, (0, 0, 0, 1)$ sono linearmente indipendenti, come si vede facilmente, ed essi individuano, dunque, una base di \mathbb{R}^4 .

H

1. **5 punti.** È assegnato nello spazio un sistema di riferimento cartesiano ortogonale $O, \vec{x}, \vec{y}, \vec{z}, u$. Dati la retta:

$$r: \begin{cases} x - y - z + 2 = 0\\ 3x + y + 2z - 2 = 0 \end{cases}$$

e il piano π : x+y+z=0, determinare il piano α parallelo alla retta r, ortogonale al piano π e passante per O. Mostrare che la retta r e l'asse \vec{y} sono complanari e determinare il piano che le contiene.

- 2. **5 punti.** È assegnato nel piano un sistema di riferimento cartesiano ortogonale O, \vec{x}, \vec{y}, u . Determinare e studiare il fascio di coniche passanti per i punti A = (-1, 2), B = (0, 2), C = (2, 0) e per l'origine O = (0, 0). Determinare il centro di simmetria dell'iperbole equilatera del fascio.
- 3. **5 punti.** È assegnato nello spazio un sistema di riferimento cartesiano ortogonale $O, \vec{x}, \vec{y}, \vec{z}, u$. Data la conica:

$$\Gamma \colon \begin{cases} 2x^2 - y^2 = -1 \\ z = 0, \end{cases}$$

determinare e studiare le quadriche contenenti Γ e i punti A=(0,1,1), B=(0,-1,1) e C=(1,1,1).

1. È facile vedere che parametri direttori delle retta r sono (-1, -5, 4), per cui queste sono le componenti di un vettore \vec{v} parallelo a r. Inoltre, è evidente che (1, 1, 1) sono le componenti di un vettore \vec{n}_1 ortogonale al piano π . Quindi, se (a, b, c) sono le componenti di un vettore \vec{n}_2 ortogonale al piano α , il vettore \vec{n}_2 è ortogonale sia a \vec{v} che a \vec{n}_1 , per cui abbiamo:

$$\begin{cases} -a - 5b + 4c = 0\\ a + b + c = 0. \end{cases}$$

Quindi, possiamo dire che componenti del vettore \vec{n}_2 sono (9, -5, -4) e abbiamo che:

$$\alpha \colon 9x - 5y - 4z = 0.$$

Osservato che \vec{y} : z=z=0, è evidente che la retta r e l'asse \vec{y} sono complanari in quanto incidenti:

$$r \cap \vec{y} \colon \begin{cases} x - y - z + 2 = 0 \\ 3x + y + 2z - 2 = 0 \\ x = 0 \\ z = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 2 \\ z = 0. \end{cases}$$

Per determinare il piano che le contiene consideriamo il fascio di piani individuato dalla retta r:

$$\lambda(x - y - z + 2) + \mu(3x + y + 2z - 2) = 0$$

e imponiamo il passaggio per un punto dell'asse \vec{y} distinto da (0,2,0). Possiamo, per esempio, imporre il passaggio per l'origine O=(0,0,0). Così facendo abbiamo:

$$2\lambda - 2\mu = 0 \Rightarrow \lambda = \mu.$$

Prendendo $\lambda = 1$ e $\mu = 1$, vediamo che il piano contenente le due rette è quello di equazione 4x + z = 0.

2. Le coniche spezzate del fascio sono $AB \cup CO$: y(y-2) = 0, $AC \cup BO$: x(2x+3y-4) = 0 e $AO \cup BC$: (2x+y)(x+y-2) = 0. Quindi, possiamo dire che il fascio di coniche cercato ha equazione:

$$hy(y-2) + x(2x+3y-4) = 0 \Rightarrow 2x^2 + 3xy + hy^2 - 4x - 2hy = 0.$$

Quindi:

$$B = \begin{pmatrix} 2 & \frac{3}{2} & -2\\ \frac{3}{2} & h & -h\\ -2 & -h & 0 \end{pmatrix}$$

e, dato che $|B| = -2h^2 + 2h$, vediamo che per h = 0 e h = 1 abbiamo coniche spezzate, ovvero, rispettivamente, quelle di equazione x(2x+3y-4) = 0 e (2x+y)(x+y-2) = 0, mentre per $h \neq 0, 1$ le coniche sono irriducibili. Inoltre:

$$|A| = \begin{vmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & h \end{vmatrix} = 2h - \frac{9}{4},$$

per cui per $h > \frac{9}{8}$ abbiamo delle ellissi, tutte reali, in quanto i punti base sono reali, e nessuna delle quali è una circonferenza; per $h = \frac{9}{8}$ abbiamo una parabola; per $h < \frac{9}{8}$, $h \neq 0, 1$, abbiamo delle iperboli, tra le quali figura una equilatera per h = -2, in quanto Tr(A) = h + 2.

La matrice associata all'iperbole equilatera de fascio è:

$$B = \left(\begin{array}{ccc} 2 & \frac{3}{2} & -2\\ \frac{3}{2} & -2 & 2\\ -2 & 2 & 0 \end{array}\right),$$

per cui il suo centro di simmetria si ottiene dal sistema:

$$\begin{cases} 2x + \frac{3}{2}y - 2 = 0 \\ \frac{3}{2}x - 2y + 2 = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{4}{25} \\ y = \frac{28}{25}. \end{cases}$$

Dunque, il centro di simmetria è il punto $(\frac{4}{25}, \frac{28}{25})$.

3. Le quadriche contenenti l'iperbole Γ hanno equazione:

$$2x^2 - y^2 + 1 + z(ax + by + cz + d) = 0$$

Quando imponiamo il passaggio per i punti dati, otteniamo il sistema:

$$\begin{cases} b+c+d=0 \\ -b+c+d=0 \\ a+b+c+d+2=0 \end{cases} \Rightarrow \begin{cases} a=-2 \\ b=0 \\ d=-c. \end{cases}$$

Quindi, le quadriche cercate hanno equazione:

$$2x^2 - y^2 - 2xz + cz^2 - cz + 1 = 0.$$

Le matrici associate sono:

$$B = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & c & -\frac{c}{2} \\ 0 & 0 & -\frac{c}{2} & 1 \end{pmatrix} \quad e \quad A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & c \end{pmatrix}.$$

Dunque, $|B| = \frac{c^2 - 4c + 2}{2}$ e |A| = -2c + 1. Osservato che le quadriche contengono Γ , che è un'iperbole, concludiamo che tra queste non figurano né ellissi né paraboloidi ellittici. Quindi, per $c = \frac{1}{2}$ abbiamo necessariamente un paraboloide iperbolico e per $c = 2 \pm \sqrt{2}$ abbiamo due coni. Inoltre, per $c < 2 - \sqrt{2}$, $c \neq \frac{1}{2}$, e $c > 2 + \sqrt{2}$ abbiamo degli iperboloidi iperbolici, e per $2 - \sqrt{2} < c < 2 + \sqrt{2}$ abbiamo degli iperboloidi ellittici.