
Introduction CUDA contexts Domain subdivision Problems CUDA 4

General-purpose programming on GPU
Exploiting multi-GPU systems

Eugenio Rustico
rustico@dmi.unict.it

D.M.I. - Università di Catania

Updated: May 20, 2011

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Overview

1 Introduction

2 CUDA contexts

3 Domain subdivision

4 Problems

5 CUDA 4

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

With less than 1.000, it is possible to setup a 1 TERAFLOPS
workstation...

...is it really possible to achieve such (theoretical) peak power?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

With less than 1.000, it is possible to setup a 1 TERAFLOPS
workstation...

...is it really possible to achieve such (theoretical) peak power?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

We’ve already seen that it is not easy to model a problem in a way that
exploits efficiently hardware parallelism - even for problem intrinsicly
parallel.

To exploit a multi-GPU system we have to think of the problem at two
levels of parallelism:

A grid of parallel sequences of operations (threads)

A set of such grids

It is absolutely not trivial unless different threads are completely
independent each other

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

We’ve already seen that it is not easy to model a problem in a way that
exploits efficiently hardware parallelism - even for problem intrinsicly
parallel.

To exploit a multi-GPU system we have to think of the problem at two
levels of parallelism:

A grid of parallel sequences of operations (threads)

A set of such grids

It is absolutely not trivial unless different threads are completely
independent each other

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

We’ve already seen that it is not easy to model a problem in a way that
exploits efficiently hardware parallelism - even for problem intrinsicly
parallel.

To exploit a multi-GPU system we have to think of the problem at two
levels of parallelism:

A grid of parallel sequences of operations (threads)

A set of such grids

It is absolutely not trivial unless different threads are completely
independent each other

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

We’ve already seen that it is not easy to model a problem in a way that
exploits efficiently hardware parallelism - even for problem intrinsicly
parallel.

To exploit a multi-GPU system we have to think of the problem at two
levels of parallelism:

A grid of parallel sequences of operations (threads)

A set of such grids

It is absolutely not trivial unless different threads are completely
independent each other

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

We’ve already seen that it is not easy to model a problem in a way that
exploits efficiently hardware parallelism - even for problem intrinsicly
parallel.

To exploit a multi-GPU system we have to think of the problem at two
levels of parallelism:

A grid of parallel sequences of operations (threads)

A set of such grids

It is absolutely not trivial unless different threads are completely
independent each other

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Within the first call to a CUDA runtime routine a context is implicitly
created.

A CUDA context is a sort of session of CUDA operations associated to a
thread. One context is associated to one GPU (n-to-1), and can operate
only with the associated GPU.

One GPU may have several contexts associated; a CPU thread may have
only one active context, unless the low-level API is used to switch
between contexts.

We can see a context as a hidden set of settings and structures that are
used by the CUDA runtime, when we call a CUDA function like a
cudaMemCpy(), to answer the question: which device are we working on?
With which settings?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Within the first call to a CUDA runtime routine a context is implicitly
created.

A CUDA context is a sort of session of CUDA operations associated to a
thread. One context is associated to one GPU (n-to-1), and can operate
only with the associated GPU.

One GPU may have several contexts associated; a CPU thread may have
only one active context, unless the low-level API is used to switch
between contexts.

We can see a context as a hidden set of settings and structures that are
used by the CUDA runtime, when we call a CUDA function like a
cudaMemCpy(), to answer the question: which device are we working on?
With which settings?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Within the first call to a CUDA runtime routine a context is implicitly
created.

A CUDA context is a sort of session of CUDA operations associated to a
thread. One context is associated to one GPU (n-to-1), and can operate
only with the associated GPU.

One GPU may have several contexts associated; a CPU thread may have
only one active context, unless the low-level API is used to switch
between contexts.

We can see a context as a hidden set of settings and structures that are
used by the CUDA runtime, when we call a CUDA function like a
cudaMemCpy(), to answer the question: which device are we working on?
With which settings?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Within the first call to a CUDA runtime routine a context is implicitly
created.

A CUDA context is a sort of session of CUDA operations associated to a
thread. One context is associated to one GPU (n-to-1), and can operate
only with the associated GPU.

One GPU may have several contexts associated; a CPU thread may have
only one active context, unless the low-level API is used to switch
between contexts.

We can see a context as a hidden set of settings and structures that are
used by the CUDA runtime, when we call a CUDA function like a
cudaMemCpy(), to answer the question: which device are we working on?
With which settings?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

To be able to use multiple GPUs simultaneously, we need one context per
GPU.

With low-level API, we can explictly switch between context
(cuCtx...() methods)

With high-level API, we need one separate thread per GPU
(multithreaded applications)

High-level APIs are way easier to use, but designing a robust
multi-threaded application may be challenging. In general, we will need a
thread-safe synchronization mechanism (e.g. signals, semaphores,
barriers, etc.).

It is a recommended practice to call cudaThreadExit() at the and of
every host thread to explicitly clean up the context.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

To be able to use multiple GPUs simultaneously, we need one context per
GPU.

With low-level API, we can explictly switch between context
(cuCtx...() methods)

With high-level API, we need one separate thread per GPU
(multithreaded applications)

High-level APIs are way easier to use, but designing a robust
multi-threaded application may be challenging. In general, we will need a
thread-safe synchronization mechanism (e.g. signals, semaphores,
barriers, etc.).

It is a recommended practice to call cudaThreadExit() at the and of
every host thread to explicitly clean up the context.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

To be able to use multiple GPUs simultaneously, we need one context per
GPU.

With low-level API, we can explictly switch between context
(cuCtx...() methods)

With high-level API, we need one separate thread per GPU
(multithreaded applications)

High-level APIs are way easier to use, but designing a robust
multi-threaded application may be challenging. In general, we will need a
thread-safe synchronization mechanism (e.g. signals, semaphores,
barriers, etc.).

It is a recommended practice to call cudaThreadExit() at the and of
every host thread to explicitly clean up the context.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

To be able to use multiple GPUs simultaneously, we need one context per
GPU.

With low-level API, we can explictly switch between context
(cuCtx...() methods)

With high-level API, we need one separate thread per GPU
(multithreaded applications)

High-level APIs are way easier to use, but designing a robust
multi-threaded application may be challenging. In general, we will need a
thread-safe synchronization mechanism (e.g. signals, semaphores,
barriers, etc.).

It is a recommended practice to call cudaThreadExit() at the and of
every host thread to explicitly clean up the context.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

To be able to use multiple GPUs simultaneously, we need one context per
GPU.

With low-level API, we can explictly switch between context
(cuCtx...() methods)

With high-level API, we need one separate thread per GPU
(multithreaded applications)

High-level APIs are way easier to use, but designing a robust
multi-threaded application may be challenging. In general, we will need a
thread-safe synchronization mechanism (e.g. signals, semaphores,
barriers, etc.).

It is a recommended practice to call cudaThreadExit() at the and of
every host thread to explicitly clean up the context.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the problem level: how do we split the computations set across the
available GPUs?

There are two general approaches:

1 Divide in the data domain (split input, assign to GPUs, manage
overlapping)

2 Divide in the computation domain (pass all input data across all
GPUs in pipeline)

Approach n.1 is in most cases the simplest and most efficient one.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the problem level: how do we split the computations set across the
available GPUs?

There are two general approaches:

1 Divide in the data domain (split input, assign to GPUs, manage
overlapping)

2 Divide in the computation domain (pass all input data across all
GPUs in pipeline)

Approach n.1 is in most cases the simplest and most efficient one.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the problem level: how do we split the computations set across the
available GPUs?

There are two general approaches:

1 Divide in the data domain (split input, assign to GPUs, manage
overlapping)

2 Divide in the computation domain (pass all input data across all
GPUs in pipeline)

Approach n.1 is in most cases the simplest and most efficient one.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the problem level: how do we split the computations set across the
available GPUs?

There are two general approaches:

1 Divide in the data domain (split input, assign to GPUs, manage
overlapping)

2 Divide in the computation domain (pass all input data across all
GPUs in pipeline)

Approach n.1 is in most cases the simplest and most efficient one.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

How should we divide an image?

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Why first is preferable? When it is not?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

How should we divide an image?

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Why first is preferable? When it is not?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

How should we divide an image?

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Why first is preferable? When it is not?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Second has a better perimeter/area ratio (i.e. divergences and special
cases), however: sparse border accesses (is memory per row?), two
neighbors for every GPU (imagine 2x3!)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

One GPU may be more powerful than another, or may have to deal also
with visualization (e.g. an attached monitor), or may be in a PCI slot
slower than other, or may simply have more operations or less coalesced
memory requirements.

Dynamic load balancing may become fundamental to obtain a real
speedup. Can you imagine a generic load balancing technique suitable for
different applications?

Answer: the only general technique is timing a posteriori. And it is very
complex: requires some basic signal processing to get rid of oscillations
and avoid local minima.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

One GPU may be more powerful than another, or may have to deal also
with visualization (e.g. an attached monitor), or may be in a PCI slot
slower than other, or may simply have more operations or less coalesced
memory requirements.

Dynamic load balancing may become fundamental to obtain a real
speedup. Can you imagine a generic load balancing technique suitable for
different applications?

Answer: the only general technique is timing a posteriori. And it is very
complex: requires some basic signal processing to get rid of oscillations
and avoid local minima.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

One GPU may be more powerful than another, or may have to deal also
with visualization (e.g. an attached monitor), or may be in a PCI slot
slower than other, or may simply have more operations or less coalesced
memory requirements.

Dynamic load balancing may become fundamental to obtain a real
speedup. Can you imagine a generic load balancing technique suitable for
different applications?

Answer: the only general technique is timing a posteriori. And it is very
complex: requires some basic signal processing to get rid of oscillations
and avoid local minima.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

There are two main limitations in multi-GPU: interdependence and
transfers.

Most applications present a form of data interdependence. Example: if
we need to apply in sequence two convolution effects to an image, kernel
nr. 2 requires the updated borders of kernel nr. 1 from other GPUs.
Imagine a continuous timeline (streaming)...

Reality is even worse than this: all transfers must pass through the
host, no direct GPU-GPU transfers up to CUDA 3.2.

The higher the number of GPUs, the more memory transfers will request
exclusive use of PCI bus. The more memory transfers, the less benefits of
using multiple GPUs. Need asynchronous operations to cover latencies
(next lecture).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

There are two main limitations in multi-GPU: interdependence and
transfers.

Most applications present a form of data interdependence. Example: if
we need to apply in sequence two convolution effects to an image, kernel
nr. 2 requires the updated borders of kernel nr. 1 from other GPUs.
Imagine a continuous timeline (streaming)...

Reality is even worse than this: all transfers must pass through the
host, no direct GPU-GPU transfers up to CUDA 3.2.

The higher the number of GPUs, the more memory transfers will request
exclusive use of PCI bus. The more memory transfers, the less benefits of
using multiple GPUs. Need asynchronous operations to cover latencies
(next lecture).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

There are two main limitations in multi-GPU: interdependence and
transfers.

Most applications present a form of data interdependence. Example: if
we need to apply in sequence two convolution effects to an image, kernel
nr. 2 requires the updated borders of kernel nr. 1 from other GPUs.
Imagine a continuous timeline (streaming)...

Reality is even worse than this: all transfers must pass through the
host, no direct GPU-GPU transfers up to CUDA 3.2.

The higher the number of GPUs, the more memory transfers will request
exclusive use of PCI bus. The more memory transfers, the less benefits of
using multiple GPUs. Need asynchronous operations to cover latencies
(next lecture).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

There are two main limitations in multi-GPU: interdependence and
transfers.

Most applications present a form of data interdependence. Example: if
we need to apply in sequence two convolution effects to an image, kernel
nr. 2 requires the updated borders of kernel nr. 1 from other GPUs.
Imagine a continuous timeline (streaming)...

Reality is even worse than this: all transfers must pass through the
host, no direct GPU-GPU transfers up to CUDA 3.2.

The higher the number of GPUs, the more memory transfers will request
exclusive use of PCI bus. The more memory transfers, the less benefits of
using multiple GPUs. Need asynchronous operations to cover latencies
(next lecture).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

An example of expected vs. real speedup:

0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04

0

0.05

0.1

0.15

0.2

0.25

Erupt

Flux

Minimum scan

Update

Kernel launch latency and saturation threshold cause

time(data/2) > time(data)/2

No matter how I split the input data: with K GPUs, in most cases,
speedup will be < K .

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

An example of expected vs. real speedup:

0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04

0

0.05

0.1

0.15

0.2

0.25

Erupt

Flux

Minimum scan

Update

Kernel launch latency and saturation threshold cause

time(data/2) > time(data)/2

No matter how I split the input data: with K GPUs, in most cases,
speedup will be < K .

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Examples:

MAGFLOW (image-like)

SPH (list-like)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

At the moment we write, CUDA 4 is still release candidate. Differencies
with CUDA 3.2 mostly regard multi-GPU:

Unified Virtual Addressing: on x86 64 systems, a unique address
space for CPU and GPUs.

Implicit context switch: just repeat cudaSetDevice() in high
level API to switch device

Device to device direct memory transfers, cudaMemCpy() bursts
and direct access

New libraries (NPP) and middlewares (Thrust)

Dynamic memory allocation and virtual functions in device code

New method to retrieve memory type by address and simpler
cudaMemcpy() (cudaMemcpyDefault(): automatically determine
transfer direction)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU



Introduction CUDA contexts Domain subdivision Problems CUDA 4

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU


	Introduction
	CUDA contexts
	Domain subdivision
	Problems
	CUDA 4

