
Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

General-purpose programming on GPU
gdb and cuda-gdb

Eugenio Rustico
rustico@dmi.unict.it

D.M.I. - Università di Catania

Updated: May 29, 2011

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Overview

1 Introduction

2 Running gdb

3 See execution flow

4 Change execution flow

5 Debugging with threads

6 Debuggin CUDA programs

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

A debugger is a tool aimed to assist the programmer in finding semantic
bugs. It does not debug itself.

A debugger runs an instance of the program in a controlled environment;
it actually executes the program, but enable the programmer to:

Run step-by-step at language programming level

Display the value of variableas and expressions at runtime

Change the execution flow

New feature (gdb 7.0 and few commercial debuggers): reverse
debugging, aka go back in time and undo also destructive operations
by saving a series of states

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

The GNU Debugger (gdb) runs on Windows and Unix-like OSes. It has
no native GUI, but several softwares provide a user friendly interface (e.g.
ddd and most IDEs).

It is a source-level or symbolic debugger, i.e. it is capable of analyzing a
program at the programming language level (not just at assembly level).
Symbolic debuggers are language-specific and require some extra
information (debugging symbols) to map assembly instructions to source
code.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

The GNU Debugger (gdb) runs on Windows and Unix-like OSes. It has
no native GUI, but several softwares provide a user friendly interface (e.g.
ddd and most IDEs).

It is a source-level or symbolic debugger, i.e. it is capable of analyzing a
program at the programming language level (not just at assembly level).
Symbolic debuggers are language-specific and require some extra
information (debugging symbols) to map assembly instructions to source
code.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Debugging symbols are produced at compile time (e.g. -g option in
gcc) and integrated into the executable (in which case, executables are
much bigger) or put apart (e.g. ...-dbg apt/yum packages). They
consist of information about

Which source code lines produced which assembly instructions

Name of variables

Together with -g it is usually defined the macro DEBUG or DEBUG ;
the source files may include special code (e.g. lots of printf) only if this
is enabled:

#ifdef _DEBUG_

printf("Line %d, var is %.4f\n", _LINE_ , myvar);

#endif

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Debugging symbols are produced at compile time (e.g. -g option in
gcc) and integrated into the executable (in which case, executables are
much bigger) or put apart (e.g. ...-dbg apt/yum packages). They
consist of information about

Which source code lines produced which assembly instructions

Name of variables

Together with -g it is usually defined the macro DEBUG or DEBUG ;
the source files may include special code (e.g. lots of printf) only if this
is enabled:

#ifdef _DEBUG_

printf("Line %d, var is %.4f\n", _LINE_ , myvar);

#endif

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Debugging symbols are produced at compile time (e.g. -g option in
gcc) and integrated into the executable (in which case, executables are
much bigger) or put apart (e.g. ...-dbg apt/yum packages). They
consist of information about

Which source code lines produced which assembly instructions

Name of variables

Together with -g it is usually defined the macro DEBUG or DEBUG ;
the source files may include special code (e.g. lots of printf) only if this
is enabled:

#ifdef _DEBUG_

printf("Line %d, var is %.4f\n", _LINE_ , myvar);

#endif

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Debugging symbols are produced at compile time (e.g. -g option in
gcc) and integrated into the executable (in which case, executables are
much bigger) or put apart (e.g. ...-dbg apt/yum packages). They
consist of information about

Which source code lines produced which assembly instructions

Name of variables

Together with -g it is usually defined the macro DEBUG or DEBUG ;
the source files may include special code (e.g. lots of printf) only if this
is enabled:

#ifdef _DEBUG_

printf("Line %d, var is %.4f\n", _LINE_ , myvar);

#endif

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Let’s dive in:

user@localhost:~$ gdb my_program

gdb has lots of options. If program needs its own arguments:

user@localhost:~$ gdb [gdb args] --args my_program arg1 arg2

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Let’s dive in:

user@localhost:~$ gdb my_program

gdb has lots of options. If program needs its own arguments:

user@localhost:~$ gdb [gdb args] --args my_program arg1 arg2

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Let’s dive in:

user@localhost:~$ gdb my_program

gdb has lots of options. If program needs its own arguments:

user@localhost:~$ gdb [gdb args] --args my_program arg1 arg2

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

user@localhost:~$ gdb --args my_program input.xgm

GNU gdb (Ubuntu/Linaro 7.2-1ubuntu11) 7.2

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/user/my_program...done.

(gdb)_

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

gdb can attach to a running process (say, PID=123):

user@localhost:~$ gdb my_program 123

(can trace only the call stack if no debugging symbols are provided)

It is possible to activate a Text User Interface (price: sacrifice some
shortcuts...)

user@localhost:~$ gdb -tui my_program

(switch from/to pure console with ”CTRL+x”, then ”a”)

Finally, it is possible to execute scripts to automate sets of commands.
See man gdb or type ”help” in interactive mode for more useful options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

gdb can attach to a running process (say, PID=123):

user@localhost:~$ gdb my_program 123

(can trace only the call stack if no debugging symbols are provided)

It is possible to activate a Text User Interface (price: sacrifice some
shortcuts...)

user@localhost:~$ gdb -tui my_program

(switch from/to pure console with ”CTRL+x”, then ”a”)

Finally, it is possible to execute scripts to automate sets of commands.
See man gdb or type ”help” in interactive mode for more useful options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

gdb can attach to a running process (say, PID=123):

user@localhost:~$ gdb my_program 123

(can trace only the call stack if no debugging symbols are provided)

It is possible to activate a Text User Interface (price: sacrifice some
shortcuts...)

user@localhost:~$ gdb -tui my_program

(switch from/to pure console with ”CTRL+x”, then ”a”)

Finally, it is possible to execute scripts to automate sets of commands.
See man gdb or type ”help” in interactive mode for more useful options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

When gdb starts, it breaks before any instruction is executed. Type run

to run the program. It stops when:

User hits CTRL+C: SIGINT is trapped by gdb. To send it to the
program, use signal

The program runs an error: if we hit run, the operative system usually
terminate sthe program

A breakpoint is reached (see next slide)

A watch is verified (see next slide)

when stopped, it shows the next line yet to be executed

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Breakpoint: location in source files where gdb stops; may be
conditional, i.e. stop only if one or more conditions are verified.

Watch: condition checked at every step of the execution; gdb stops
when verified, in any location of the program.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Breakpoint: location in source files where gdb stops; may be
conditional, i.e. stop only if one or more conditions are verified.

Watch: condition checked at every step of the execution; gdb stops
when verified, in any location of the program.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Basic execution control:

run/r - executes, possibly restart program

continue/c - continue execution after a break or interruption

next/n - executes next instrucion (may be a function call) and
stops again

step/s - enter next function step-by-step

finish/f - continue execution until current function (frame) finishes

We skip reverse-debugging features

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Basic execution control:

run/r - executes, possibly restart program

continue/c - continue execution after a break or interruption

next/n - executes next instrucion (may be a function call) and
stops again

step/s - enter next function step-by-step

finish/f - continue execution until current function (frame) finishes

We skip reverse-debugging features

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Basic information:

print/p - print value of given var/expression (must be available in
current scope, of globally indicated)

display/d - print value of given var/expression at every interruption

list/l - show next 10 lines of code (takes parameters)

print/p - print value of given var/expression (must be available in
current scope, of globally indicated)

info frame - show information about current execution frame (scope)

backtrace/bt - show call stack

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Adding breaks:

(gdb) break filename:row [if expr] [thread n]

(gdb) break filename:function [if expr] [thread n]

(gdb) break function [if expr] [thread n]

(gdb) break namespace::function [if expr] [thread n]

(gdb) watch expr

Managing breaks:

info break - show current breakpoints

info watch - show current watches

delete - delete given breakpoint/watch

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

We can actually change the execution flow of a program at runtime by

Changing the content of a variable

Jumping to a specific point of source code

Changing at runtime the argument list

Calling arbitrary functions with arbitrary parameters in any moment

Reverse-debugging (external operations will be done twice, e.g.
printf or kernel launches)

...

help set shows other flow control options

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

(gdb) jump myfunction()

(gdb) jump main.cc:32

(gdb) set args other_input_file.xpm

(gdb) call fopen(myfile)

(gdb) call MyClass::myMethod("string")

(gdb) reverse-next 5

In any moment, hit TAB for autocompletion

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

(gdb) jump myfunction()

(gdb) jump main.cc:32

(gdb) set args other_input_file.xpm

(gdb) call fopen(myfile)

(gdb) call MyClass::myMethod("string")

(gdb) reverse-next 5

In any moment, hit TAB for autocompletion

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Overview

1 Introduction

2 Running gdb

3 See execution flow

4 Change execution flow

5 Debugging with threads

6 Debuggin CUDA programs

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

How to deal with multi-thread applications?

Any interruption stops at least a thread

Breaks are valid in all threads, unless ”thread” option is specified

It is possible to make all threads hold until we explicitly switch to
them

Reverse-debugging is not available

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

How to deal with multi-thread applications?

Any interruption stops at least a thread

Breaks are valid in all threads, unless ”thread” option is specified

It is possible to make all threads hold until we explicitly switch to
them

Reverse-debugging is not available

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

How to deal with multi-thread applications?

Any interruption stops at least a thread

Breaks are valid in all threads, unless ”thread” option is specified

It is possible to make all threads hold until we explicitly switch to
them

Reverse-debugging is not available

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

How to deal with multi-thread applications?

Any interruption stops at least a thread

Breaks are valid in all threads, unless ”thread” option is specified

It is possible to make all threads hold until we explicitly switch to
them

Reverse-debugging is not available

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

How to deal with multi-thread applications?

Any interruption stops at least a thread

Breaks are valid in all threads, unless ”thread” option is specified

It is possible to make all threads hold until we explicitly switch to
them

Reverse-debugging is not available

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

info threads - list threads

thread/t - switch to given thread

How do threads behave while one is interrupted? We decide with

(gdb) set scheduler-locking [off|on|step]

off - default; all threads but the interrupted one may execute,
up to the s.o. scheduler

step - every thread is stopped if current is stopped; when
current is running or stepping, other threads may be
executing

on - every thread is stopped until we explicitly switch to it
and run/continue/step (useful to debug obscure race
conditions)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

info threads - list threads

thread/t - switch to given thread

How do threads behave while one is interrupted? We decide with

(gdb) set scheduler-locking [off|on|step]

off - default; all threads but the interrupted one may execute,
up to the s.o. scheduler

step - every thread is stopped if current is stopped; when
current is running or stepping, other threads may be
executing

on - every thread is stopped until we explicitly switch to it
and run/continue/step (useful to debug obscure race
conditions)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

info threads - list threads

thread/t - switch to given thread

How do threads behave while one is interrupted? We decide with

(gdb) set scheduler-locking [off|on|step]

off - default; all threads but the interrupted one may execute,
up to the s.o. scheduler

step - every thread is stopped if current is stopped; when
current is running or stepping, other threads may be
executing

on - every thread is stopped until we explicitly switch to it
and run/continue/step (useful to debug obscure race
conditions)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

CUDA-based programs are normal programs plus the fact that they
“dialogue” with the GPU.

A kernel launch as we saw it the high-level APIs actually is a set of
normal function calls to the CUDA runtime.

With call command one can easily call CUDA runtime libraries (e.g.
additional memcpys to check intermediate values)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

CUDA-based programs are normal programs plus the fact that they
“dialogue” with the GPU.

A kernel launch as we saw it the high-level APIs actually is a set of
normal function calls to the CUDA runtime.

With call command one can easily call CUDA runtime libraries (e.g.
additional memcpys to check intermediate values)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

CUDA-based programs are normal programs plus the fact that they
“dialogue” with the GPU.

A kernel launch as we saw it the high-level APIs actually is a set of
normal function calls to the CUDA runtime.

With call command one can easily call CUDA runtime libraries (e.g.
additional memcpys to check intermediate values)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

However, it is not possible with gdb to step inside a kernel launch;
cuda-gdb allows it.

cuda-gdb is a fork of gdb (at the moment, cuda-gdb is based on gdb
6.6 - no reverse debugging!) capable of stepping into kernels; up to
CUDA 3.2, it is not available for Mac.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

However, it is not possible with gdb to step inside a kernel launch;
cuda-gdb allows it.

cuda-gdb is a fork of gdb (at the moment, cuda-gdb is based on gdb
6.6 - no reverse debugging!) capable of stepping into kernels; up to
CUDA 3.2, it is not available for Mac.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Stepping into kernels requires locking the GPU; this is only possible on
multi-GPU systems or when integrated chipsets are used for visualization
instead of NVIDIA cards.

It is possible to step into a kernel with the granularity of a warp
(recall: SIMD architecture!)

Let’s do an overview of the extensions cuda-gdb provides to gdb.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Stepping into kernels requires locking the GPU; this is only possible on
multi-GPU systems or when integrated chipsets are used for visualization
instead of NVIDIA cards.

It is possible to step into a kernel with the granularity of a warp
(recall: SIMD architecture!)

Let’s do an overview of the extensions cuda-gdb provides to gdb.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Stepping into kernels requires locking the GPU; this is only possible on
multi-GPU systems or when integrated chipsets are used for visualization
instead of NVIDIA cards.

It is possible to step into a kernel with the granularity of a warp
(recall: SIMD architecture!)

Let’s do an overview of the extensions cuda-gdb provides to gdb.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

First, we need to compile with debugging symbols for both host and
device (-g -G to nvcc).

From nvcc help:

--debug (-g)

Generate debug information for host code.

--device-debug <level> (-G)

Generate debug information for device code,

plus also specify the optimization level

for the device code in order to control its

debuggability.

user@host:~$ nvcc -g -G -o my_program my_program.cu

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

First, we need to compile with debugging symbols for both host and
device (-g -G to nvcc).

From nvcc help:

--debug (-g)

Generate debug information for host code.

--device-debug <level> (-G)

Generate debug information for device code,

plus also specify the optimization level

for the device code in order to control its

debuggability.

user@host:~$ nvcc -g -G -o my_program my_program.cu

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Break into applications:

user@host:~$ cuda-gdb --args my_program my_input.png

[...]

(cuda-gdb) break mykernel_name

(cuda-gdb) run

Alternatively, attach to running applications (even those which seem
freezed or in infinite loop), then CTRL+C and step into

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Break into applications:

user@host:~$ cuda-gdb --args my_program my_input.png

[...]

(cuda-gdb) break mykernel_name

(cuda-gdb) run

Alternatively, attach to running applications (even those which seem
freezed or in infinite loop), then CTRL+C and step into

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Get general information:

(cuda-gdb) info cuda system

[...]

(cuda-gdb) info cuda device(s)

[...]

(cuda-gdb) info cuda lane

[...]

The latter also gives the number of divergent threads

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Print content or type of array:

(cuda-gdb) p array[0]@4

$2 = {0, 128, 64, 192}

(cuda-gdb) p &array

$1 = (@shared int (*)[0]) 0x20

The latter also tells if array is in global or shared memory

Print content of an arbitrary shared memory address:

(cuda-gdb) p *(@shared int*)0x20

$3 = 0

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Print content or type of array:

(cuda-gdb) p array[0]@4

$2 = {0, 128, 64, 192}

(cuda-gdb) p &array

$1 = (@shared int (*)[0]) 0x20

The latter also tells if array is in global or shared memory

Print content of an arbitrary shared memory address:

(cuda-gdb) p *(@shared int*)0x20

$3 = 0

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Enable CUDA MemoryChecker to detect global memory violations and
misaligned global memory accesses

(cuda-gdb) set cuda memcheck on

Inspect current kernel coordinates:

(cuda-gdb) cuda kernel

[Current CUDA kernel 0 (device 0, sm 0, warp 0, lane 0, grid 1,

block (0,0), thread (0,0,0))]

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Enable CUDA MemoryChecker to detect global memory violations and
misaligned global memory accesses

(cuda-gdb) set cuda memcheck on

Inspect current kernel coordinates:

(cuda-gdb) cuda kernel

[Current CUDA kernel 0 (device 0, sm 0, warp 0, lane 0, grid 1,

block (0,0), thread (0,0,0))]

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Switch kernel coordinates:

(cuda-gdb) cuda block (1,0) thread (3,0,0)

New CUDA focus: device 0, sm 3, warp 0, lane 3, grid 1,

block (1,0), thread (3,0,0).

In case of multiple GPUs, inspect/switch device:

(cuda-gdb) cuda device

[...]

(cuda-gdb) cuda device 2

[...]

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

Switch kernel coordinates:

(cuda-gdb) cuda block (1,0) thread (3,0,0)

New CUDA focus: device 0, sm 3, warp 0, lane 3, grid 1,

block (1,0), thread (3,0,0).

In case of multiple GPUs, inspect/switch device:

(cuda-gdb) cuda device

[...]

(cuda-gdb) cuda device 2

[...]

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

See cuda-gdb.pdf in CUDA downloads for more usage information and
limitations

Practice time!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Running gdb See execution flow Change execution flow Debugging with threads Debuggin CUDA programs

See cuda-gdb.pdf in CUDA downloads for more usage information and
limitations

Practice time!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

	Introduction
	Running gdb
	See execution flow
	Change execution flow
	Debugging with threads
	Debuggin CUDA programs

