
Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

General-purpose programming on GPU
Asynchronous operations

Eugenio Rustico
rustico@dmi.unict.it

D.M.I. - Università di Catania

Updated: May 20, 2011

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Overview

1 Introduction

2 Asynchronous operations

3 Page-locked memory

4 Streams

5 Stream behavior

6 Mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

First step of 90% of GPU-based programs is uploading some data to the
device.

Last step for 100% of GPU-based programs is downloading some data
back to the host.

Is it in general negligible?
(hint: think of a video streaming application...)

Moreover: in multi-GPU applications with minimum problem
interdependence, say n the number of GPUs, a typical need is 4 · (n − 1)
transfer requests per frame (why?)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

First step of 90% of GPU-based programs is uploading some data to the
device.

Last step for 100% of GPU-based programs is downloading some data
back to the host.

Is it in general negligible?
(hint: think of a video streaming application...)

Moreover: in multi-GPU applications with minimum problem
interdependence, say n the number of GPUs, a typical need is 4 · (n − 1)
transfer requests per frame (why?)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

First step of 90% of GPU-based programs is uploading some data to the
device.

Last step for 100% of GPU-based programs is downloading some data
back to the host.

Is it in general negligible?
(hint: think of a video streaming application...)

Moreover: in multi-GPU applications with minimum problem
interdependence, say n the number of GPUs, a typical need is 4 · (n − 1)
transfer requests per frame (why?)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

First step of 90% of GPU-based programs is uploading some data to the
device.

Last step for 100% of GPU-based programs is downloading some data
back to the host.

Is it in general negligible?
(hint: think of a video streaming application...)

Moreover: in multi-GPU applications with minimum problem
interdependence, say n the number of GPUs, a typical need is 4 · (n − 1)
transfer requests per frame (why?)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

There are two techniques that help us partically covering these latencies:

Asynchronous memory operations

Mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

There are two techniques that help us partically covering these latencies:

Asynchronous memory operations

Mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

There are two techniques that help us partically covering these latencies:

Asynchronous memory operations

Mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).

Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some pairs of operations can be performed simultaneously :

Any CUDA device: kernel execution and host code (unless
enviroment variable CUDA LAUNCH BLOCKING is set)

Any CUDA device: intra-device memcpys and host code

Any CUDA device: host↔device memcpys of less than 64Kb

Capability ≥ 1.1: kernel execution and host↔device memcpy

Some devices with capability ≥ 2.0: concurrent execution of two
different kernels

Some devices with capability ≥ 2.0: concurrent execution of two
memcpys in different directions (PCI is full duplex!)

See deviceQuery output to check yours (at runtime, check specific
booleans in the deviceProperties).
Programming guide states that when an application is run via a CUDA
debugger or profiler all launches are synchronous, but...

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Concurrent kernel and host↔device memory transfer is particularly
interesting:

Perfect to cover most transfer latencies

Available since capability 1.1

Not too complicated APIs

There are three requirements for async memcpys: page-locked host
memory, use of streams and -async calls.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Concurrent kernel and host↔device memory transfer is particularly
interesting:

Perfect to cover most transfer latencies

Available since capability 1.1

Not too complicated APIs

There are three requirements for async memcpys: page-locked host
memory, use of streams and -async calls.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Concurrent kernel and host↔device memory transfer is particularly
interesting:

Perfect to cover most transfer latencies

Available since capability 1.1

Not too complicated APIs

There are three requirements for async memcpys: page-locked host
memory, use of streams and -async calls.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Concurrent kernel and host↔device memory transfer is particularly
interesting:

Perfect to cover most transfer latencies

Available since capability 1.1

Not too complicated APIs

There are three requirements for async memcpys: page-locked host
memory, use of streams and -async calls.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Concurrent kernel and host↔device memory transfer is particularly
interesting:

Perfect to cover most transfer latencies

Available since capability 1.1

Not too complicated APIs

There are three requirements for async memcpys: page-locked host
memory, use of streams and -async calls.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Virtual allocable memory on host is bigger than physical memory (RAM).
This is possible through a paging mechanism that swaps pages from
RAM to disk and vice-versa.

Asynchronous memcpys require host memory to be page-locked: even if
calling thread is paused, the host memory area subject of transfer should
not be paged.

Allocating too much page-locked memory may decrease overall system
performance; it is critical to allocate less space than physical memory.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Virtual allocable memory on host is bigger than physical memory (RAM).
This is possible through a paging mechanism that swaps pages from
RAM to disk and vice-versa.

Asynchronous memcpys require host memory to be page-locked: even if
calling thread is paused, the host memory area subject of transfer should
not be paged.

Allocating too much page-locked memory may decrease overall system
performance; it is critical to allocate less space than physical memory.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Virtual allocable memory on host is bigger than physical memory (RAM).
This is possible through a paging mechanism that swaps pages from
RAM to disk and vice-versa.

Asynchronous memcpys require host memory to be page-locked: even if
calling thread is paused, the host memory area subject of transfer should
not be paged.

Allocating too much page-locked memory may decrease overall system
performance; it is critical to allocate less space than physical memory.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

CUDA offers two simple methods to easily allocate page-locked memory,
and one to free it:

cudaError_t cudaMallocHost(void **ptr ,

size_t size [, unsigned int flags]);

cudaError_t cudaHostAlloc(void **pHost ,

size_t size , unsigned int flags);

cudaError_t cudaFreeHost(void *ptr);

cudaMallocHost() is a special case of cudaHostAlloc() with default
parameters: in reference manual, there is no mention to flags for
cudaMallocHost() (official reason: C/C++ interoperability?).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

CUDA offers two simple methods to easily allocate page-locked memory,
and one to free it:

cudaError_t cudaMallocHost(void **ptr ,

size_t size [, unsigned int flags]);

cudaError_t cudaHostAlloc(void **pHost ,

size_t size , unsigned int flags);

cudaError_t cudaFreeHost(void *ptr);

cudaMallocHost() is a special case of cudaHostAlloc() with default
parameters: in reference manual, there is no mention to flags for
cudaMallocHost() (official reason: C/C++ interoperability?).

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Flags:

cudaHostAllocDefault : default settings; causes cudaHostAlloc() to
emulate cudaMallocHost()

cudaHostAllocPortable : allocated memory is available to all CUDA
contexts, even if created before; the default is that only
allocating thread may access it

cudaHostAllocMapped : maps the allocation into the CUDA address
space (see later)

cudaHostAllocWriteCombined : disable caching of mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Example:

1 #define DIM (1024*1024)

2 float *harray , *harray_map;

3 err = cudaMallocHost (&harray , sizeof(float)*DIM);

4 err = cudaHostAlloc (& harray_map ,

5 sizeof(float)*DIM ,

6 cudaHostAllocPortable | cudaHostAllocMapped);

...

7 error = cudaFreeHost(harray);

8 error = cudaFreeHost(harray_map);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Overview

1 Introduction

2 Asynchronous operations

3 Page-locked memory

4 Streams

5 Stream behavior

6 Mapped memory

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Streams are ideal structures used to communicate to the runtime the
depencencies/parallelisms of memory operations and kernels.

A stream is a sequence of operations to be executed in order; to achieve
concurrent kernel/memcpy execution, one has to use at least two streams.

When stream is not specified to a kernel or memcpy operation, the
default one (0) is used and operations are not concurrent.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Streams are ideal structures used to communicate to the runtime the
depencencies/parallelisms of memory operations and kernels.

A stream is a sequence of operations to be executed in order; to achieve
concurrent kernel/memcpy execution, one has to use at least two streams.

When stream is not specified to a kernel or memcpy operation, the
default one (0) is used and operations are not concurrent.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Streams are ideal structures used to communicate to the runtime the
depencencies/parallelisms of memory operations and kernels.

A stream is a sequence of operations to be executed in order; to achieve
concurrent kernel/memcpy execution, one has to use at least two streams.

When stream is not specified to a kernel or memcpy operation, the
default one (0) is used and operations are not concurrent.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

It is possible to enqueue in a stream, other than kernel launches and
memory transfers, also CUDA events; they are used as separators for
timing and inter-stream dependency purposes.

It not possible to create a real dependency graph, but with an appropriate
usage of events it is possible to ensure quite complicated dependencies.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

It is possible to enqueue in a stream, other than kernel launches and
memory transfers, also CUDA events; they are used as separators for
timing and inter-stream dependency purposes.

It not possible to create a real dependency graph, but with an appropriate
usage of events it is possible to ensure quite complicated dependencies.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

memcpy
H→D

kernel A

event 1

event 2

kernel A

Stream 1

...

kernel B

kernel C

kernel A

event 3

Stream 2

...

memcpy
H→D

memcpy
D→H

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

copy stripe 1
H→D

work on
stripe 1

copy stripe 1
result D→H

event 1

Stream 1

copy stripe 2
H→D

work on
stripe 2

copy stripe 2
result D→H

event 2

Stream 2

copy stripe 3
H→D

work on
stripe 3

copy stripe 3
result D→H

event 3

Stream 3

stripe 1

stripe 2

stripe 3

time

One kernel at a time is executing

One memcpy at a time is executing

Kenel and memcpys in different streams execute concurrently!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

copy stripe 1
H→D

work on
stripe 1

copy stripe 1
result D→H

event 1

Stream 1

copy stripe 2
H→D

work on
stripe 2

copy stripe 2
result D→H

event 2

Stream 2

copy stripe 3
H→D

work on
stripe 3

copy stripe 3
result D→H

event 3

Stream 3

stripe 1

stripe 2

stripe 3

time

One kernel at a time is executing

One memcpy at a time is executing

Kenel and memcpys in different streams execute concurrently!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

copy stripe 1
H→D

work on
stripe 1

copy stripe 1
result D→H

event 1

Stream 1

copy stripe 2
H→D

work on
stripe 2

copy stripe 2
result D→H

event 2

Stream 2

copy stripe 3
H→D

work on
stripe 3

copy stripe 3
result D→H

event 3

Stream 3

stripe 1

stripe 2

stripe 3

time

One kernel at a time is executing

One memcpy at a time is executing

Kenel and memcpys in different streams execute concurrently!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

copy stripe 1
H→D

work on
stripe 1

copy stripe 1
result D→H

event 1

Stream 1

copy stripe 2
H→D

work on
stripe 2

copy stripe 2
result D→H

event 2

Stream 2

copy stripe 3
H→D

work on
stripe 3

copy stripe 3
result D→H

event 3

Stream 3

stripe 1

stripe 2

stripe 3

time

One kernel at a time is executing

One memcpy at a time is executing

Kenel and memcpys in different streams execute concurrently!

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

copy stripe 1
H→D

work on
stripe 1

copy stripe 1
result D→H

event 1

Stream 1

copy stripe 2
H→D

work on
stripe 2

copy stripe 2
result D→H

event 2

Stream 2

copy stripe 3
H→D

work on
stripe 3

copy stripe 3
result D→H

event 3

Stream 3

stripe 1

stripe 2

stripe 3

time

Kernel total time is the same as it was non concurrent; but download and
upload times are partially covered, reducing total transfer time from 2 · t
to 2 · t3 .
See timeline profiling of SDK samepl simpleStreams

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

To enqueue a kernel launch in a given stream with high level API, pass the
stream as the fourth parameter:

1 cudaStreamCreate (& mystream);

2 ...

3 my_kernel <<< numBlocks , numThreads ,

4 0, mystream >>> ([args]);

Memory transfer methods are identical but with a stream parameter and
-async suffix:

cudaError_t cudaMemcpyAsync(

void *dst ,

const void *src ,

size_t count ,

enum cudaMemcpyKind kind ,

cudaStream_t stream =0);

There is a -async version of every memcpy method. Note default null
stream

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

To enqueue a kernel launch in a given stream with high level API, pass the
stream as the fourth parameter:

1 cudaStreamCreate (& mystream);

2 ...

3 my_kernel <<< numBlocks , numThreads ,

4 0, mystream >>> ([args]);

Memory transfer methods are identical but with a stream parameter and
-async suffix:

cudaError_t cudaMemcpyAsync(

void *dst ,

const void *src ,

size_t count ,

enum cudaMemcpyKind kind ,

cudaStream_t stream =0);

There is a -async version of every memcpy method. Note default null
stream

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

To enqueue a kernel launch in a given stream with high level API, pass the
stream as the fourth parameter:

1 cudaStreamCreate (& mystream);

2 ...

3 my_kernel <<< numBlocks , numThreads ,

4 0, mystream >>> ([args]);

Memory transfer methods are identical but with a stream parameter and
-async suffix:

cudaError_t cudaMemcpyAsync(

void *dst ,

const void *src ,

size_t count ,

enum cudaMemcpyKind kind ,

cudaStream_t stream =0);

There is a -async version of every memcpy method. Note default null
stream

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Let’s see a typical usage example.

Creation:

1 #define NSTREAMS 4

2 cudaStream_t stream[NSTREAMS];

3 for (int i = 0; i < NSTREAMS; ++i)

4 cudaStreamCreate (& stream[i])

Destruction:

5 for (int i = 0; i < NSTREAMS; ++i)

6 cudaStreamDestroy(stream[i]);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Let’s see a typical usage example.

Creation:

1 #define NSTREAMS 4

2 cudaStream_t stream[NSTREAMS];

3 for (int i = 0; i < NSTREAMS; ++i)

4 cudaStreamCreate (& stream[i])

Destruction:

5 for (int i = 0; i < NSTREAMS; ++i)

6 cudaStreamDestroy(stream[i]);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Enqueueing:

1 // use multiple for cycles: prefer breadth first

2 for (int i = 0; i < NSTREAMS; ++i)

3 cudaMemcpyAsync(inputDevPtr + i * size ,

4 hostPtr + i * size , size ,

5 cudaMemcpyHostToDevice , stream[i]);

6

7 for (int i = 0; i < NSTREAMS; ++i)

8 MyKernel <<<100, 512, 0, stream[i]>>>

9 (outputDevPtr + i * size ,

10 inputDevPtr + i * size , size);

11

12 for (int i = 0; i < NSTREAMS; ++i)

13 cudaMemcpyAsync(hostPtr + i * size ,

14 outputDevPtr + i * size , size ,

15 cudaMemcpyDeviceToHost , stream[i]);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Synchronization:

// Wait for compute device to finish

c u d aE r r o r t cudaThreadSynchron i ze () ;

// Wait for a stream to complete everything

c u d aE r r o r t cudaSt reamSynchron i ze (cudaSt ream t st ream) ;

// Waits for an event to complete

c u d aE r r o r t cudaEven tSynch ron i z e (cudaEven t t even t) ;

// Makes the given stream to wait for given

// event before any future operation is

// starte (inter -stream synchronization)

c u d aE r r o r t cudaStreamWaitEvent (cudaSt ream t stream ,
cudaEvent t event , unsigned i n t f l a g s) ;

See the programming guide for more methods (e.g. queries) and implicit
synchronization mechanisms

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

The GPU scheduler keeps two separate queues for kernels and memory
operations. When an operation is in progress, it checks the other queue
for possibly concurrent operations.

No operations are checked but the first in every queue. This means that
operations enqueued with a depth-first policy will be executed
serially.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

The GPU scheduler keeps two separate queues for kernels and memory
operations. When an operation is in progress, it checks the other queue
for possibly concurrent operations.

No operations are checked but the first in every queue. This means that
operations enqueued with a depth-first policy will be executed
serially.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

(queue scheme)

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some GPUs, especially in notebooks, are integrated on the mainboard
and their global memory is a part of the system RAM “shared” with the
CPU.

In these special cases, do we really need explicit transfers?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Some GPUs, especially in notebooks, are integrated on the mainboard
and their global memory is a part of the system RAM “shared” with the
CPU.

In these special cases, do we really need explicit transfers?

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

If we allocate a host buffer with flag cudaHostAllocMapped the buffer is
prepared to be mapped to a subrange of the address space of thedevice;
then, we can obtain a device pointer, pointing to the same physical
address, with cudaHostGetDevicePointer():

// flags must be 0

cudaError_t cudaHostGetDevicePointer(

void **pDevice , void *pHost ,

unsigned int flags);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

If we allocate a host buffer with flag cudaHostAllocMapped the buffer is
prepared to be mapped to a subrange of the address space of thedevice;
then, we can obtain a device pointer, pointing to the same physical
address, with cudaHostGetDevicePointer():

// flags must be 0

cudaError_t cudaHostGetDevicePointer(

void **pDevice , void *pHost ,

unsigned int flags);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

1 // alloc buffer

2 cudaHostAlloc ((void **)& host_array ,

3 sizeof(float)*SIZE , cudaHostAllocMapped);

4

5 // init data

6 for(i=0; i < SIZE; i++)

7 host_array[i]=(float)rand ();

8

9 // get mapped pointer (flags must be 0)

10 cudaHostGetDevicePointer ((void **)& device_pointer ,

11 (void*)host_array , 0);

12

13 // launch kernel: direct access to buffer!

14 vectorAdd <<<nblocks , nthreads >>>

15 (device_pointer , SIZE);

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

The mapped buffer is cached. We can disable caching using the flag
cudaHostAllocWriteCombined when allocating.

Standing on the programming guide, reading from a ”write combined”
buffer may be much faster (up to 40%), but writing on it from host may
be expensive. It is recommended only when device reads alot, host writes
only once.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

The mapped buffer is cached. We can disable caching using the flag
cudaHostAllocWriteCombined when allocating.

Standing on the programming guide, reading from a ”write combined”
buffer may be much faster (up to 40%), but writing on it from host may
be expensive. It is recommended only when device reads alot, host writes
only once.

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

Introduction Asynchronous operations Page-locked memory Streams Stream behavior Mapped memory

Hands on code: aynchronous operations & timeline profiling

Eugenio Rustico rustico@dmi.unict.it Università di Catania

General-purpose programming on GPU

	Introduction
	Asynchronous operations
	Page-locked memory
	Streams
	Stream behavior
	Mapped memory

