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Abstract—Perspective cameras are the most popular imaging
sensors used in Computer Vision. However, many application
fields including automotive, surveillance and robotics, require
the use of wide angle cameras (e.g., fisheye), which allow to
acquire a larger portion of the scene using a single device
at the cost of the introduction of noticeable radial distortion
in the images. Affine covariant feature detectors have proven
successful in a variety of Computer Vision applications includ-
ing object recognition, image registration and visual search.
Moreover, their robustness to a series of variabilities related
to both the scene and the image acquisition process has been
thoroughly studied in the literature. In this paper, we investigate
their effectiveness on fisheye images providing both theoretical
and experimental analyses. As theoretical outcome, we show
that the inherently non-linear radial distortion can be locally
approximated by linear functions with a reasonably small error.
The experimental analysis builds on Mikolajczyk’s benchmark to
assess the robustness of three popular affine region detectors (i.e.,
Maximally Stable Extremal Regions (MSER), Harris and Hessian
affine region detectors), with respect to different variabilities
as well as to radial distortion. To support the evaluations, we
rely on the Oxford dataset and introduce a novel benchmark
dataset comprising 50 images depicting different scene categories.
Experiments are carried out on rectilinear images to which radial
distortion is artificially added, and on real-world images acquired
using fisheye lenses. Our analysis points out that affine region
detectors can be effectively employed directly on fisheye images
and that the radial distortion is locally modelled as an additional
affine variability.

Index Terms—fisheye distortion, affine region detectors, omni-
directional vision, division model

I. INTRODUCTION AND MOTIVATIONS

COMPUTER Vision algorithms are usually designed to
work on images acquired using perspective cameras.

The adherence to the perspective camera model ensures that
straight lines in the real world are mapped to straight lines
in the image, which produces a representation of the scene
coherent with our perception [1]. However, many application
fields such as automotive, surveillance and robotics [2], [3],
[4], [5], [6], [7], require the use of wide angle cameras, which
are characterized by a wide Field Of View (FOV) and are able
to acquire a large part of the scene using a single device. Fig. 1
shows some examples of wide angle images, along with their
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(a) rectilinear (b) full frame (c) full circle
Fig. 1. Examples of perspective (a), full frame (b) and full circle (c) images.
The two fisheye images are obtained by artificially adding different amounts
of radial distortion to the rectilinear image (a).

perspective counterpart. Unfortunately the perspective camera
model cannot be efficiently used to model the image formation
process of wide angle cameras which hence require different
projection models with the consequent introduction of inherent
radial distortion [1], [2], [8]. Wide angle cameras can be built
following two main designs: dioptric [1], [8] and catadioptric
[2], [9], [10]. In particular, we consider the dioptric systems,
which are built substituting the regular lens of a perspective
camera with a fisheye lens able to divert the light rays on the
sensor in order to achieve the desired wide Field Of View.
As discussed by Miyamoto [8], the distortion introduced by
such cameras should not be considered as an aberration but
as the result of the projection of an hemisphere on a finite
plane. The most straightforward approach to deal with wide
angle images consists in explicitly removing the distortion
through a rectification process. Such process however can be
computationally expensive, especially in embedded settings,
since it requires interpolation to account for the spatially
non-uniform sampling performed by the wide angle sensor.
Moreover, the interpolation process introduces artefacts in the
image which can affect the feature extraction process [11].
Additionally, in order to perform the rectification process, the
camera needs to be calibrated so that a mapping between the
distorted points and their positions in the ideal (rectilinear)
image plane can be established. Some calibration techniques
require a special pattern to be present in the scene [12],
[13] while others [14], [15] just require a few images of
the scene and no other information. However, even when the
camera can be easily calibrated, it would be advantageous to
be able to work directly on the distorted images to avoid
the rectification process and get rid of the artefacts due to
the interpolation. Many efforts in the context of wide angle
calibrated cameras already exist: the authors of [16], [17]
studied how to compute the scale space of omnidirectional
images, in [3], [11], [18] the Scale Invariant Feature Transform
(SIFT) pipeline [19] is modified in order to be used directly on
wide angle images; in [20] scale invariant features are derived
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from wide angle images mapping them to a sphere; in [21] a
direct approach to detect people using omnidirectional cameras
is proposed; in [22] an algorithm to extract straight edges from
distorted images is presented; in [11], [22], [23] methods to
estimate geometrically correct gradients of distorted images
are investigated. A second category of algorithms working
directly on the distorted images doesn’t need the camera to
be calibrated and treats the radial distortion as an additional
variability present in the images. For instance, in [24] the
Perspectively Invariant Normal features (PIN) are computed
using a depth map in order to be independent from the
acquisition point of view and from the employed camera. PIN
can be successfully used to match regions between rectilinear
and wide angle images as pointed out by the authors of [24].
In [25] an approach to match features between uncalibrated
omnidirectional images (not rectified) and perspective images
is presented. People detection and tracking are performed
directly on fisheye images using a probabilistic appearance
model in [26]. The authors of [27] perform feature matching
on omnidirectional images through descriptor learning. This
category of approaches which do not need calibration is
particularly interesting for those applications in which the
input images are acquired by different cameras which are not
generally known in advance and hence difficult to calibrate.
Examples of such applications include image retrieval (e.g.,
images on the web), object detection on generic cameras and
registration (e.g., camera networks in surveillance applica-
tions).

In this paper we consider the context of direct approaches
dealing with uncalibrated images. Specifically, we study how
the detection, description and retrieval of local features can be
reliably performed on uncalibrated wide angle images acquired
by an unknown device. In particular, considering the amount
of work already done in the field of affine covariant detectors
and descriptors [28], [29], [30] in the perspective domain,
we investigate whether the state-of-the-art affine detectors
are suitable to be used directly on wide angle images. We
support our analysis by theoretically showing that, even if
the radial distortion introduced by fisheye cameras is not an
affine transformation, it can be locally approximated as a linear
function with a small error. Moreover, we consider three state-
of-the-art affine region detectors [28], namely the Maximally
Stable Extremal Regions (MSER) [31], the Harris affine region
detector and the Hessian affine region detector [32], [33],
and study how such detectors behave under the influence
of increasing radial distortion and the variabilities included
in the Oxford dataset [28], i.e., change of viewpoint angle,
scale changes, blur, JPEG compression and light changes. We
extend our previous work [34] on affine region detectors in
the fisheye domain, moving the analysis from the theoretical
fisheye projection functions to the Division Model [15] which
generalizes our study to many real world fisheye cameras
[35]. Moreover, we introduce a new dataset of high resolution
rectilinear images depicting real world scenes belonging to
different categories (see Section II-B for the details), which
we use to generate artificial fisheye images with a controlled
amount of distortion for testing purposes. This dataset allows
us to assess the performances of the detectors on different

scene types and to draw general conclusions on their robust-
ness with respect to increasing radial distortion. Experiments
show that the affine covariant region detectors under analysis
achieve good performances when computed directly on fisheye
images and hence that they succeed in locally modelling the
radial distortion introduced by fisheye images.

The main contributions of this paper can be summarized as
follows: we review the Division Model and provide meaning-
ful interpretations for the involved distortion parameter; we
perform a theoretical analysis to motivate the applicability of
affine covariant region detectors directly on fisheye images;
we introduce a dataset of high resolution images depicting
scenes belonging to different categories artificially adding
radial distortion for testing purposes; we revise the evaluation
pipeline proposed by Mikolajczyk et al. [28] and define a
new set of experiments to assess the performances of affine
covariant feature detectors on fisheye images; by means of
extensive experiments we show that the current affine detectors
are robust to radial distortion and to the combination of radial
distortion with other common variabilities.

The remainder of the paper is organized as follows: in
Section II we discuss the fisheye domain, we briefly review
the Division Model providing practical interpretations of the
distortion parameter and introduce the synthetic data used for
the experiments. In Section III we discuss some properties
of the considered detectors and provide theoretical evidence
of the applicability of affine region detectors in the fisheye
domain. In Section IV the experimental setup is detailed,
whereas in Section V the results are discussed. Finally in
Section VI we draw the conclusions.

II. THE FISHEYE DOMAIN

Fisheye lenses allow formation of an image of an hemi-
spheric field on a finite plane [8]. This is achieved by sam-
pling the incoming light rays in a spatially non-uniform way.
Specifically, due to the properties of the lens, light is sampled
densely in the central part of the image and coarsely in the
peripheral areas. This phenomenon introduces a symmetric
radial distortion which causes the points on the image plane
to be shifted from their ideal position in the rectilinear space
towards the principal point. The amount of radial distortion
undergone by the acquired image is proportional to the Field
of View of the camera. The Field Of View characterizing a
given fisheye camera depends on the design of the lens, its
focal length and the sensor size. In practice, two configurations
are relevant: full frame and full circle [35]. Full frame images
are characterized by a diagonal FOV equal to 180◦. Such
configuration is convenient since it allows to get the largest
FOV which still allows to cover the full sensor (the whole
sensor is illuminated and the image does not contain dark
non-illuminated areas). Full circle images are characterized
by a vertical FOV equal to 180◦. Such configuration does
not allow full coverage of the sensor (the image is formed
on a circular region in the centre of the sensor), but allows
to obtain the projection of the full hemispheric field on the
final image. Fig. 1 shows some synthetic examples of the two
configurations. While all perspective cameras follow a single
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Amount Of Distortion
input image 0.2 0.29 0.38* 0.47 0.56**

input image 0.2 0.29 0.38* 0.47 0.56**

Fig. 2. Some examples of synthetic fisheye images obtained adding different
amounts of radial distortion to input rectilinear images by using the Division
Model. In the top row, the input image is a high resolution image (5204×3472
pixels), while in the bottom row the input image is a low resolution image
(1024 × 768 pixels). All the output distorted images have resolution equal
to 1024 × 768 pixels. The * and ** symbols denote the full frame and full
circle distortion rates respectively.

projection model (i.e., the perspective camera model), fisheye
lenses are usually manufactured to adhere to one of a set of
projection functions [1], [8]. Moreover, since the design of
fisheye lenses can be quite complex [36], a deviation from
the ideal model is usually expected. A number of calibration
models have been proposed in the literature to cope with such
variability [1], [12], [15], [35]. Among these, the Division
Model [15] has gained some popularity due to its ability to
model real world fisheye cameras [35] with a single parameter.

In this paper, we use the Division Model to generate
synthetic fisheye images by artificially adding radial distortion
to input rectilinear images (as done in [11], [23], [34]).
Working with these settings allows to control the exact amount
of distortion present in the image and to use the source
rectilinear images to build the reference ground truth for the
evaluations. In general, given a rectilinear image I and the
distortion function f which maps the undistorted point u in
the rectilinear image to point x = f(u) in the distorted space,
the synthetic fisheye image is defined as follows:

Î(f(u)) = I(u). (1)

It should be noted that, when the Field Of View is large,
the function f is designed to project an infinite rectilinear
image I to a finite fisheye image Î . In practice it is sufficient
that the resolution of the input image I is sufficiently higher
than the resolution of the output image Î to achieve consistent
results. Fig. 2 shows some examples of synthetic fisheye im-
ages obtained considering input rectilinear images of variable
sizes. Mapping high resolution input images to low resolution
ones allows to cover a larger part of the artificially distorted
image, which is preferable in order to carry evaluations in the
peripheral areas. However, it should be noted that distorting
rectilinear images with a lens model cannot describe the
image formation process with total accuracy due to the lack
of depth information from the acquired scene. Nevertheless,
given its synthetic nature, the proposed approach conveniently
allows to study the performances of the considered detectors
with respect to varying amounts of distortion. In order to
complement the analysis, we also perform tests on images
acquired with real lenses.

A. The Division Model

The Division Model [15] establishes a relationship between
the image point x in the distorted space and its undistorted
counterpart u in the rectilinear one as following:

u =
x

1 + ξ||x||2
(2)

where the parameter ξ < 0 regulates the amount of radial
distortion in the image. It should be noted that the coordinates
are referred to the principal point, which in our experiments we
always consider to be coincident with the centre of the image.
The relationship in (2) can be inverted in order to derive the
distortion function f which maps an undistorted point u in
the rectilinear space to the distorted point x in the image:

x = f(u) =
2u

1 +
√
1− 4 · ξ||u||2

. (3)

According to equations (2) and (3), a point of radial coordinate
r in the undistorted space is related to a point of radial coor-
dinate r̂ in the distorted image by the following expressions:

r =
r̂

1 + ξr̂2
(4)

r̂ = g(r) =
2r

1 +
√

1− 4 · ξr2
. (5)

Unfortunately, the interpretation of the values of ξ is not
intuitive and the effects of setting a specific value for ξ depend
on the size of the input image. Therefore we propose to express
the amount of distortion as the following rate:

d = 1− r̂M
rM

(6)

where rM represents the distance from the centre of the
distortion (i.e., the centre of the image) to the corner of the
distorted output image and r̂M represents its distorted coun-
terpart. It should be noted that such a definition is perceptually
coherent and it is independent from the scale of the image size.
Considering that between rM and r̂M holds relationship (5),
the parameter ξ can be straightforwardly computed from a
given distortion rate d using the formula:

ξ = − d

[rM (1− d)]2
. (7)

Even if no direct relationship between the Field Of View
of a given image and parameter ξ is provided by the Division
Model, the exact values of ξ can be derived for the full frame
and full circle configurations discussed above. In both cases
we want the distortion function (3) to project points at infinity
to points on the image having a specific radius ρ. In the case
of full frame images we set ρ = rM to obtain a diagonal FOV
equal to 180◦, while in the case of full circle images we set
ρ = h/2 where h is equal to the image height in order to
obtain a vertical FOV equal to 180◦. Let us consider the limit
of expression (5) as r approaches +∞:

lim
r→+∞

2r

1 +
√

1− 4 · ξr2
=

2√
−4ξ

. (8)
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Amount Of Distortion
reference 0.2 0.29 0.38* 0.47 0.56**

Fig. 3. Two image series from Dataset A. The * and ** symbols
denote the full frame and full circle distortion rates respectively.

Equating such expression to ρ, we get:

ξ = − 1

ρ2
. (9)

Equation (9) can be used to compute the distortion parameter
ξ allowing the projection of a point at infinity in the rectilinear
space to a point with radial coordinate ρ in the fisheye space.
Combining equations (6) and (9) and considering the values
which ρ assumes in the case of full frame and full circle
images, it is possible to obtain the following expressions:

dfull−frame ≈ 0.38 (10)

dfull−circle =
2α2 −

√
4α2 + 5 + 3

2α2 + 2
(11)

where α = w
h is the image aspect ratio and w is the image

width. Since in our experiments we consider synthetic fisheye
images of size 1024 × 768 pixels, then we get α ≈ 1.4 and
hence dfull−circle ≈ 0.56. It should be noted that, for a square
image (i.e., α = 1), the distortion rate inherent to a full circle
image amounts to exactly 0.5. The deviation from such a value
is entirely due to the non-rectangular aspect ratio of the output
images. Fig. 3 shows some examples of synthetic fisheye
images characterized by varying distortion rates, including the
full frame and full circle configurations. Note that the full
frame image shown in Fig. 3 still exhibits black corners. This
is due to the fact that the input image is finite while an infinite
image would be required in principle. For the same reason the
full circle image shown in Fig. 3 is not perfectly circular and
smaller than what a real full circle image should look like.
Despite such considerations, the synthetic images are worth
to be considered for evaluation purposes since they exhibit
the amounts of radial distortion inherent to the full frame and
full circle configurations and still cover most of the related
Field Of View.

B. Experimental Datasets

To perform the experimental analysis, we considered three
different datasets. Two of them comprise rectilinear images
to which radial distortion is artificially added following the
methodologies discussed in Section II. Working in these set-
tings is convenient since it allows to control the exact amount
of distortion present in the images used for the experiments.
However, as discussed in Section II, distorting rectilinear
images with a lens model cannot describe the image formation
process with total accuracy. Hence, experiments are carried on
a third dataset which comprises 39 images acquired using three
different fisheye cameras.

(a) Graffiti Series (b) Wall Series

(c) Boat Series (d) Bark Series

(e) Bikes Series (f) Trees Series

(g) UBC Series (h) Leuven Series

Fig. 4. Some examples from Dataset B. The leftmost image in each
pair is always the reference image, while the rightmost image is one
of the test images in the series characterized by a given amount of
distortion. Related to Dataset B, the distortion is coupled with the
variabilities considered in [28]: (a) Change of viewpoint angle for
a structured scene (full frame distortion). (b) Change of viewpoint
angle for a textured scene (full circle distortion). (c) Scale changes
for a structured scene (full frame distortion). (d) Scale changes for a
textured scene (full frame distortion). (e) Image blur for a structured
scene (full circle distortion). (f) Image blur for a textured scene (full
frame distortion). (g) JPEG compression (full circle distortion). (e)
Light change (full frame distortion).

In order to assess the performances of local detectors with
respect to varying amounts of distortion, we have built a
benchmark dataset comprising 50 high resolution rectilin-
ear images (5204 × 3472 pixels) to which we artificially
add different radial distortion rates as we have defined in
Section II. The 50 images are a random selection of the
100 images included in our previously collected dataset pre-
sented in [23]. The proposed dataset can be downloaded at
the URL http://iplab.dmi.unict.it/FisheyeAffine. The original
images have been acquired using a Canon 650D camera
with a Canon EF-24mm lens and depict scenes taken by
considering different categories according to the scene catego-
rization proposed by Torralba and Oliva [37]: indoor, outdoor,
natural, handmade, urban, car, pedestrian, street. To test the
performances of local detectors, coherently with the evaluation
procedure in [28], for each image we build a series of 6
images consisting of the reference full resolution rectilinear
image, plus 5 test images affected by the following distortion
rates: 0.2, 0.29, 0.38 (full frame configuration), 0.47 and 0.56
(full circle configuration). All the test distorted images have
resolution 1024 × 768 pixels. Starting from a base value of
0.2, distortion rates have been chosen in order to be evenly
spaced (at a step of 0.9) and to include the full frame and full
circle configurations. We shall refer to this dataset as Dataset
A. Fig. 3 shows two sample series from Dataset A.

To properly assess the performances of the local descrip-
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(a) Series 1 (S1) - d = 0.13

(a) Series 2 (S2) - d = 0.19

(a) Series 3 (S3) - d = 0.54

Fig. 5. Some sample images from the three image series in Dataset C.

tors, we also consider the popular Ofxord dataset proposed
in [28], which provides 8 image series each affected by one
of the following variabilities: change of viewpoint angle, scale
changes, image blur, JPEG compression, light changes. The
dataset comprises both structured and textured scenes. Each
series consists of a reference image, containing the least
amount of the specified variability (i.e., the zero-variability)
and 5 test images characterized by increasing amounts of the
specified variability. To assess the influence of the combination
of radial distortion with the aforementioned variabilities, we
artificially add radial distortion to each test image in the
dataset. It should be noted that no distortion is added to the
reference images. Specifically, for each series in the Oxford
dataset we generate two additional series characterized by the
amounts of distortion inherent to the full frame and full circle
configurations. The exact distortion rates are computed using
equations (10) and (11) in order to account for the different
aspect ratios characterizing the input images. As discussed
in Section II, in order to avoid black borders in the target
distorted images, high resolution rectilinear images should be
used for reference. Since the resolutions of the images in the
Oxford dataset are not high (640× 480 pixels), the approach
proposed in Section II is not a viable option. Hence, we keep
the resolution of the output distorted image equal to the one
of the input image. Note that, even if the distorted images
generated in this way are not able to cover all the target
distorted image, they are affected by the amounts of distortion
inherent to the full frame and full circle configurations. We
refer to this second dataset as Dataset B. Fig. 4 shows some
samples from the considered series.

To perform tests with real fisheye images, we consider the
benchmark dataset introduced in [11]. It comprises three image
series acquired using fisheye lenses characterized by different
amounts of distortion. Calibration images and division model
parameters for each camera are included in the dataset. Fig. 5
shows some sample images from the considered dataset. For
each image series, we report the distortion rates computed
according to our model: 0.13, 0.19 and 0.54. Each series
consists of 13 images related by different transformations
including viewpoint change, rotation and scale. Images within
a series represent a scene containing the same planar object ac-
quired from different positions. All image pairs within a series

are provided with an homography relating their undistorted
counterparts. Differently from the Oxford dataset (Dataset
B), the amount of variability present in each image is not
quantified with respect to a given reference image. Hence,
instead of considering only reference-test image pairs, all
possible 78 image pairs within a series are considered in the
experiments. We refer to this dataset as Dataset C.

III. AFFINE REGION DETECTORS ON
THE FISHEYE DOMAIN

We consider three state-of-the-art affine region detectors
for our analysis: the Maximally Stable Extremal Regions
(MSER) [31] detector, the Harris and the Hessian affine
region detectors [32], [33]. Such detectors have shown top
performances in the benchmark by Mikolajczyk et al. [28] with
respect to two evaluation criteria (repeatability and matching
ability, which are discussed thoroughly in Section IV) on
both structured and textured images under the influence of
different geometric and photometric transformations. All the
considered region extractors are based on a region detection
step followed by an affine covariant construction which allows
to obtain elliptical features. The reader is referred to [28]
for a review of affine region detectors. To provide evidence
supporting the applicability of affine covariant region detectors
directly on fisheye images, in Section III-A, we perform a
theoretical analysis to study under what conditions radial dis-
tortion can be locally approximated by linear transformations.
In Section III-B, we show that affine regions produced by the
detectors under analysis are characterized by strong locality,
and hence they are likely to yield a reasonably small error.

A. Local Linearity of the Division Model

In order to provide theoretical evidence to support the
applicability of the affine covariant region detectors on fisheye
images, in this Section we show that, even if the radial
distortion introduced by fisheye cameras is not an affine
transformation, it can be modelled as a linear function in small
local neighbourhoods. For sake of generality, we base our
analysis on the Division Model which has proven successful
in modelling real fisheye cameras [35]. Specifically, we show
that the radial distortion function of Equation (5) can be
linearly approximated locally and that if the neighbourhood
is sufficiently small, the approximation error is negligible. It
should be noted that, while we base our theoretical analysis
on the division model, in Section V, we report experiments on
images acquired using real fisheye lenses to ensure the validity
of our analysis when real-world lenses are considered.

Let us consider the first order Taylor polynomial approxima-
tion of the mapping function shown in Equation (5), centred at
an arbitrary point r̂0 and restricted to the local neighbourhood
of radius ε centred at r̂0 denoted byN (r0, ε) = (r̂0−ε, r̂0+ε):

g(r̂)|N (r0,ε) ≈ g̃(r̂, r̂0) = g(r0) + (r − r0)g′(r0). (12)

We expect the error given by such an approximation to
be proportional to the extent of the chosen radius ε. To
measure such error, we define the Mean Reprojection Error
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(c) MRE curves
Fig. 6. (a) The plot of the function in Eq. (5) for different distortion rates. (b) The Mean Reprojection Error curves for fixed values of ε. (c) The average
Mean Reprojection Error for varying neighbourhood radii ε.

of expression (12) in a given point r0 and for a chosen radius
ε as follows:

MRE(r0, ε) =

∫
r∈N (r0,ε)

|g(r)− g̃(r, r0)|dr∫
r∈N (r0,ε)

dr
. (13)

Moreover, for a fixed value of ε, we define the average MRE
value as follows:

MRE(ε) =

∫ rmax

r=0
MRE(r, ε)dr∫ rmax

r=0
dr

(14)

where rmax is introduced to avoid to carry the integration up
to infinity, where the curves related to Eq. (5) tend to become
rectilinear as shown in Fig. 6 (a) and the MRE value would be
close to zero. In particular we set rmax to the half diagonal of
the distorted images of resolution 1024×768 pixels considered
in the experiments, i.e., rmax = 1

2

√
(10242 + 7682) = 640

pixels. Fig. 6 (b) shows the MRE curves for two selected
values of ε (i.e., 45 and 60 pixels) and different amounts of
distortion, while Fig. 6 (c) shows the average MRE for varying
values of ε and different amounts of distortion. In particular
Fig. 6 (c) shows that the fisheye distortion of local regions
having radii smaller than ε = 60 pixels can be approximated
as a linear function with average subpixel precision (see points
marked with the symbol “*” in Fig. 6 (c)). The average error
drops to about 0.6 pixels for radii smaller than 45 pixels
(see points marked with the symbol “◦” in Fig. 6 (c)) and to
about 0.03 pixels for radii smaller than 10 pixels (see points
marked with the symbol “+” in Fig. 6 (c)). Fig. 6 (b) shows
how the MRE values vary in the different parts of the image.
Specifically, the error is small in the central and peripheral
areas of the image and higher in between. It is worth noting
that for regions with radii smaller than 45 pixels, the MRE is
always under 1 pixel for all distortion rates.

Our analysis points out that, up to a given extent, circular
regions can be mapped from a reference non-distorted space
to its distorted counterpart in the fisheye image using an
appropriate linear function with a small projection error. If the
error is low enough, an affine covariant region detector should
be able to correctly extract both the reference and distorted
regions modelling the latter as an affine transformation of the
former. Moreover, in the description stage, the distorted region
will be mapped to its undistorted counterpart with a small error

using the inverse of the affine transformation estimated by the
region detector. Hence we expect small linear approximation
errors to be beneficial for both the feature detection and
description steps.

B. Region Size

To assess the applicability of affine covariant region detec-
tors on distorted images, we have performed an analysis of the
distribution of sizes of regions extracted using the detectors
under analysis. In particular, we extracted regions using the
considered three detectors on all images present in Dataset
A. An average radius is computed for each elliptical region as
the average between the lengths of semi-major and semi-minor
axes. Interestingly, all the considered detectors tend to extract
regions characterized by a strong locality. This is summarized
in Fig. 7, which shows the normalized histograms of average
radii for all rectilinear and distorted images in Dataset A. In
particular, normalized histograms reported in Fig. 7 (a) to (c)
and Fig. 7 (g) to (i) show how the vast majority of regions
have average radii around 10 pixels. Moreover, the cumulative
histograms reported in Fig. 7 (d) to (f) and Fig. 7 (l) to (n),
show how in any case more than 90% of the detected regions
have an average radius smaller than 45 pixels. As it has been
pointed out in Section III-A, the linear approximation error
is low for regions with average radii under 45 pixels and
negligible for regions with average radii around 10 pixels.
These results suggest that affine covariant features are able
to model the radial distortion introduced by fisheye images as
a local variability.

IV. EVALUATION PROTOCOL

Following the protocol in [28], all experiments are per-
formed on series of 6 images S = {I0, I1, . . . , I5} affected by
a specific variability. The first image in the series I0 is affected
by the least amount of the considered variability (the zero-
variability) and is referred to as the reference image, while
the remaining five images {Ii}1≤i≤5 are affected by increasing
amounts of the considered variability and are referred to as test
images. Given an image series S, we assess the performances
of the detectors on each of the 5 image pairs {(I0, Ii)}1≤i≤5
using the reference image to define the ground truth. We
assume that for each image pair it is possible to establish a
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(e) Hessian Affine (rectilinear)
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(f) MSER (rectilinear)
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(g) Harris Affine (distorted)
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(h) Hessian Affine (distorted)

0 20 40 60 80 100

average region radius

0

0.05

0.1

0.15

0.2

no
rm

al
iz

ed
 n

um
be

r 
of

 o
cc

ur
en

ce
s

MSER - histogram (distorted)

(i) MSER (distorted)

5 15 25 35 45 55 65 75 85 95

average region radius

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e 

nu
m

be
r 

of
 o

cc
ur

en
ce

s

Harris Affine - cumulative histogram (distorted)

0.99

(l) Harris Affine (distorted)
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(m) Hessian Affine (distorted)
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Fig. 7. (a) to (c) Normalized histograms of average radii of regions extracted by the three detectors on the rectilinear images of Dataset A. (d) to (f) Normalized
cumulative histograms of average radii of regions extracted by the three detectors on the rectilinear images of Dataset A. (g) to (i) Normalized histograms
of the average radii of the regions extracted by the three detectors on the distorted images of Dataset A. (l) to (n) Normalized cumulative histograms of the
average radii of the regions extracted by the three detectors on the distorted images of Dataset A.

mapping ψi0 between the points of the test image Ii and the
ones of the reference image I0. Specifically, for Dataset A,
such mapping is given by the inverse of the distortion function
f0i (3) used to generate the test image from the reference one:

ψAi0 = f−10i . (15)

The Oxford dataset provides homographies h0i relating the
reference image I0 to the test images Ii. Hence, for the
undistorted series contained in Dataset B, we define:

ψB1
i0 = h−10i . (16)

In the case of the distorted series of Dataset B, instead, the
projection from the distorted test image Ii to the undistorted
reference image I0 is carried through the following composi-
tion:

ψB2
i0 = f−1i ◦ h−10i (17)

where fi is the distortion function used to generate the
distorted test image Ii.

As proposed by Mikolajczyk [28], we measure two im-
portant properties of the affine detectors under analysis: the
repeatability, i.e., the ability to extract regions which corre-
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(g) FM curve (full frame)
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Fig. 8. Results related to Dataset A - increasing radial distortion. All numbers are obtained averaging the results for the 50 image series of Dataset A.
(a) Repeatability scores for different amounts of radial distortion. (b) Matching scores for different amounts of radial distortion. (c) to (e) 1-precision vs recall
(PR) curves for different amounts of radial distortion. (f) to (h) threshold vs F-measure (FM) curves for different amounts of radial distortion.

spond to the same geometrical areas under the considered
variabilities, and the matching ability, which is the ability to
extract distinctive regions that, given a suitable descriptor, can
be matched reliably under the considered variabilities.

A. Repeatability

Let be D the affine region detector under analysis and let
be Fi = D(Ii) the set of elliptical features extracted from
the generic image Ii using detector D. Since the projection of
an ellipse using a distortion function in the form of equation
(3) is not an ellipse in general, we sample the elliptical
features at an angular step of π

30 in order to obtain the set
of polygonal regions Ri. The repeatability of detector D
is assessed counting how many test regions in Ri overlap
significantly with the reference regions in R0. In order to

measure the overlap, the test regions are first mapped to the
reference space using the mapping function ψi0:

Ri0 = {r′ = ψi0(r),∀r ∈ Ri} (18)

where r is a polygon and ψi0(r) is the point-wise projection of
r through the mapping function ψi0. It should be noted that,
even if the reference and test images I0 and Ii are related
by the mapping ψi0, in general they don’t cover the same
physical areas and hence not all the regions in the sets R0

and Ri0 are guaranteed to lay in the part of the scene present
in both images. Given the generic set of regions R, we denote
with the notation R(0,i) the subset of regions of R entirely
contained in the common part of the scene of images I0 and
Ii. For each pair of regions (rh, rk) : rh ∈ R(0,i)

0 , rk ∈ R(0,i)
i0 ,
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(c) Repeatability Scores - Wall (textured)
viewpoint angle

15 20 25 30 35 40 45 50 55 60 65

m
at

ch
in

g 
sc

or
e 

%

0

10

20

30

40

50

60

70

80

90

100

Harris Affine (no distortion)
Harris Affine (full frame)
Harris Affine (full circle)
Hessian Affine (no distortion)
Hessian Affine (full frame)
Hessian Affine (full circle)
MSER (no distortion)
MSER (full frame)
MSER (full circle)

(d) Matching Scores - Wall (textured)
Fig. 9. Results related to Dataset B - change of viewpoint angle for both a structured (“graffiti”) and a textured (“wall”) scenes. (a) Repeatability scores
for the “graffiti” image series (structured scene). (b) Matching scores for the “graffiti” image series (structured scene). (c) Repeatability scores for the “wall”
image series (textured scene). (d) Matching scores for the “wall” image series (textured scene).

we compute the overlap error as following:

errhk = 1− area(α · rh ∩ α · rk)
area(α · rh ∪ α · rk)

(19)

where α is a scaling factor such that area(α · rh) = πr2

and r is a normalized radius. Following the protocol of [28],
we set r = 30 pixels. Unions, intersections and areas are
computed numerically. In order to compute the set of most
likely correspondences xhk between regions rh ∈ R(0,i)

0

and rk ∈ R(0,i)
i , such that the overlap error in Eq. (19)

between rh and rk is under a given overlap threshold ot, we
solve the following assignment problem using the Hungarian
algorithm [38]:

min(
∑
hk ehkxhk)∑

k xhk ≤ 1 ∀h : 1 ≤ h ≤ |R(0,i)
0 |∑

h xhk ≤ 1 ∀k : 1 ≤ k ≤ |R(0,i)
i0 |

xhk ∈ {0, 1} ∀h, ∀k : 1 ≤ h ≤ |R(0,i)
0 |

∧1 ≤ k ≤ |R(0,i)
i0 |

(20)

where:

ehk =

{
errhk if errhk ≤ ot
+∞ otherwise

. (21)

Threshold ot is set to ot = 0.4 as discussed and justified
in [28]. The repeatability score is defined as the number
of correspondences normalized by the minimum number of
regions detected in the two images (excluding the regions not
entirely contained in the common part):

repeatability score =

∑
hk xhk

min(|R(I0)(i,0)|, |R(Ii0)(i,0)|)
.

(22)
The repeatability score measures the ability of the detector to
extract features corresponding to the same geometrical regions
under varying amounts of a given variability.

B. Matching Ability

In order to measure the matching ability of the detectors,
we count how many test features in Fi are correctly matched
to the reference features in F0 given a suitable descriptor. The
ground truth matchings are given by the correspondences xhk
computed solving the assignment problem in (20). Each ellip-
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(c) Repeatability Scores - Bark (textured)
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(d) Matching Scores - Bark (textured)
Fig. 10. Results related to Dataset B - scale changes for both a structured (“boat”) and a textured (“bark”) scenes. (a) Repeatability scores for the “boat” image
series (structured scene). (b) Matching scores for the “boat” image series (structured scene). (c) Repeatability scores for the “bark” image series (textured
scene). (d) Matching scores for the “bark” image series (textured scene). The legend of (d) applies to (c) as well.

tical feature is normalized to a circular region of dimensions
20 × 20 pixels and the Local Intensity Order Pattern (LIOP)
descriptor is computed over that region [30]. We compute the
nearest neighbour matchings between the reference and test
descriptors and denote them by mhk, where mhk = 1 if fh
matches fk in the nearest neighbour sense and mhk = 0
otherwise. The matching ability is defined as the number
of correct nearest neighbour matchings normalized by the
minimum number of regions detected in the two reference
and test images (excluding the regions not entirely contained
in the common part):

matching score =

∑
hk(mhk · xhk)

min(|R(I0)(i,0)|, |R(Ii0)(i,0)|)
. (23)

The matching score measures the ability of the detector to
extract distinctive features, i.e., regions which can be reliably
described and matched under different variabilities. As pointed
out in [28], the matching results should follow the repeatability
scores if the regions extracted are distinctive. It should be
noted that we use the LIOP descriptor to compute the matching
ability instead of using the standard SIFT algorithm as pro-
posed by Mikolajczyk et al. in [28]. Our choice is motivated by

recent studies [30] in which the LIOP descriptor outperforms
SIFT on the Oxford dataset (corresponding to Dataset B
in this paper) and supplementary image pairs with complex
illumination changes. Since we are benchmarking the ability
of the detectors to extract highly distinctive features and we are
not interested in assessing the performances of the descriptors
themselves, we choose LIOP as the best performing algorithm
up-to-date for our evaluations.

C. Precision-Recall Curves

To better assess the matching ability of the detectors with
respect to increasing radial distortion (Dataset A), we also
compute 1-precision vs recall (PR) curves following the
scheme proposed in [29]. According to such scheme, two
descriptors match if their euclidean distance is smaller than
a given threshold t. Each test descriptor is compared with
each reference descriptor and the number of false and correct
matchings is counted in order to compute the precision and
recall values corresponding to threshold t using the following
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(d) Matching Scores - Trees (textured)
Fig. 11. Results related to Dataset B - increasing blur for both a structured (“bikes”) and a textured (“trees”) scenes. (a) Repeatability scores for the “bikes”
image series (structured scene). (b) Matching scores for the “bikes” image series (structured scene). (c) Repeatability scores for the “trees” image series
(textured scene). (d) Matching scores for the “trees” image series (textured scene).

formulas:

precision =
#correct matchings

#matchings
(24)

recall =
#correct matchings

#correspondences
. (25)

The curves are obtained varying the threshold t. An ideal 1-
precision vs recall curve would have recall equal to 1 for any
precision, while in practice the recall increases as the precision
decreases. A steep curve denotes a detector able to produce
distinctive regions with a reduced amount of non-distinctive
regions. We also report the threshold vs F-measure (FM)
curves, where the F-measure is computed as follows [39]:

Fβ =
(1 + β2)precision× recall
β2 × precision+ recall

(26)

where β2 = 0.3 to weigh precision more than recall. The
threshold vs F-measure curves have a retrieval-based inter-
pretation: a good curve would have a high peak for a small
threshold, indicating that a high number of regions can be
retrieved with little noise.

D. Note on the Normalization Scheme

The repeatability and matching scores reported in Eq. (22)
and (23) are defined normalizing the number of correspon-
dences and matchings by the minimum number of regions
detected in the test and reference images. Such normaliza-
tion scheme, proposed in [28] and fully recognized by the
Computer Vision community, is based on the observation that
the chosen normalization value is the maximum number of
correspondences or matchings which it is possible to achieve.
This normalization scheme accounts for those situations in
which, due to an extreme amount of the considered variability
(e.g., increasing radial distortion, change of viewpoint angle),
most of the regions extracted from the reference image are
unlikely to be detected by any algorithm in the test image
since they are represented by just a few pixels. Nevertheless,
it should be noted that, according to such definitions, the scores
referring to the same image series but different test images are
not in general normalized by the same number. As it shall be
clearer later on in our analysis, for this reason, the scores
related to different test images of the same series are not
directly comparable in a quantitatively fashion and the reported
results should be considered indicative instead as pointed out
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(a) Repeatability Scores - UBC
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(b) Matching Scores - UBC
Fig. 12. Results related to Dataset B - increasing JPEG compression. (a) Repeatability scores for the “UBC” image series. (b) Matching scores for the “UBC”
image series.
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(b) Matching Scores - Leuven
Fig. 13. Results related to Dataset B - decreasing light. (a) Repeatability scores for the “leuven” image series. (b) Matching scores for the “leuven” image
series. The legend of (a) applies to (b) as well.

in [28].

V. EXPERIMENTAL RESULTS AND DISCUSSION

We have performed three sets of experiments using the
datasets described in Section II-B. The first set of experiments
is aimed at assessing the robustness of the detectors to
increasing amounts of radial distortion and is performed on
dataset A. We take advantage of the repetition of the tests on
a number of images depicting scenes belonging to different
categories, to draw general conclusions on the performances
of the detectors. The second set of experiments is aimed at
assessing the performances of the considered detectors when
the variabilities present in the Oxford dataset are combined
to the radial distortion and it is performed on Dataset B.
The third set of experiments is performed on Dataset C and
is intended to complement the analysis on images acquired
using real fisheye lenses. Fig. 8 to 13 report the results of the
experiments described in Section IV. It should be noted that,
due to the normalization scheme discussed in Section IV-D,
the curves related to the repeatability and matching scores are

not guaranteed to be strictly monotonically decreasing with
respect to increasing amounts of a considered variability as
the reader could expect. As pointed out earlier and in [28],
such results have an indicative rather than quantitative value
and the reader is advised to focus more on the general trends
of the presented curves rather than on local configurations. In
the following, results related to the three sets of experiments
are discussed.

Fig. 8 reports the results related to Dataset A. All the
numbers have been obtained by averaging the results for the 50
image series of Dataset A depicting different scene types. This
allows us to draw general conclusions on the performances
of the detectors under analysis. Fig. 8 (b) and (c) show that
all detectors retain good performances for increasing fisheye
distortion. Interestingly, MSER clearly outperforms the other
detectors on both the repeatability and matching tests. In
particular, the superior performances of MSER in the matching
test highlight that the regions extracted by MSER tend to be
more distinctive than the ones extracted by the competitors
under the influence of radial distortion. This observation is
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TABLE I
RESULTS RELATED TO DATASET C - IMAGES ACQUIRED USING REAL

FISHEYE LENSES.

Series Repeatability % Matching ability %
Affine Detector Harris Hessian MSER Harris Hessian MSER
S1 (d = 0.13) 61.94 69.34 74.73 36.09 39.14 59.20
S2 (d = 0.19) 60.14 71.00 72.24 32.32 37.33 54.23
S3 (d = 0.54) 23.54 27.97 32.88 12.80 13.65 25.68

S1 (d = 0.13), rect 68.00 75.47 77.22 40.28 41.73 62.29
S2 (d = 0.19), rect 63.10 73.88 73.97 33.55 38.74 53.53
S3 (d = 0.54), rect 43.41 52.91 57.32 26.87 24.99 44.37

strengthen by the 1-precision vs recall and threshold vs F-
measure curves shown in Fig. 8 (d) to (i). Moreover, the decays
of the curves shown in Fig. 8 (b) and (c) are reminiscent of the
results related to the robustness of the detectors with respect
to affine variabilities such as the change of viewpoint angle
(solid lines in Fig. 9). This observation supports our premise
that affine covariant region detectors can locally model the
radial distortion introduced by a fisheye camera as an affine
variability (Section III-A).

Fig. 9 to 13 show the results related to Dataset B. Each
figure reports the repeatability and matching scores related to
a specific variability (i.e., change of viewpoint angle, scale
change, increasing blur, JPEG compression, decreasing light).
Specifically, each figure reports the results related to the
original series (no radial distortion is introduced) of the Oxford
dataset (solid lines), the results related to the series to which
a full frame distortion is added (dashed lines) and the results
related to the series to which a full circle distortion is added
(dot-dashed lines). It should be noted that, since the reference
image is never distorted in Dataset B, in each plot all the data
series are related to the same reference image. The results
are in line with [28] also when radial distortion is added; no
detector performs systematically better than the competitors
on all the image series and the relative ordering of the curves
tends to change for the structured and textured scenes even
when the variability under analysis is the same. However,
some general considerations are possible. The combination of
radial distortion and the variabilities present in the Dataset B,
i.e., Oxford dataset (dashed and dot-dashed lines) degrades the
performances of the detectors. Nevertheless, the curves related
to the distorted series are often characterized by decays and
relative ordering similar to the ones of the original series not
affected by distortion (solid lines). This is especially true for
the structured scenes both for the repeatability and matching
scores (Fig. 9 to 13 (c) - (d)). This observation is a further
evidence of how the introduction of the fisheye distortion is
in most of the cases handled by the detectors as an additional
variability to cope with. As general remarks, moreover, the
Hessian Affine detector achieves the best repeatability results
in most of the configurations, while the MSER detector
extracts highly distinctive regions in all the cases (i.e., the
matching results follow the repeatability results).

TABLE I reports the results related to dataset C. For each
image series and considered feature detector, we report the
average repeatability and matching ability scores over the 78
image pairs. The last three rows report results obtained per-

forming a rectification step prior to extracting affine covariant
features from the images. The results reported in TABLE I
confirm the general findings discussed earlier in this section. In
particular, repeatability and matching computed on real fisheye
images are generally lower, but still consistent with the ones
reported in Fig. 9 (viewpoint change + radial distortion) and
Fig. 10 (scale and rotation transformations + radial distortion).
As observed in the previous experiments, regions extracted
by the MSER detector are highly distinctive (matching scores
follow the trend of repeatability scores). In agreement with
the experiments performed on Dataset A, the MSER detec-
tor systematically outperforms the competitors both in terms
of repeatability and matching ability. Moreover, when the
distortion rate is low (i.e., S1 and S2 in TABLE I), affine
covariant feature detectors perform reasonably well directly
on fisheye images as compared to employing rectification. In
the case of low distortion, in fact, using affine covariant region
detectors directly implies an average performance drop under
the 3% with respect to both repeatability and matching ability
scores, which suggests that radial distortion is successfully
modelled as an additional affine variability. When distortion
is severe (i.e., S3 in TABLE I), performing rectification allows
to improve both repeatability and matching ability by a good
margin, leading to average gains of about 23% for repeatability
and 15% for matching ability. It should be noted that, even
in the case of severe distortion, results obtained on Dataset C
are still coherent with those obtained on Dataset B, suggesting
that direct employment of affine covariant region detectors on
fisheye images is able to produce usable results. This can be
particularly useful when rectification is not a viable option,
e.g., when the camera is not known (and hence cannot be
calibrated) in advance.

VI. CONCLUSION

We have studied the applicability of affine covariant region
detectors on fisheye images. Relying on the Division Model for
modelling the radial distortion introduced by fisheye cameras,
we have provided both theoretical and experimental evidence
that affine region detectors can successfully deal with radial
distortion as a local affine transformation. Specifically, inspired
by the work by Mikolajczyk et al. [28], we have designed a
series of experiments aimed at assessing the performances of
three popular region detectors, i.e., MSER, Hessian Affine,
Harris Affine, with respect to increasing radial distortion. We
have also tested the combination of the variabilities included
in the Oxford dataset with two different degrees of radial
distortion and performed testes on images acquired using
three real fish-eye lenses. Interestingly, MSER outperformed
the Hessian and Harris affine region detectors in both the
repeatability and matching tests in the experiments related to
the increasing radial distortion and on images acquired using
real fisheye lenses. The evaluations carried on the Oxford
dataset have shown that the detectors behave consistently when
the scene variability is combined with the radial distortion,
providing further evidence that radial distortion is effectively
modelled as an additional affine variability by the detectors.
Tests on images acquired using real fisheye lenses show that
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affine region detectors are able to handle low levels of radial
distortion making rectification avoidable. When distortion is
severe, affine region detectors yield results consistent with the
ones obtained in the presence of strong scale and rotation
transformation with artificially distorted images. Our analysis
can be exploited in all the application domains where the
input images are acquired by unknown, non-calibrated cameras
(both fisheye or rectilinear).
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