
computation

Article

Advanced Bio-Inspired System for Noninvasive
Cuff-Less Blood Pressure Estimation from
Physiological Signal Analysis

Francesco Rundo 1,*, Alessandro Ortis 2 ID , Sebastiano Battiato 2 ID and Sabrina Conoci 1 ID

1 STMicroelectronics, ADG Group—Central R&D, 95121 Catania, Italy; sabrina.conoci@st.com
2 Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy;

ortis@dmi.unict.it (A.O.); battiato@dmi.unict.it (S.B.)
* Correspondence: francesco.rundo@st.com; Tel.: +39-095-7404566

Received: 30 July 2018; Accepted: 23 August 2018; Published: 28 August 2018
����������
�������

Abstract: Blood Pressure (BP) is one of the most important physiological indicators that provides
useful information in the field of health-care monitoring. Blood pressure may be measured by both
invasive and non-invasive methods. A novel algorithmic approach is presented to estimate systolic
and diastolic blood pressure accurately in a way that does not require any explicit user calibration,
i.e., it is non-invasive and cuff-less. The approach herein described can be applied in a medical
device, as well as in commercial mobile smartphones by an ad hoc developed software based on the
proposed algorithm. The authors propose a system suitable for blood pressure estimation based on
the PhotoPlethysmoGraphy (PPG) physiological signal sampling time-series. Photoplethysmography
is a simple optical technique that can be used to detect blood volume changes in the microvascular bed
of tissue. It is non-invasive since it takes measurements at the skin surface. In this paper, the authors
present an easy and smart method to measure BP through careful neural and mathematical analysis
of the PPG signals. The PPG data are processed with an ad hoc bio-inspired mathematical model
that estimates systolic and diastolic pressure values through an innovative analysis of the collected
physiological data. We compared our results with those measured using a classical cuff-based blood
pressure measuring device with encouraging results of about 97% accuracy.
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1. Introduction

Measurement of arterial Blood Pressure (BP) involves the computation of both Systolic (SBP) and
Diastolic Blood Pressure (DBP), defined as the highest and lowest pressure values during a cardiac
cycle. The main medical approach to measure BP is the so-called auscultatory method, where a
physician inflates a cuff around the arm, and by means of a stethoscope, the measure of SBP and DBP is
detected. Recent methods exploit digital devices for detecting both SBP and DBP. However, these device
systems require the use of a cuff, which is invasive, costly and does not allow continuous monitoring.
In this work, we consider cuff-less, non-invasive BP estimation based on advanced mathematical
analysis of the PPG signal of the patient sampled through a Silicon Photomultiplier sensor (SiPM),
which can be installed in a commercial medical device or just in a common mobile smartphone.

A PPG waveform comprises a pulsatile (“AC”) physiological waveform attributed to cardiac
synchronous changes in the blood volume with each heart beat, and it is superimposed on a
slowly-varying (“DC”) baseline containing lower frequency components attributed to respiration,
thermoregulation, skin tissues, etc. For each cardiac cycle, the heart pumps blood to the periphery,
and the pressure pulse reaches the skin, distending the arteries and arterioles in the subcutaneous
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tissue. If a light reflex/transmit detector device is attached over the skin, a pressure pulse can be seen
from the venous plexus, as a small secondary peak. The change in volume caused by the pressure
pulse is detected by illuminating the skin with the light from a Light-Emitting Diode (LED), and the
transmitted or reflected light is measured by a photodetector, such as a photo-diode. Thus, each cardiac
cycle appears as a peak. Since the blood flow to the skin can be modulated by other physiological
systems, the PPG can also be used to monitor breathing, hyperglycemia, circulatory conditions,
and so on. Moreover, the shape of the PPG waveform differs from subject to subject and varies with
the location and manner in which the detecting device is attached. Despite the extensive activity in the
area of PPG signal detection and processing, improved solutions facilitating the calculation of blood
pressure values (both diastolic and systolic) from PPG signals are desirable.

In this work, we consider a cuff-less and non-invasive BP estimation based on advanced
mathematical analysis of the PPG signal sampled through a SiPM that can be integrated in a common
embedded device (medical or just in a mobile smartphone). The paper is organized as follows:
an overview of the literature about non-invasive cuff-less BP estimation methods is presented in
Section 2. A careful description of the system for PPG sampling is described in Section 3. Finally,
the proposed algorithm and related results are presented in Sections 4 and 5, respectively.

2. Related Works

It is well known that blood pressure can be estimated by the analysis of the waves produced at the
heart propagated over the arteries. The Moens–Korteweg equation gives the pulse-wave velocity [1]
as a function of vessel and fluid characteristics [2], as well as the arterial wall elasticity from which
a measure of the average pressure may be obtained [3]. However, this approach (and similar ones
based on analytic models) is inapplicable, as it requires the precise knowledge of some vessel physical
parameters for each patient. In the literature, there are further approaches for non-invasive BP
estimation comprising techniques based on PPG signals. In [4], the authors proposed an approach to
non-invasive continuous blood pressure estimation based on Artificial Neural Networks (ANN) trained
with 21 ad hoc input parameters extracted from a set of ∼15.000 PPG signals. This approach extracts
the different parameters of every pulse of the PPG signal and uses them as the input of the ANN. Then,
the network is trained to provide the corresponding BP value at the output. The employed multilayer
feed-forward ANN is composed of 21 input neurons (corresponding to the parameters extracted
from PPG), two hidden layers and tree output neurons for the prediction of Systolic BP (SBP), Diastolic
BP (DBP) and Mean Arterial Pressure (MAP)), respectively. In [5], a new PPG hand-crafted feature,
Normalized Harmonic Area (NHA), was investigated with encouraging results. The NHA feature is
obtained from the PPG signal in the frequency domain. In particular, the discrete period transform
algorithm is exploited to obtain the spectrum of each beat in the frequency domain. The authors
showed that the proposed feature had high correlation with blood pressure. The experiments, which
involved 28 healthy volunteers aged between 24 and 30 years, showed that the NAH has more
significant correlation with BP and smaller error than both Pulse Transmit Time (PTT) and diastolic
time [5]. However, the physiological mechanisms of the relation need to be explored. In [6], the authors
proposed a new calibration method based on the dicrotic notch of the PPG waveform for SBP estimation
using PTT. A new calibration parameter, the Relative Amplitude of the Secondary peak of PPG (RAS),
was developed in [6]. It was defined as the amplitude ratio of the main peak and the secondary peak.
Experiments showed that RAS is a promising calibration parameter to provide more accurate PTT-SBP
estimation. An interesting method was proposed in [7], in which an approach for BP monitoring
and estimation based on the relationship between the velocity of the pulse wave [1] and the BP
was described. The detection of the velocity of pulse wave was computed by the analysis of the
mechanical movements of blood vessel’s walls, as well as by additional information retrieved from the
PPG signal. In [8], an algorithm to estimate SBP and DBP using Pulse Arrival Time (PAT) computed
from ECG and PPG signals was proposed. They showed good results even though a re-calibration
was required. Indeed, after an initial training, the model parameters were re-calibrated at constant
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intervals using a Recursive Least Squares (RLS) approach combined with smooth bias fixing [8].
They showed good results even though a re-calibration was required. By a careful analysis of the
performed testing/validation, the authors of [8] confirmed that they were able to obtain an estimation
mean error between −5 and 5 mmHg both for SBP and DBP and standard deviations of 7.77 mmHg
and 4.96 mmHg, respectively, with recalibration every 1 h. We have discussed those results with
physiologists, who confirmed that those blood pressure estimation accuracy values are acceptable
from a medical point of view, even though these results need to be improved when we perform blood
pressure monitoring for hypertensive patients.

In [9,10], a detailed survey about the relationship between non-invasive blood pressure and PPG
signal features was reported. An interesting approach was presented in [11], in which the authors used
PTT with some other biometric parameters (e.g., weight, height, Body Mass Index (BMI), length of arm,
circumference of arm, etc.) as input for an ANN aimed to learn BP dynamic. Therefore, in order to
estimate BP from PPG, a system able to handle this physiological signal is needed. In [12–14], some
possible software and hardware solutions for sampling the PPG signal were shown. Finally, some
PPG-based cuff-less blood pressure estimation and monitoring algorithms were presented in [15–17]
using interesting approaches. In particular, in [15], the authors proposed a method to extract a
comprehensive set of features by combining PPG signal-based and Heart Rate Variability (HRV)-related
features, using a single PPG sensor. These features were fed to a combinatorial neural network model.
In particular, separate models for systolic and diastolic pressures were used for training. Three Artificial
Neural Network (ANN) regression models for each systolic and diastolic pressures were trained with
the Levenberg–Marquardt algorithm. Then, the weighted outputs of the three models were combined
to produce the final output. The authors of [17] proposed a cuff-less portable PPG-BP device for
continuous BP monitoring, able to detect in real time the temporal intravascular blood volume change
based on the Photoplethysmograph (PPG). In [18], the authors proposed a system for the BP estimation
using the PPG signal. In particular, this system consisted of two modules. First, the pre-processing
module cleaned the PPG signal of most noise and then segmented it into PPG cycles, corresponding to
a single heart beat. Then, the machine learning module extracted features describing the PPG signal
on a per-cycle basis, selected a subset of relevant features and fed them into regression algorithms
that built the prediction models. Considering that the correlation of PTT with the systolic and
diastolic blood pressures was highly dependent on each individual physiological property, in [19],
a calibration-free blood pressure estimation approach was proposed. Several physiological parameters
from the PPG signal were extracted, then signal processing and machine learning algorithms were
applied. In summary, the solutions above described presented one or more of the following features:

• classical analytic methods;
• Pulse Transit Time (PTT)-based methods, involving both ElectroCardioGraphy (ECG) and

PPG signals;
• heuristic approaches based on key features of PPG standard waveforms;
• (artificial) neural networks/machine learning algorithms;
• mixed ECG-PPG approaches.

However, as previously cited, the various solutions may suffer from certain limitations, such as:

• knowledge of specific physical parameters (arterial vessel elasticity, Moens–Korteweg equation, etc.);
• the related systems, both HW (Hardware) and SW (Software) (PPG/ECG) sensors, data extraction

(PTT, PWV), etc., may turn out to be unduly complex;
• a sensitivity/specificity ratio hardly compatible with the related (high) computational costs;
• continuous ECG acquisition may be mandatory, with relates the difficulties of detection in certain

contexts such as the automotive sector or smartphone systems;
• those methods that are based on machine learning and (Artificial) Neural Networks (ANNs) may

involve high computational costs against a reduced accuracy and/or a high estimation capability
limited to a reduced pressure range (80–90/110–130 mmHg);
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The authors propose a robust and effective BP estimation and monitoring method based on such
ad hoc and innovative analysis of the PPG signal.

3. The Photoplethysmography System (BI-P2RS): A Brief Overview

As already mentioned in Section 1, PPG is a non-invasive technique, which is becoming
increasingly popular to provide information on the cardiovascular system, in particular for the
monitoring of parameters like heart pulse rate, respiratory rate, tissue perfusion and some vascular and
cardiac disorders. Parameters like heart pulse rate, respiratory rate, tissue perfusion and some vascular
and cardiac disorders can be monitored via PPG. This signal has a great potential for assessing vascular
disease, especially for the evaluation of vascular effects of aging, hypertension and atherosclerosis,
providing also information on arterial stiffness and elasticity [20]. Use of PPG may be envisaged also in
areas different from the medical field. For instance, PPG has been considered for use in the automotive
field, e.g., in order to gain useful information on the behavior and/or the reaction of drivers and
passengers in various situations that may occur in a motor vehicle [6,7]. A compliant standard PPG
waveform comprises:

• a Systolic Peak (SP),
• a Dicrotic Notch (DN),
• a Diastolic Peak (DP) at a value y,
• the Width (W) of the pulse waveform.

Figure 1 shows a classic compliant standard PPG pattern. Unfortunately, the physiological
sampling pipeline shows some noise or PPG signal artifacts (motion artifacts, electronic noises,
signal distortion, sensors issue, random noises, etc.) even after a careful filtering of the raw signal.
For this reason, a PPG-compliant waveform recognition mechanism is needed in order to improve
the robustness of the medical indicators computed from source photoplethysmography data [21].
There are several systems for acquiring the PPG signal of a patient that have been proposed in
literature [22,23]. In this context, the authors have proposed a system named BI-P2RS (Bio-Inspired
PPG Pattern Recognition System) [24]. The PPG probes used in this paper for the measurements are
shown in Figure 2. This is based on the use of a Silicon Photomultiplier (SiPM) photodetector coupled
to OSRAM LT M673 LEDs in the SMD package emitting at 529 nm and based on InGaN technology
used as optical light sources [25–27].

Figure 1. A compliant standard PPG waveform. The different signal components are detailed: Systolic
Peak (SP), Dicrotic Notch (DN) and Diastolic Peak (DP).
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Figure 2. Silicon Photomultiplier (SiPM) detector filter and PPG probe.

The continuous component of the acquired waveforms is partially eliminated using a differential
signal acquisition [24]. LabVIEW software was developed in order to acquire PPG signals. This software
allows one to control the 24-bit ADC NI PXle-4303 NI (National instruments, Austin, TX, USA) acquisition
system, and it has been completed with a Graphical User Interface (GUI) to display the filtered PPG
signal together with its first and second derivatives. Moreover, it is possible to also compare two PPG
signals acquired from probes arranged at different body sites and measure their temporal delay. During
acquisitions, the working sampling frequency was set to 1 kHz. Finally, all data were stored in a log file
that could be selected by the user and handled by the MATLAB-based algorithm for PPG signal pattern
recognition. Output data were processed according to the logical scheme-flow reported in Figure 3. In the
flow, the first block uses the above-mentioned BI-P2RS pattern recognition method to filter compliant PPG
signals and make them robust for further processing, herein described.

Figure 3. Detailed description of the whole PPG signal sampling system and pattern recognition
pipeline. PTT, Pulse Transmit Time.

4. The Proposed Blood Pressure Estimation System

Figure 4 shows the proposed Blood Pressure Estimation pipeline. The pipeline comprises a
mathematical analysis circuit, which receives the robust and compliant PPG signals from the system
block BI-P2RS and provides signals corresponding to the results of mathematical analysis to two
different ANN circuit blocks. These blocks gives SBP and DBP output signals indicative of the systolic



Computation 2018, 6, 46 6 of 17

and diastolic blood pressure of the individual whose PPG signals were detected via the PPG probe.
The output signals SBP, DBP can be provided to a “consumer” system such as a display screen, a printer,
a recording device, etc., so that the signals SBP, DBP may be made available to support the diagnostic
activity of a practitioner in medical and veterinary activities. Figure 4 shows the proposed blood
pressure estimation pipeline.

BI-P2RS
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Figure 4. Detailed description of the proposed blood pressure estimation algorithm. BI-P2RS, Bio-Inspired
PPG Pattern Recognition System.

More specifically, the mathematical analysis system block comprises a processor block (e.g., a DSP,
or GPU, or similar processor circuit) configured in a manner to generate hand-crafted features to
support further processing in the artificial neural network blocks for BP estimation. As a first act,
the mathematical analysis system calculates a first set of features of the (filtered) PPG waveform and
related first and second (time) derivatives. Figure 5 shows the definitions of such variables used for
computing the following described hand-crafted features.
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The equations in Table 1 are exemplary of how such a first act of processing can be performed in
the proposed approach.

Table 1. Features from F1–F18.
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In the equations detailed in Table 1:

• ln denotes the (natural) logarithm;
• NPPG: the number of compliant PPG waveforms over a period of the analyzed PPG signal;
• the suffixes sys, dia and dic denote the systolic, diastolic and dicrotic phases of the PPG signal

(see, e.g., Figure 1), which may be identified as the portions a–b, a1–b1, a2–b2 (systolic), b–d, b1–d1,
b2–d2 (dicrotic), c–e, c1-e1 and c2–e2 (diastolic) in the diagrams (PPG and its first derivative and
second derivative) of Figure 5;

• Lix indicates the length of the sub-curve of the PPG waveform, for the systolic, diastolic and
dicrotic phases sys, dia and dic, respectively, and with i = 1, NPPG; in the same way, Lix (∂PPG/∂t)
represents the length of the sub-curve of the first derivative of the PPG signal, and Lix (∂2PPG/∂t2)
represents the length of the sub-curve of the second derivative of the PPG signal, again for sys,
dia and dic, respectively. For the first derivative and second derivative of PPG signal, the Simpson
rule can be adopted for computing the length of the curve [28];

• σx the denotes standard deviation for variable Lix.

The aim of the proposed work is to define a cuff-less non-invasive method for blood pressure
estimation. Thus, we first addressed this problem by means of the definition of ad hoc mathematical
features suitable to characterize the blood pressure dynamics. With this aim, we have studied the
correlation between the acquired PPG signal and blood pressure. In order to have a robust and careful
analysis of that correlation, our study has been supported by physiologists and cardiologists. In the
literature, it is well known that there is a correlation between the PPG signal (or other blood flow-based
signals) and blood pressure, as described in some mathematical models such as the Moens–Korteweg
equation previously mentioned [1]. However, by taking into account the information retrieved from
physiologists and cardiologists, as well as considering preliminary results obtained by the same
authors in their previous work (BI-P2RS) in [24], the authors supposed that blood pressure (both SDB
and DBP) is correlated with blood flow and its velocity and acceleration in the human arteries, as both
measures are related to the cardiac activity. Therefore, we supposed a correlation between blood
pressure (both SDP and DBP) and the PPG signal and its first and second derivative dynamics, which
are measures of velocity and acceleration, respectively. For this reason, the authors studied ad hoc
features to be extracted from the PPG signal and its first and second derivatives. As previously
described, the compliant PPG waveform contains information about cardiac cycles (i.e., systolic and
diastolic phases), as well as information about the dicrotic notch (correlated with the elasticity of
coronary arteries). Thus, we have defined custom hand-crafted features suitable to characterize each
cardiac cycle. Specifically, we defined the features F1–F3 to characterize the dynamic of systolic phase.
Likewise, the features F7–F9 and F13–F15 are suitable to characterize diastolic and dicrotic dynamics,
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respectively. For each set of features, we added classic statistical information such as the standard
deviation as reported in features F16–F18. In order to have a robust correlation model between blood
pressure and the PPG signal (i.e., cardiac cycles), we introduced further features suitable to model the
“dynamic ratio” between each of the cardiac cycles mathematically, since those ratios are correlated with
blood pressure, as confirmed by physiologists. Therefore, we have defined features from F19–F36 to
characterize the dynamic ratio between cardiac cycles dynamics as their changes are strongly affected
by proportional blood pressure variations. Finally, the features from F37–F42 were introduced to better
characterize the stability of cardiac cycles, as we analyzed the dynamic of each cycle between two
compliant PPG waveforms. We noted that a blood pressure variation showed a proportional change in
the dynamics of the cardiac cycles between compliant PPG waveforms, so that representative features
of that correlation have been added in order to improve the robustness and efficiency of the proposed
approach. Each group of features (i.e., [F1–F18], [F19–F36] and [F37–F42]) are useful to improve the
accuracy of the blood pressure estimation. Indeed, if we remove any of those, the performances of the
proposed approach decrease significantly.

Essentially, equations F1–F3 , F7–F9 and F12–F15 provide an indication of the “length” of the
signal curve or path of the PPG signal (and the first and second derivatives thereof) in the systolic,
diastolic and dicrotic phases (that is to say, “how long” each of these signals remains in each phase).
By observing Figure 5, it can be noted that, while extending over the same time duration, the PPG
signal (Part a in the figure), the first derivative signal (Part b in the figure) and the second derivative
signal (Part c) in the figure) have paths of different lengths provided by the Simpson rule [28]. In the
same line, Equations F4–F6 , F10–F12 and F16–F18 provide a refined indication of the average (standard
deviation) of the path lengths of the PPG signal and the first and second time derivatives thereof in the
systolic, diastolic and dicrotic phases.

As a second act as exemplified, the mathematical system block calculates a second set of features
F19–F36 of the (filtered) PPG, ∂PPG/∂t and ∂2PPG/∂t2 signals, which are indicative of the shape factors
of these signals, e.g., relative measures of the systolic, diastolic and dicrotic phases. These relative
measures are mathematical representations of how fast/slow the transitions between the systolic,
diastolic and dicrotic phases may occur. The equations from F19–F36 detailed in Table 2 are exemplary
of how such a second act of processing can be performed in the proposed approach. In the equations,
the entities indicated have the same meaning already discussed in connection with equations F1–F18

for the systolic, diastolic and dicrotic phases sys, dia and dic, respectively. Figure 6 employes distances
between peaks/valleys in subsequent PPG waveforms (generally denoted as i and i + 1).

Table 2. Features from F19–F36.
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F41, F42

F39,F39

F37, F38

PPG

Value

Time sample Time sample

PPG filtered waveform PPG filtered waveform

Figure 6. Detailed description of the variables used for hand-crafted features F37–F42.

Finally, Table 3 reports the remaining hand-crafted feature equations (F37–F42) we used in our
system, where the entities already discussed in connection with equations F1–F36 retain the same
meaning and:

• max denotes the point (abscissa) where the PPG waveform has its maximum value (systolic
peak SP);

• min denotes the point (abscissa) where the PPG waveform has its minimum value;
• pi denotes the dicrotic point (abscissa);
• i and (i + 1) generally denote two subsequent PPG waveforms.

Table 3. Features from F37–F42.

F37 = ln(
1

NPPG

NPPG−1

∑
i=1

(mini+1
dia−PPG − mini

dia−PPG)) F38 = ln(σ(mini+1
dia−PPG − mini

dia−PPG))

F39 = ln(
1

NPPG

NPPG−1

∑
i=1

(maxi+1
sys−PPG − maxi

sys−PPG)) F40 = ln(σ(maxi+1
sys−PPG − maxi

sys−PPG))

F41 = ln(
1

NPPG

NPPG−1

∑
i=1

(pi+1
dic−PPG − pi

dic−PPG)) F42 = ln(σ(pi+1
dic−PPG − pi

dic−PPG))

The entities (e.g., F1–F42 as exemplified in the foregoing) calculated in the mathematical system
block will be fed as input to the ANN blocks to perform therein processing intended to correlate
the PPG signal with pressure measurements (both diastolic and systolic) available for training the
neural network blocks to produce blood pressure signals SBPrec (systolic) and DBPrec (diastolic)
reconstructed starting from the PPG signals. Training values, e.g., SBP(t + 1) (systolic) and DBP(t + 1)
(diastolic), have been derived from a set of measurements performed on a sample of 32 patients
for which blood pressure is measured (e.g., by conventional means such as a sphygmomanometer)
concurrently with detecting a PPG signal. These values can be used for training both neural networks
represented in the system architecture reported in Figure 4.

The first used ANN (Neural System 1 as per Figure 4) is a Multi-Layer Perceptron (MLP) with
a modified Polak–Ribiere back-propagation learning algorithm [29,30], which was found to be an
adequate tool for use in learning a correlation between PPG-based features as discussed previously
(e.g., F1–F42) with blood pressure measurements. During the design/validation of the proposed
approach, we performed several tests on the type of neural network to be used in order to get the best
trade-off between approximation performance and convergence timing. As described in the classic
literature of machine learning, it is well known that basic Back Propagation (BP) algorithm adjusts
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the weights in the steepest descent direction. With this method, the loss function is decreasing most
rapidly, but it does not mean that this approach produces the fastest convergence, as the method is
very slow and often finds only the local minima of the function. Some authors suggested the usage
of Newton’s method, which has high performances, but it requires calculating the inverse of the
Hessian matrix, such that it shows high computational costs. For those reasons, we decided to check
the conjugate gradient BP algorithm as we heuristically supposed to model the problem as quadratic.
In the conjugate gradient method, the weights’ updating is performed along conjugate directions,
which produces generally faster convergence than steepest descent directions and allows avoiding the
high computational cost of Newton’s method. For this learning approach, there are more solutions
for the searching algorithm, as in our tests, we observed that the Polak–Ribiere achieved the best
results, so we decided to use the MLP trained with the BP algorithm modified as per the Polak–Ribiere
approach. This artificial neural network will thus be able to perform preliminary reconstruction of the
blood pressure of a subject both for systolic (SBP) and diastolic (DBP) values, providing an estimation
denoted as f1(*) and f2(*) for SBP and DBP, respectively. The second used artificial neural network
(Neural System 2 as per Figure 4) is an advanced modified version of the Self-Organizing Map (SOM)
motor map [31]. This ANN, as per Figure 4, will thus be able to complete such a reconstruction of the
blood pressure both for systolic (SBP) and diastolic (DBP) values by detecting a second estimation or
component K1(*) and K2(*) for both systolic and diastolic pressures, respectively.

In fact, final reconstructed blood pressure values, SBPrec (systolic) and DBPrec (diastolic), were
found to be reliably and accurately estimated as a combination (e.g., as a sum) of non-linear plus linear
components in the the following form:

SBPrec = f1 (Polak − Ribiere NN) + K1(wSBP,out [SOM1 − Motor Map]) (1)

DBPrec = f2 (Polak − Ribiere NN) + K2(wDBP,out [SOM2 − Motor Map]) (2)

where f1(*) and f2(*) represent the output from a functional mapping modeled by f1(*) (systolic) and
f2(*) (diastolic) as produced by the first neural network (e.g., with Polak–Ribiere learning), which
performs non-linear function approximation. The terms K1(*) (systolic) and K2(*) (diastolic) represent
the output from the second neural network (e.g., “extended SOM”), which performs a pseudo-linear
function approximation. Consequently, the pressure values SBPrec/DBPrec comprise a non-linear
portion ( f1/ f2) and a linear portion (K1/K2).

An extended SOM as schematically exemplified in Figure 7 (where only the Input Layer (IL) and
the Output Layer (OL) are visible) was found to be suited for use in the proposed approach, e.g., due to
the presence of an OL that was able to produce the linear correction needed to improve SBP/DBP
estimation made by the previous neural Network stage. We organized, for each type of Blood Pressure
Estimation system (SBP and DBP) a lattice structure of 8 × 8 neurons having 42 input weights (for each
neuron) and one output weight. Both weights matrices are random initialized.
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Figure 7. Self-Organizing Map (SOM) motor map proposed pipeline. IL, Input Layer; OL, Output Layer.

The following equations describe the typical “winner take all” algorithm [32,33] for proper
clustering of input hand-crafted signal features vector Fi:

wSBP,in
i (xmin, ymin, t + 1) = wSBP,in

i (xmin, ymin, t) + α · β(x, y, t) · (Fi − wSBP,in
i (xmin, ymin, t + 1)) (3)

wDBP,in
i (xmin, ymin, t + 1) = wDBP,in

i (xmin, ymin, t) + α · β(x, y, t) · (Fi − wDBP,in
i (xmin, ymin, t + 1)) (4)

where (xmin,ymin) represents the coordinates of the neurons, which minimize the Euclidean distance
between the input weights and the related hand-crafted input vector, while “α” and “β(x, y, t)”
represent the learning rate and neighborhood function (Gaussian) of the WTA algorithm. This winner
neuron produces the related output per the following equation:

wSBP,out (xmin, ymin, t + 1) =
= wSBP,out (xmin, ymin, t) + α · ∑ β(x, y, t) · ([SBP − f1 (Polak − Ribiere NN)]−wSBP,out (xmin, ymin, t))

(5)

wDBP,out (xmin, ymin, t + 1) =
= wDBP,out (xmin, ymin, t) + α · ∑ β(x, y, t) · ([DBP − f2 (Polak − Ribiere NN)]−wDBP,out (xmin, ymin, t) )

(6)

We compute the following learning errors:

EDBP(t + 1) =
1
2
(DBP (t + 1)− DBPrec (t + 1))2 (7)

ESBP(t + 1) =
1
2
(SBP (t + 1)− SBPrec (t + 1))2 (8)

If the above error functions are progressive decreasing, i.e.,

EDBP (t + 1) < EDBP (t) (9)

ESBP (t + 1) < ESBP (t) (10)

the related weights’ updating will be confirmed, and then:

wSBP,out (xmin, ymin, t + 1) = K1(wSBP,out) (11)
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wDBP,out (xmin, ymin, t + 1) = K2(wSBP,out) (12)

Otherwise, both input and output weight updates will be discarded.
The system as exemplified herein was found to be able to provide a blood pressure estimation

(both systolic and diastolic) in a few seconds, with (only) 4–5 s of PPG sampling found to facilitate
accurate and reliable reconstruction of a blood pressure signal. Figure 8 shows the performance of the
above neural networks during the learning process, whereas the distribution of the winner neurons of
the SOM motor map input layer during the learning process is shown in Figure 9.

Figure 8. Performance diagrams of the Polak–Ribiere neural network over nine epochs (blue: learning/
green: validation).

Figure 9. SOM motor map input layer winner neuron distribution (red neurons) during the learning process.

5. Testing and Future Works

The proposed approach has been extensively tested and validated. We used MATLAB as the
software framework, running on a PC i5 quad-core. The PPG signal has been acquired with the
hardware and software setup described in [24] as reported in Figure 2. This study was conducted in
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accordance with the Helsinki Declaration of 1975. All patients provided written informed consent
before enrollment. The study was approved by the Ethical Committee Catania 1 (Authorization
No. 113/2018/PO). Then, we proceeded to collect 42 patients having different genders (male and
female), ages (between 20 and 70 years old) and pathologies (we collected healthy subjects and sick
ones with different issues such as cardiac problems, hypertension, diabetes, etc.). In order to have a
real and robust blood pressure estimation as a reference, for each patient, we measured the SBP and
DBP by a classical sphygmomanometer device. Then, we started the PPG acquisition (for about two
minutes). Finally, the proposed pipeline was applied to the acquired raw PPG signal in order to have an
estimation of the SBP and DBP (we computed an averaging of the SBPs and DBP obtained by applying
the proposed algorithm to the PPG acquired waveforms time series). The reference SBP and DBP
measurements (acquired by the sphygmomanometer device) were compared with respect to the SBP
and DBP values estimated by the proposed pipeline. For each patient, we performed several testing
sessions (in different conditions: in the early morning, before eating, after eating, in the afternoon, etc.),
in order to have a robust and efficient comparison of the proposed approach. The accuracy of SBP
and DBP estimation was evaluated. For each patient, we compared the classic measurements of blood
pressure (by sphygmomanometer device) with the same ones obtained by the proposed approach
applied to the PPG signal acquired immediately after the referenced classic measure. All the classic
measurements were acquired by physiologists who collaborated in the experiments in order to have a
robust and reliable blood pressure estimation. The training/testing ratio was 60/40, as 60% of the data
had been used for training the proposed system and the residual 40% for testing the proposed pipeline.

The diagrams in Figures 10 and 11 show the good results we obtained in the validation set
(32 residual subjects).

Figure 10. SBP estimation performance diagram.
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Figure 11. DBP estimation performance diagram.

The average error for both estimation (SBP and DBP) was ∼2 mmHg, which is an acceptable
result from a medical point of view and with respect to prior word mentioned above as the error
estimation was about 10/15% of the real measure. The diagrams in Figures 12 and 13 show the errors
for such estimated pressures (both SBP and DBP).

Figure 12. SBP estimation error diagram.
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Figure 13. DBP estimation error diagram.

We proposed a non-invasive cuff-less blood pressure system that can be easily embedded in
different kinds of devices such as mobile phones to portable medical devices to a general embedded
system. Actually, the PPG probe and the computing system can be easily integrated in portable devices
(such as mobile phones, embedded devices, PCs, etc.) to reproduce the described system in order to
have in a few seconds of PPG sampling an accurate estimation of blood pressure without any other
hardware or medical knowledge as needed for instance for the sphygmomanometer-based approach.
The proposed approach seems more accurate with respect to classical commercial digital devices as it
shows (in the tested training set) a good accuracy ratio.

Future works will aim to improve a better estimation, increasing the training set number and
the type of neural system we used. We are performing such simulations by using the recent LSTM
(Long-Short-Term Memory) neural network with such a regression layer, as it seems more accurate
with respect to the neural networks used in the proposed approach.
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