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Abstract: Grid algorithmic trading has become quite popular among traders because it shows 

several advantages with respect to similar approaches. Basically, a grid trading strategy is a method 

that seeks to make profit on the market movements of the underlying financial instrument by 

positioning buy and sell orders properly time-spaced (grid distance). The main advantage of the 

grid trading strategy is the financial sustainability of the algorithm because it provides a robust way 

to mediate losses in financial transactions even though this also means very complicated trades 

management algorithm. For these reasons, grid trading is certainly one of the best approaches to be 

used in high frequency trading (HFT) strategies. Due to the high level of unpredictability of the 

financial markets, many investment funds and institutional traders are opting for the HFT (high 

frequency trading) systems, which allow them to obtain high performance due to the large number 

of financial transactions executed in the short-term timeframe. The combination of HFT strategies 

with the use of machine learning methods for the financial time series forecast, has significantly 

improved the capability and overall performance of the modern automated trading systems. Taking 

this into account, the authors propose an automatic HFT grid trading system that operates in the 

FOREX (foreign exchange) market. The performance of the proposed algorithm together with the 

reduced drawdown confirmed the effectiveness and robustness of the proposed approach. 

Keywords: Financial Time-series; Machine Learning; Data forecasting 

 

1. Introduction 

Algorithmic trading is a novel operating mode that involves the use of powerful automated 

algorithms, known as trading robots or expert advisors, which help traders on monitoring the specific 

market conditions in order to identify the best opportunities for buying or short selling the traded 

instruments. According to the specific rules properly processed by the aforementioned trading 

robots, an order may be opened or not. In particular, the trading robot may suggest to define specific 

stop loss and/or a certain take profit level in order to maximize the performance and minimize the 

losses or the overall drawdown. At the same time, the adopted algorithmic trading could decide to 

close an operation or to manage the grid of trading operations in case this type of approach is 

adopted. In this context, the aim of this work is to show an innovative grid trading algorithm able to 

negotiate on the complex OTC (over the counter) market. Basically a grid trading strategy is a 

financial technique for which market operations of the same sign are opened (all long or all short) 

appropriately spaced from each other (grid orders) until the overall balance of the whole operations 

(including all opened trades) reaches the desired gain. The distance between one trade and the next 

characterizes the radius of the grid, which can be defined statically or dynamically. The main 
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advantage of the grid trading systems is the financial sustainability because if the trading system 

incorrectly determines the direction of the trend, the opening of other positions at the same direction 

(grid orders) will serve to average the loss while, conversely, if the trend prediction system correctly 

determines the trend direction, opening more positions will allow to quickly reach the desired profit 

target. Obviously, a direct consequence of this strategy is linked to the need to get sufficient funds in 

the securities account that are able to cover the total financial exposure due to several transactions 

opened simultaneously in counter-trend. Therefore the aforementioned financial sustainability of the 

grid trading approach had to be related to the funds available in the trading account. As reported the 

introduced grid approach will be used in the OTC financial instruments. In the OTC market, 

especially if the CFD (contract for differences) instruments are traded, the transactions are not carried 

out on the official market because the provider broker became your trading counterpart [1]. One of 

the most traded instruments in the OTC market is the so-called FOREX (foreign exchange)—also 

known as FX market—showing the dynamic occurring in the decentralized international financial 

market in which investors and speculators provide for the conversion of one currency to another [1].  

Until a few years ago, before the explosion of the online trading, FOREX trading was the 

exclusive domain of large financial institutions. Nowadays, online trading platforms have opened up 

the market to all small investors who would like to buy or short sell currencies, especially the CFD 

instrument that follow the real market exchanged currency [1].  

The main advantage of the FOREX OTC market is mainly related to its high liquidity as well as 

to its practically uninterrupted worldwide trading activity as it starts, for each week, on the late night 

of Sunday and it will be closed on Friday late night of the same week. According to current GMT 

fixing, forex trading hours is performed around the major financial exchanges in the world such as 

the New York Stock Exchange between 01:00 pm–10:00 pm GMT while at 10:00 pm GMT Sydney 

Exchange comes online; Tokyo opens at 00:00 am and closes at 09:00 am GMT; and to complete the 

loop, London opens at 08:00 am and closes at 05:00 pm GMT. Consequently, the FOREX market has 

no central location for the trading operations and currency traders make predictions based on global 

economic indicators and each FOREX broker proposes a quotation strictly based on current market 

value.  

Despite that the foreign exchange market is highly efficient, it offers significantly reduced profit 

opportunities with respect to other financial markets because of high volatility and unpredictability 

of the underlying currency. In fact, currency markets are strongly affected by monetary policies and 

central bank interventions, which leads such market inefficiencies difficult to model by means of 

mathematical approaches so it is difficult to properly forecast. For the reasons expressed up to now, 

the authors have designed a proper algorithm for addressing the mentioned FOREX market 

inefficiencies in order to increase the overall performance of the trading system rather, taking 

advantage of the strengths of the forex market, which as mentioned are to be found in the high 

liquidity of the market. 

In Section II we introduce the prior art about the automatic trading systems especially related to 

FX market. An overview about our proposed pipeline will be discussed in Section III. Section IV will 

present the results, validation and benchmark comparison of the proposed approach. Finally, in 

Section V we present the conclusions and future works. 

2. Related Works  

Many approaches have been developed in the scientific literature in order to forecast stock 

market behavior. In particular heuristic science that takes the name of technical analysis has been 

widely applied for addressing financial problems and for making effective trading strategies [2]. 

However, the results of applying technical analysis to financial markets are quite weak in terms of 

both performance and drawdown so that recently this approach has been significantly improved by 

means of advanced financial mathematical modeling as well as by means of innovative and powerful 

machine learning algorithms [2].  

In recent years, neural networks have become popular in the technical analysis field in order to 

predict the financial market. Specifically, their ability to extract complex nonlinear and interactive 
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effects makes them very powerful for modeling nonlinear economic relationships. According to this, 

there are many recent works about the usage of neural networks in addressing financial issues that 

are worth considering in relation to the interesting results to which they came. One of the most recent 

papers is [3] in which Rundo et al have carefully investigated the usage of an advanced machine 

learning platform for a financial time-series forecast. Specifically, they combined a multi Long Short 

Term Memory (LSTM) framework with an ad-hoc adaptive trading strategy for building efficient 

investment algorithm. The results seems very promising in the mid-term timeframe. In [4] the authors 

implemented an agent-based approach to provide a robust forecast of the trading behavior in high-

frequency markets. The described method has been tested mainly on EUR/USD currency with 

intraday trading timeframe. The authors in [4] showed very promising results in terms of FX dynamic 

financial market forecast easily applicable in such automatic trading systems. In [5] the authors 

proposed an interesting method of a high frequency trading system based on the usage of neural 

networks trained via recurrent reinforcement learning (RRL). In general, the trading systems with 

deep neural networks trained via RRL reached very interesting results, even though the performance 

varies widely according to the traded currency markets. A very interesting approach was proposed 

in [6] in which the authors presented such strategies based on the usage of common technical 

indicators used for defining heuristic rules to make profitable the developed trading strategies. They 

considered reinforcement learning and genetic programming (GP) trading strategies as well as 

computational learning approaches, providing an interesting comparison benchmark of the analyzed 

approaches. 

3. GTSbot: The Proposed Pipeline 

As described in the previous section, in this paper the authors proposed an innovative profitable 

grid trading system for the FOREX market, which, therefore, bring all together the advantages of each 

part of the described pipeline, i.e., the performance and efficiency of the grid algorithms, the 

capability of recent machine learning tools and the high liquidity of the FOREX market. In Figure 1, 

the authors reported an overall representation of the proposed pipeline. 

 

Figure 1. The proposed grid trading system robot (GTSbot) pipeline: Overall scheme. 

As previously introduced, the target of the pipeline showed in Figure 1 was to propose an 

innovative trading algorithm that exploits the capability of the grid methodology together with the 

HFT approaches. A brief introduction of the pipeline scheme highlighted in Figure 1 was reported. 

Preliminarily, like any trading system, it appears propaedeutic to determine the trend of the 

instrument to be traded so as to define the direction of the financial transaction (long or short or null 
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operation in the case of no well-defined trend). For this task, the authors proposed the use of a non-

linear “Regression Network” for instrument close price forecast, together with a “Trend Classifier” 

block that on the basis of analytical predictions performed by the regression network, estimates the 

most probable short-term financial trend. At this point, the proposed system will take care of 

autonomously organizing the trading grid by evaluating the current state of trading such as the 

opened transactions of the same sign as the opposite sign, the current drawdown, balance of the 

trading account, opening constraints, etc. These evaluations will be performed by the "Grid System 

Manager" block illustrated in Figure 1. For the correct evaluation of the performance of the trading 

system, the authors suggested the use of a block called "Basket Equity System Manager" that will deal 

with evaluating and monitoring the financial exposure of the trading grid, therefore, to close all 

positions as soon as the system reaches a pre-established target profit. 

The proposed approach was implemented and designed for high frequency trading (HFT). 

Particularly, we performed trading strategies on the FX market considering 1 min (one minute) 

timeframe EUR/USD currency cross. We collected the EUR/USD currency data from the Tickstory 

Database [7], which exports historical data with 99.9% accuracy. Specifically, we have collected the 

following currency prices EUR/USD data: Open, close, high and low as well as the volume in a 1 min 

timeframe. In order to validate the proposed method, the training and testing data were selected from 

latest five years of EUR/USD quotations. Each of the referred blocks in Figure 1 will be detailed in the 

following sections. 

3.1. GTSbot: Regression Network SCG 

The purpose of the regression network scaled conjugate gradient block (SCG) is to forecast 

EUR/USD currency close price using previous pricing data such as open, close, low, high and the 

volume of exchanged currency shares. As described in the previous section, machine learning and 

deep learning are widely used in the field of automatic trading systems development as well as for 

addressing a lot of financial issues including time-series forecast [3]. As it is well known in literature, 

the financial time-series are highly unpredictable in the mid-long-term timeframe while they showed 

a fair predictability in the short-term [3]. Considering that, the proposed approach has been designed 

to be integrated into a high frequency trading (HFT) system in order to improve the overall 

predictability of the financial trend. In the method herein described, the authors proposed a classical 

feed-forward regression neural network in combination with a modified back-propagation (BP) 

method known as scaled conjugate gradient (SCG) BP algorithm. The core idea of the SCG algorithm 

is included on the classical conjugate gradient methods (CGM), i.e., a class of optimization techniques 

that allow for minimizing the second derivative of the used learning goal function [8]. From a general 

point of view, the neural network learning procedure is equivalent to minimizing a well-defined 

performance error function, which is basically a function that depends on the weights of the network. 

For these reasons, the neural network learning phase often involves the adjustment of several 

thousands of weights so that optimization methods are relevant to reduce the overall learning 

complexity. 

Most of the mentioned optimization methods are based on the same strategy. They try to 

minimize the performance error function by means of a local iterative process in which an 

approximation (usually trough a first order Taylor series expansion of the performance error 

function) in a neighborhood of the current point (in the weight space) is applied in order to search a 

minimum of the performance error function. Basically, for each interaction “k”, the learning 

algorithm determines a search direction for which the global performance error function, at 

interaction “k”, is lower with respect to the previous value at interaction “k-1”. Once the search 

direction has been found we have to decide how far to go in the specified search direction, i.e., a step 

size has to be determined. Some algorithms propose to set the search direction to the negative 

gradient direction (the so called “gradient descent algorithm”) as they usually occur in most of the 

back-propagation learning algorithms described in the literature [8].  

The recalled conjugate gradient methods are also based on the above general strategy with the 

only exception being the choice of the search direction and step size are performed by using 
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information from the second order Taylor expansion approximation of the performance error (the so 

called Hessian matrix). This means that performance error is basically a quadratic function. Well, by 

means of specific mathematical proprieties of the quadratic functions [8], the CGM algorithms assures 

that the global minimum is detected in a reduced number of iterations with respect to a classical 

gradient descent-BP algorithm. Anyway, for each learning iteration, the Hessian matrix has to be 

computed considerably increasing the computational complexity of the algorithm. In the SCG 

algorithm this complexity is reduced by means of an estimation and approximation of the Hessian 

matrix for which it will no longer be necessary to calculate each matrix coefficients at each iteration 

but rather it will be possible to proceed with an estimation, evaluating in any case the goodness of 

this approximation by means of some heuristic parameters and checks. This result can be obtained 

by applying the Levenberg-Marquardt approach to the conjugate gradient methods [8]. Obviously, 

for these reasons the SCG algorithm requires only O(N) memory usage and O(NlogN) of learning 

complexity (against O(N2) and O(N2logN) of classical BP algorithm, respectively) where N is the 

number of used neural weights in the network [8]. According to this, we implemented a SCG BP 

neural network composed by five neurons in the input layer, 500 neurons in the hidden layer and 

one neuron in the output layer. The output is the predicted currency cross close price. As reported in 

[8], the SCG BP neural network achieves effective results in terms of fast convergence even if it shows 

some drawbacks in terms of regression performance [8]. Anyway, the purpose of our pipeline 

consisted in predicting the trend in the short-term timeframe and not the exact close price. In Figure 

2, an instance of the EUR/USD forecasted close prices for a subset of days on January 2018 is reported. 

 

Figure 2. The EUR/USD prices time-series (January 2018). 

In Figures 2 and 3 represented the regression performance showed by the used SCG BP neural 

network, which was not optimal while on the other hand it was evident the ability of the used neural 

network to predict the trend of the traded currency. 
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Figure 3. (a) The EUR/USD real close time-series (red) vs EUR/USD forecasted close prices (black). 

(b)–(c) A detail of the forecasted close pricing (by the proposed scaled conjugate gradient back-

propagation (SCG BP) neural network). 

Future works aims of improving the performance of the SCG BP regression block in forecasting 

the currency close price. We are analyzing the application of ad-hoc cross currencies correlation 

analysis [9] or by replacing the SCG BP neural network with recent deep neural network architectures 

such as Stacked AutoEncoders, Convolutional Neural Networks (CNNs) or Long Short Term 

Memory neural networks (LSTMs) [10]. 

3.2. GTSbot: Trend Classification Block 

The output of the regression network SCG block (the predicted currency close price) was used 

to estimate the most probable trend of the traded financial currency cross. In a classical 1 min (one 

minute) intraday trading timeframe, there are n close price quotations so that if we denote 

𝑐𝑓
𝑐𝑙𝑜𝑠𝑒(𝑘) the close price to be the predicted at k-time (by the SCG BP neural network), then we define 

the following relationship (1): 

𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘) =  𝑅𝑆𝐶𝐺 (𝑐𝐶𝑙𝑜𝑠𝑒(𝑘 − 1), 𝑐𝑂𝑝𝑒𝑛(𝑘 − 1), 𝑐𝐿𝑜𝑤(𝑘 − 1), 𝑐𝐻𝑖𝑔ℎ(𝑘 − 1), 𝑐𝑉𝑜𝑙𝑢𝑚𝑒(𝑘 − 1)) (1) 

We denoted 𝑅𝑆𝐶𝐺 as the regression map function of the SCG regression network block. At the 

next step, the trend classification block (TCB) provided an estimation of the current financial trend 

performing the following check: 

𝐿𝑜𝑛𝑔 𝑇𝑟𝑒𝑛𝑑 
𝑖𝑓  

𝜕𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘
>  𝛿 𝑎𝑛𝑑 

𝜕2𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘2
> 0 

(2) 𝑆ℎ𝑜𝑟𝑡 𝑇𝑟𝑒𝑛𝑑 
𝑖𝑓   

𝜕𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘
<  𝛿 𝑎𝑛𝑑 

𝜕2𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘2
< 0 

𝑁𝑢𝑙𝑙 𝑇𝑟𝑒𝑛𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Basically, the TCB performs ad-hoc fast mathematical analysis of the financial currency time-

series acquired from the broker quotations. More in detail, the TCB system performs careful analysis 

of the first and second derivative of the collected FX cross time-series and the predicted close price at 

(k+1)-time. It can be noted that, if the first derivative is greater than an empirically defined threshold 



Appl. Sci. 2019, 9, 1796 8 of 15 

𝛿 (defined equal to the broker spread), then the trend increases over time (long trend). To confirm 

this we needed to check whether the sign of the second derivative, which is a robust measure of the 

concavity of the acquired time-series curve. If both conditions were true, the TCB confirmed the long 

trend or short trend, otherwise. If at least one of the above check failed (i.e., the first and second 

derivative did not show same mathematical behavior), it was enough to indicate that the trend was 

not well determined, therefore, no operation was suggested. For the mathematical computation of 

the first and the second derivative, we used the Equations (3) and (4), respectively. 

𝜕𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘
 ≌  𝑐𝑓

𝐶𝑙𝑜𝑠𝑒 (𝑘 + 1) −  𝑐𝑟𝑒𝑎𝑙
𝐶𝑙𝑜𝑠𝑒(𝑘) (3) 

𝜕2𝑐𝑓
𝐶𝑙𝑜𝑠𝑒(𝑘 + 1)

𝜕𝑘2
 ≌  𝑐𝑓

𝐶𝑙𝑜𝑠𝑒 (𝑘 + 1) − 𝑐𝑟𝑒𝑎𝑙
𝐶𝑙𝑜𝑠𝑒(𝑘 − 1) − 2𝑐𝑟𝑒𝑎𝑙

𝐶𝑙𝑜𝑠𝑒(𝑘) (4) 

In Figure 4 an instance of the trend prediction made by TCB is reported, both for the long trend 

as well as for the short ones. 

 

Figure 4. The trend classification block: An instance of trend prediction (EUR/USD, January 2018). 

We tested the described trend forecast algorithm over EUR/USD currency historical data (as 

said: Latest five years (2014–2018)) at 1 min timeframe. From our experimental results, the TCB was 

able to forecast the trend with an accuracy of 73.2%.  

3.3. GTSbot: Grid System Manager Block 

The aim of this block was to open a grid-trading scheme according to the predicted trend as per 

the algorithm inside the previously described TCB. As already stated, if the trend predicted was null, 

the system would not perform any operations. The grid system manager (GSM) block performed a 

long operation if the TCB estimated the long trend while it performed a short operation if the TCB 

estimated a short trend. In the first case, we bought the FX cross, while in the second case we decided 

to perform a short selling of the FX currency. The FX market price at which the GSM performed the 

operation was the available open currency price. Anyway the GSM block performed the specified 

operation if and only if the grid condition was also verified. The grid condition represented the 

additional constraint in the GSM block we had designed to build a robust and effective trading 

framework for the proposed pipeline. According to the trend estimation from TCB, the GSM block 

performed a careful check of the current status of the trading acitivities. Figure 5 shows the workflow 

followed by the GSM block. The first target of the GSM block was a further deep analysis of the 
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estimated trend made by TCB. If TCB returned the null trend, the GSM block workflow jumped to 

“No Operations” waiting for the next prediction made by the GSM block. Otherwise, if the long or 

short trend was detected by TCB, the GSM algorithm checked the overall number of opened 

operations in the current grid trading system. During the trading activities, a maximum number of 

operations (long and short) was defined, according to the available investment fund in our trading 

account. Consequently, the GSM block checked if the maximum number of operations was reached 

and it proceeded with the next check on the workflow, i.e., the grid distance. Obviously, if the system 

had already opened all the allowed operations, the GSM algorithm jumped to “No operations”. 

Instead, in case the maximum number of operations had not been reached in both the long and short 

trades, the GSM workflow checked the grid distance constraint, i.e., the minimum distance in number 

of samples (abscissa axis of the Figure 3) and in the currency price with respect to all opened trades 

with the same direction. Basically, the GSM block will open a trade (long or short) if and only if the 

x-distance and y-distance between the current FX cross price at which we want to open the trade and 

all the corresponding x-values and y-values we still had for each opened trades (with the same 

direction) was greater than the x-threshold and y-threshold we had defined in our GSM block. Figure 

6 reports the described pipeline. 

 

Figure 5. The grid system manager (GSM) block: The workflow. 
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Figure 6. The GSM block: An instance of workflow (long trades). 

From the representation shown in Figure 6 we can better understand the working flow of the 

GSM block. In the detail of the financial time-series explored in Figure 6, the already opened 

operation was identified by the green circle. During the normal trading activity, the proposed 

algorithm proposed the opening of another long position represented by the red circle reported in 

Figure 6. However, the GSM block discarded this proposal as they were not respecting the grid 

conditions both in reference to the abscissa axis (distance x1) and in relation to the price value 

(distance y1) as they were both considerably below the pre-set thresholds. On the other hand, the 

subsequent proposal to open another long position (blue circle) was granted by the GSM block 

because it respected both the conditions relative to the grid distance with respect to the position 

already open (distance x2) and the condition relating to the distance of the price value (distance y2). 

Therefore, in the hypothesis that was in the example shown in Figure 6, the maximum number of 

operations had not been reached, the GSM block would confirm and execute the opening of the 

second long order proposal, characterized by the blue circle in detail in Figure 6. In this way, the GSM 

block would be able to open such trades in grid schemes and operations appropriately spaced from 

each other in order to average any wrong trades open against the real trend. The heuristically defined 

x-thresholds and y-thresholds allowed the prevention of several wrong trades very close to each other 

being opened by the GSM block. To confirm what has been said, we had tried the proposed approach 

disabling the checks performed by means of the mentioned x-thresholds and y-thresholds. 

Specifically, we had tried the grid trading system robot (GTSbot) system without the x-threshold 

based check. The so modified algorithm had performed lower with respect to the same with the x-

threshold check enabled. More in detail, we noticed a considerable increase in the drawdown (on 

average +25%) accompanied by a reduction in profit (−10% of daily profit in average). Similarly, with 

the y-threshold control disabled, we found a considerable increase in the drawdown (+18.3%) along 

with a reduction in daily profit (−11.25%). The above tests (performed in the scenarios reported in 

Tables 1 and 2) confirmed the key role played by the x-thresholds and y-thresholds based checks in 

the proposed system. 

This approach provides a simple and effective method to compensate any drawdown drifts due 

to wrong opened trades. We performed several tests in order to select a robust values of x-threshold 

and y-threshold as well as the maximum number of allowed operations with an intraday investment 

perspective. According to our experimental results, we decided to use the following values: 

• x-threshold = 15 (candlestick, i.e., 15 min in a 1 min timeframe); 

• y-threshold = 0.00020 (two pips according to FX 5-digits quotations); 
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• Maximum number of operations = 13. 

The x-threshold set to 15 indicated that the GSM block did not open any operation if we have at 

least 15 samples (or candlesticks) of distance between each opened operation and new ones. Similarly, 

GSM block did not open any operations (long or short) if the FX cross quotation value at which we 

want to open a new trade was greater or lower (according to the type of operation if it was long or 

short, respectively) than the y-threshold with respect to all the prices at which previous trades (in the 

same directions) had been opened.  

The used distance metric was the absolute distance. The FX cross quotation value was measured 

in pips, which was the standard unit for FX markets. The maximum number of allowed operations 

had been defined as an odd number because we want to avoid a perfect hedging condition in which 

we had a number of long trades exactly equal to short ones as the trading system became market 

neutral. Formerly, the GSM block would proceed opening a trade if (in the hypothesis of the defined 

trend detected by TCB): 

Long trade: 

𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛(𝑘1): 𝑘1 > k + 𝑥𝑡ℎ

; ∀ k ∊ 𝑘1, 𝑘2, … , 𝑘𝑚 and 
(6) 𝑐𝑟𝑒𝑎𝑙

𝑂𝑝𝑒𝑛(𝑘1): 𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛(𝑘0) < 𝑐𝑟𝑒𝑎𝑙

𝑂𝑝𝑒𝑛𝑒𝑑
(𝑘0

𝑖 ) + 𝑦𝑡ℎ
; ∀ k ∊ 𝑘0

1, 𝑘0
2, … , 𝑘0

𝑚 and 

𝑁𝑡𝑟𝑎𝑑𝑒𝑠< 𝑀0   

Short trade: 

𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛(𝑘1): 𝑘1 > k + 𝑥𝑡ℎ

; ∀ k ∊ 𝑘1, 𝑘2, … , 𝑘𝑚 and 
(7) 𝑐𝑟𝑒𝑎𝑙

𝑂𝑝𝑒𝑛(𝑘1): 𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛(𝑘0) < 𝑐𝑟𝑒𝑎𝑙

𝑂𝑝𝑒𝑛𝑒𝑑
(𝑘0

𝑖 ) + 𝑦𝑡ℎ
; ∀ k ∊ 𝑘0

1, 𝑘0
2, … , 𝑘0

𝑚 and 

𝑁𝑡𝑟𝑎𝑑𝑒𝑠< 𝑀0   

where we have defined 𝑥𝑡ℎ
, 𝑦𝑡ℎ

 and 𝑀0 as the x-threshold, y-threshold and maximum number of 

trades respectively while 𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛 represents the current currency price at which we want to open a 

trade and 𝑐𝑟𝑒𝑎𝑙
𝑂𝑝𝑒𝑛𝑒𝑑

 represents the price at which we have already opened previous trades. 

3.4. GTSbot: Basket Equity System Manager 

The basket equity system manager (BESM) block is able to monitor the econometric balance of 

the trading account. This block performs at each quotation (according to the timeframe we have 

selected) the current monitoring of the overall balance indicators of the FX broker account we were 

using. It checks the drawdown, the account fund availability, net account availability, which is 

basically the total balance account deducted, the current drawdown and the operative margin 

amount the broker incoming for each opened trade (this value is strictly correlated to the adopted 

leverage, i.e., for a leverage 1:30 for each LOT FX trade, i.e., an investment of 100,000 US dollars; an 

amount of about 3000 US dollars is required as a margin withheld from the broker). By means of 

BESM block the proposed pipeline monitors the current status of the trading account according to 

the prefixed take profit and stop loss. In the proposed grid strategy, we avoided to use stop loss as 

the grid algorithm, as explained in the previous sections, was able to compensate for the drawdown, 

resulting in the opening of incorrect trades. Instead, we had defined a take profit as the amount of 

gain at which the BSEM block will close the basket trades (i.e., the set of all opened trades). 

4. Results and Future Works 

As already stated, we trained and tested our pipeline by using the EUR/USD FX spot currency 

cross quoted in the latest five years (2014–2018). Moreover, in order to provide a comparison with 

similar approaches applied to the FX market, we have downloaded 99.9% accuracy historical data of 

EUR/USD in the years 2004–2018. We used a 1 min timeframe quotation as we were interested in the 

HFT strategy consisting of the execution of several operations with intraday perspective. We 

downloaded historical currency data from the Tickstory database with 99.9% accuracy. We supposed 

a broker account with 30,000 US dollars as an initial balance and two pips of spread bid/ask (the 

spread is the average gain commission cashed by the broker). As said, we performed the described 

learning of the proposed machine learning framework (regression network SCG block) by means of 
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1 min FX EUR/USD time-series of day t1 to perform EUR/USD close pricing forecast for the next day 

t1+1. We supposed an account leverage of 1:400 (the broker requires about 300 US dollars as a margin 

for each LOT FX trade) and a LOT size for each single FX trade order.  

We validated our proposed pipeline over all available years (from 2004 to 2018), performing 

several tests in which we have selected each time a different day, a different daily time-window, 

which means a different stock exchange. We collected the validation results providing a comparison 

with the following works made on the FX spot markets (from 2004 to 2011) [11]: 

Table 1. Trading Performance Comparison 

Experiment [11] FX currency cross 
ROI  

[11] 

MD 

[11] 
ROI (Proposed) MD (Proposed) 

Nr. 01 EUR/USD 60.77 21 94.11 11.25 

If we increased the risk (reducing the x-threshold and y-threshold to 5 and 0.00005, respectively) 

we obtained the following performance applying the proposed approach to the same historical data: 

Table 2. Trading Performance Comparison 

Experiment [11] FX currency cross 
ROI  

[11] 

MD 

 [11] 
ROI (Proposed) MD (Proposed) 

Nr.01(10 Lots) EUR/USD 607.75 64.86 350.62 38.75 

Nr.01(10 Lots) EUR/USD 607.75 64.86 500.73 65.11 

We have defined the financial performance indicators (return of investment ROI and maximum 

absolute value of drawdown MD) according the following Equations (8) and (9) [11]: 

 𝐑𝐎𝐈 =  
𝟏𝟎𝟎 ×  (𝐆𝐚𝐢𝐧 − 𝐈𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭)

𝐈𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭
 (8) 

 𝐌𝐃 =  
|𝐁𝐚𝐥𝐚𝐧𝐜𝐞𝐕𝐚𝐥𝐥𝐞𝐲 − 𝐁𝐚𝐥𝐚𝐧𝐜𝐞𝐏𝐞𝐚𝐤|

𝐁𝐚𝐥𝐚𝐧𝐜𝐞𝐏𝐞𝐚𝐤
 (9) 

In order to validate the performance of the overall proposed system, we compared our method 

with a similar one [11]. As showed in Tables 1 and 2, the ROI indicator we obtained was on average 

lower than the best performance of the method [11] if we increased the financial risk (MD) but on the 

other hand, our approach showed a good performance (ROI) if we maintained a reduced financial 

risk (MD). We have further extended the benchmark comparison of the proposed approach as 

reported in Tables 3 and 4: 

Table 3. Trading Performance Comparison 

FX cross: EUR/USD ROI 

S/R + Ichimoku IWOC [12] 13.33% 

S/R + Ichimoku IWC [12] 14.08% 

Proposed 13.76% 

In Table 3 we reported an interesting comparison between the proposed approach with respect 

to similar ones applied in the FX markets. In [12] the authors reported the performance of an 

algorithm that uses classic technical analysis indicators to define an efficient trading strategy. 

Specifically, the authors in [12] proposed the use of a classic approach based on the analysis of the 

supports and resistances levels computed from the financial charts together with the trading signals 

provided by the “Ichimoku” indicator. Once again, it was evident that our approach, although not 

always able to outperform the method proposed in [12], was sustainable as the overall DrawDown 

(DD) did not exceed 9% and also does not use any technical indicators information that was often 

closely related to broker quotes, therefore, not always reliable. 
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Finally, in Table 4, the authors compared their proposed approach with another HFT pipeline 

[13]. In the following table, the best performance results reported in [13] are highlighted: 

Table 4. Trading Performance Comparison 

FX cross: EUR/USD Total Profit DD 

Threshold (0.03%)—Strategy 2 [13] 97,687  50.47% 

Threshold (0.07%)—Strategy 2 [13] 62,707  9.93% 

Proposed 72,541 10.91% 

In [13] the authors propose a trading approach based on the computation of the so-called 

"Direction Changes" applied to the HFT context. Once again, from a comparison of the results shown 

in Table 4 it was clear that the method we had proposed determines an efficient trade-off between 

profitability and the sustainability level, highlighting a drawdown that was still limited against an 

acceptable performance comparable to that of that shown by the approach proposed in [13]. 

As explained in the previous sections, we were interested in developing a trading system that 

was financially sustainable as well as profitable which means, in few words, that we were more 

interested in a trading system that performed less than others but that did so by minimizing the 

financial risks. Figure 7 reports the GUI mask of the proposed algorithm (developed in MATLAB rel. 

2018a running in a PC Intel Core i5 with a 32 Gb RAM and without GPU): 

 

Figure 7. The GTSBot GUI interface. The first graphic on the top showed the dynamic real drawdown 

of the financial account. The second diagram showed the total profit being obtained. The third 

diagram showed a financial indicator known as the Sharpe ratio [12] that we used for monitoring 

financial dynamic of the trend. 

Future works will aim to integrate a cross-correlation method as implemented in [14] as well as 

getting the grid-scheme dynamically regulated through a common financial indicator such as the 

Sharpe ratio [15]. Moreover, we are investigating about the replacement of the used SCG regression 
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neural network with a more efficient deeper LSTMs framework combined with ad-hoc hand-crafted 

signal features as some recent studies confirmed their capability on financial time-series forecasting. 

5. Conclusions 

In this paper, the authors showed the capability of an innovative trading algorithm based on a 

grid strategy and applied in the FOREX market. The stated objective of the proposed pipeline was to 

provide a methodology to combine the advantages of the FOREX market (high liquidity) with the 

grid strategy (financial sustainability) and artificial intelligence based methods. So, the desired target 

was to provide a trading algorithm that performed properly but with a contained financial risk (in 

terms of drawdown). The results reported in the previous section confirmed beyond any reasonable 

doubt that the proposed pipeline was able to achieve the proposed objectives, demonstrating 

excellent performance with limited financial risks. The validation of the proposed system with 

respect to similar algorithms confirmed what we had just been asserted. In the near future the authors 

intend to better analyze the recent machine learning techniques to improve trend forecast of the 

traded financial instrument. Furthermore, financial indicators are being evaluated to be used for the 

dynamic definition of the grid radius in order to optimize the algorithm's performance.  

Currently, the authors are investigating innovative machine learning based approaches that 

make the proposed system fully automated with specific reference to the choice of the maximum 

number of operations that can be performed in the grid, in the (adaptive) choice of x-thresholds and 

y-thresholds, in the choice of take profit as well as in the addition of an ad-hoc feedback mechanism 

coming from the BESM block in order to improve the robustness of the overall trading system. 
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