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Recognizing Personal Locations from Egocentric Videos
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Abstract—Contextual awareness in wearable computing allows
for construction of intelligent systems which are able to interact
with the user in a more natural way. In this paper, we study
how personal locations arising from the user’s daily activities
can be recognized from egocentric videos. We assume that few
training samples are available for learning purposes. Considering
the diversity of the devices available on the market, we introduce
a benchmark dataset containing egocentric videos of 8 personal
locations acquired by a user with 4 different wearable cameras.
To make our analysis useful in real-world scenarios, we propose
a method to reject negative locations, i.e., those not belonging
to any of the categories of interest for the end-user. We assess
the performances of the main state-of-the-art representations for
scene and object classification on the considered task, as well
as the influence of device-specific factors such as the Field of
View (FOV) and the wearing modality. Concerning the different
device-specific factors, experiments revealed that the best results
are obtained using a head-mounted, wide-angular device. Our
analysis shows the effectiveness of using representations based on
Convolutional Neural Networks (CNN), employing basic transfer
learning techniques and an entropy-based rejection algorithm.

Index Terms—egocentric vision, first person vision, context-
aware computing, egocentric dataset, personal location recogni-
tion

I. INTRODUCTION AND MOTIVATION

Contextual awareness is a desirable property in mobile
and wearable computing [1], [2]. Context-aware systems can
leverage the knowledge of the user’s context to provide a
more natural behavior and a richer human-machine interaction.
Although different factors contribute to define the context
in which the user operates, two important aspects seem to
emerge from past research [2], [3]: 1) context is a dynamic
construct and hence it is usually infeasible to enumerate a set
of canonical contextual states independently from the user or
the application, 2) even if context cannot be simply reduced to
location, the latter still plays an important role in the definition
and understanding of the user’s context. In particular, we
argue that being able to recognize the locations in which the
user performs his daily activities at the instance level (i.e.,
recognizing a particular environment such as “my office”),
rather than at the category-level, (e.g., “an office”), provides
important cues on the user’s current objectives and can help
improving human-machine interaction.

First person vision systems offer interesting opportunities
for understanding the behavior, intent, and environment of a
person [4]. Moreover, wearable cameras are becoming more
and more used in real-world scenarios. Therefore, we find
of particular interest to exploit such systems for contextual
sensing and location recognition. It should be noted that, while
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Fig. 1. (a) Some sample images of eight personal locations acquired using
different wearable cameras. (b) Some negative samples used for testing
purposes. The employed devices are discussed in Section IV. The dataset
is publicly available at the URL http://iplab.dmi.unict.it/PersonalLocations/.
The following abbreviations are used: C.V.M. - Coffee Vending Machine, L.
R. - Living Room, H. Office - Home Office, K. Top - Kitchen Top.

outdoor location recognition can be trivially addressed using
GPS sensors, most daily activities are performed indoor, where
GPS devices usually fail. Considering their acquisition modal-
ity, egocentric videos introduce some intrinsic challenges [4],
[5] which must be taken into account. Such challenges are pri-
marily related to the non-stationary nature of the camera, the
non-intentionality of the framing, the presence of occlusions
(often by the user’s hands), as well as the influence of varying

http://iplab.dmi.unict.it/PersonalLocations/
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lighting conditions, fast camera movements and motion blur.
Fig. 1 shows some examples of the typical variability exhibited
by egocentric images.

In this paper, we study the problem of recognizing personal
locations of interest from egocentric videos. Following the
definition in [6], a personal location is considered as:

a fixed, distinguishable, spatial environment in which
the user can perform one or more activities which
may or may not be specific to the considered loca-
tion.

A simple example of personal location may be the personal
office desk, in which the user can perform a number of
activities, such as surfing the Web or writing e-mails. It
should be noted that, according to the above definition, a
personal location is defined (and hence should be recognized)
independently from the actions which could be performed
by the user. Moreover, a given set of personal locations is
meaningful just for a single user and hence user-specific
models have to be taken into account when designing this kind
of location-aware systems. To clarify the concept of personal
location of interest, we consider the scenario of a user wearing
an always-on wearable camera. The user can specify a set of
personal locations of interest (not known in advance by the
system) which he wishes to monitor (e.g., in order to highlight
them in the huge quantity of video acquired within a few days
or to trigger specific behaviors or alerts). To do so, we suppose
that in a real scenario the user wearing the camera records only
a short video (≈ 10 seconds) of each of the environments he
wants to monitor. Relying on the acquired set of user-specified
data, at run time the system should be able to: 1) detect the
considered locations and 2) reject negative frames (i.e., frames
not depicting any of the locations interesting for the user).

Considering possible real scenarios as above, in addition to
the general issues associated with egocentric data, recognizing
personal locations of interest involves some unique challenges:

• real-world location detection systems must be able to cor-
rectly detect and manage negative samples, i.e., images
depicting scenes not belonging to any of the considered
personal locations;

• given that an always-on wearable camera is likely to
acquire a great variability of different scenes, gathering
representative negative samples for modeling purposes is
not always possible. In a real scenario, a system able to
reject negatives given only user-specific positive samples
for learning is hence desirable;

• since personal locations are user-specific, few labeled
samples are generally available as it is not feasible to ask
the user to collect and annotate huge amounts of data for
learning purposes;

• large intra-class variability usually characterizes the ap-
pearance of the different views related to a given location
of interest;

• personal locations belonging to the same high level
category (e.g., two different offices) tend to be charac-
terized by similar appearance, making the discrimination
challenging.

Even if previous works already investigated the possibility

of recognizing known locations for different purposes [1],
[7], [8], [9], [10], a solid investigation on the problem and a
benchmark of state-of-the-art representation methods are still
missing. We perform a benchmark of different state-of-the-
art methods for scene and object classification on the task
of recognizing personal locations from egocentric images. To
this aim, we built a dataset of egocentric videos containing
eight locations acquired by a user over six months. To assess
the influence of device-specific factors, such as the wearing
modality and the Field Of View (FOV), the data has been
acquired multiple times using four different devices. Fig. 1
shows some examples of the acquired data. In order to make
the analysis worth in real-world scenarios where personal
locations of interest need to be discriminated from negative
samples, we propose a classification method which includes a
mechanism for the rejection of negative samples. We compare
the proposed approach against a baseline method based on
the combination of a multi-class SVM classifier and a standard
one-class classifier which has been used in [6]. To deal with the
problem addressed in this paper, experiments are carried out
by training and testing the considered methods on data arising
from different combinations of devices and representation
techniques.

The remainder of the paper is organized as follows. Sec-
tion II revises the related work. Section III introduces the
proposed method and discusses the reference baseline clas-
sification method proposed in [6]. Section IV describes the
wearable cameras used to acquire the data and introduces the
proposed egocentric dataset of personal locations. Section V
summarizes the state-of-the art representation techniques con-
sidered in the experimental analysis. Experiments are defined
in Section VI, whereas results are discussed in Section VII.
Section VIII finally concludes the paper.

II. RELATED WORK

Mobile and wearable cameras have been widely used in
a variety of tasks, such as place and action recognition
[1], [7], health and food intake monitoring [11], [12], [13],
human-activity recognition and understanding [14], [15], [16],
[17], [18], [19], video indexing and summarization [20], [21],
[22], as well as assistive-related technologies [23], [24]. The
problem of recognizing personal locations from egocentric im-
ages, in particular, has already been investigated for different
purposes and different methods have been proposed in the
literature. The first investigations relevant to the considered
problem date back to the late 90s. Starner et al. [1] proposed
a context-aware system for assisting the users while playing
the “patrol” game. The system proposed in [1] comprises a
component able to recognize the room in which the player
is operating combining RGB features and a Hidden Markov
Model (HMM). Aoki et al. [7] proposed an image matching
technique for the recognition of previously visited places. In
this case, locations are not represented by a single frame, but
rather by an image sequence of the approaching trajectory.
Place recognition is implemented by computing the distance
between a newly recorded trajectory and a dictionary of
trajectories to known places. Torralba et al. [8] proposed
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a wearable system able to recognize familiar locations as
well as categorize new environments. A low-dimension global
representation based on a wavelet image decomposition is
proposed in order to include textural properties of the image
as well as their spatial layout. Familiar location recognition
and new environment categorization are obtained separately
training two distinct HMM models. More recently, in the
wake of the popularity that always-on wearable cameras
have recently gained, Templeman et al. [9] have proposed a
system for “blacklisting” sensitive spaces (like bathrooms and
bedrooms) to protect the privacy of the user when passively
acquiring images of the environment. The system combines
contextual information like GPS location and time with an
image classifier based on local and global features and a
HMM to take advantage of the temporal constraint on human
motion. In [10], CNNs and HMM are combined to temporally
segment egocentric videos in order to highlight locations im-
portant for the user. Images and short-video-based localization
strategies have been already investigated in [25], where short
videos are used to compute 3D-to-3D correspondences. The
authors of [26] propose to model and recognize activity-
related locations of interest to facilitate navigation in a visual
lifelog. While the discussed approaches generally concentrate
on video, some researchers have also investigated the use of
low temporal-resolution devices. Such devices generally allow
to acquire a few images per minute, but are characterized by
a larger autonomy both in terms of memory and battery-life,
which makes them particularly suited to acquire large amounts
of visual data. In [18], daily activities are recognized from
static images within a low temporal-resolution lifelog. In [27],
a method for semantic indexing and segmentation of photo
streams is proposed. The reader is referred to the work by
Bolaños et al. [28] for a review of the advances in egocentric
data analysis.

As highlighted in [8], location recognition and place cat-
egorization are two related tasks and hence they are likely
to share similar features in real-world applications. In this
regard, much work has been devoted to designing suitable
image representation for place categorization. Torralba and
Oliva described a procedure for organizing real world scenes
along semantic axes in [29], while in [30] they proposed
a computational model for classifying real world scenes.
Efficient computational methods for scene categorization have
been proposed for mobile and embedded devices by Farinella
et al. [31], [32]. More recently, Zhou et al. [33] have success-
fully applied Convolutional Neural Networks (CNNs) to the
problem of scene classification.

Rather than sticking to a specific framework, in this work
we aim at systematically studying the performances of the
state-of-the-art methods for scene and object representation
and classification on the considered task of personal loca-
tions recognition. Furthermore, while past literature primarily
focused on classification, we pay special attention to the
negative-rejection mechanism which is an essential component
when building real, robust and effective systems. To make our
analysis broader, we assess the influence of device-specific
factors such as the wearing modality and the FOV on the
performances of the considered methods and provide a dataset

multiclass classifier

log transformation

and normalization – Eq. (5)

transformed probability distribution

smoothed posterior probability

distribution - Eq. (3)

1

7

8

2
…

o
u

tp
u

t p
re

d
ictio

n
v
e

cto
r

0

image sequence

Entropy based outlier

rejection -Eq. (4)

Fig. 2. The proposed classification pipeline combining a multi-class classifier
and an entropy-based negative rejection method.

of egocentric videos depicting eight different locations to
facilitate further research on the topic. Throughout the study,
we assume that only visual information is available and that
the quantity of training data is limited, according to the
assumptions discussed in Section I.

III. RECOGNIZING PERSONAL LOCATIONS
FROM EGOCENTRIC VIDEOS

A personal location recognition system should be able to:
1) discriminate among different personal locations specified
by the user, and 2) reject negative frames, i.e., frames not
related to any of the considered locations. Hence, we propose
a classification pipeline made up of two main components:
1) a multi-class location classifier, and 2) a mechanism for
rejecting negative samples. While the multi-class component
can be implemented using standard supervised learning tech-
niques (e.g., an SVM classifier or a fine-tuned Convolutional
Neural Network), negative rejection does not always have
a straightforward implementation. We propose an entropy-
based negative rejection mechanism which leverages the tem-
poral coherence of class predictions within a small temporal
window. The input to our system is a small sequence of
neighboring frames. For each frame, the multi-class classifier
estimates a posterior probability distribution on the considered
personal locations. Posterior probabilities are hence smoothed
to perform multi-class classification on the input sequence.
The input sequence is either classified as a given location
or rejected depending on how much the different predictions
agree. The proposed method is depicted in Fig. 2 and detailed
in the following.

We assume that very close frames in an egocentric video
(e.g., less than 0.5 seconds apart) share the same class. This as-
sumption is of course imprecise whenever there is a transition
from a given location to another. This phenomenon however
mostly affects the accuracy related to the localization of the
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exact transition frame between two different locations and it
does not impact much (in average) the overall recognition
performances. According to this assumption, n subsequent
observations x1, . . . , xn share the same class c. This implies
the conditional independence between the observations given
class c:

xi ⊥⊥ xj |c, ∀i, j ∈ {1, 2, . . . , n}. (1)

Given the property reported in Eq. (1), the posterior probability
p(ck|x1, . . . , xn) for the generic class ck, can be expressed as:

p(ck|x1, · · · , xn) =
p(x1, · · · , xn|ck) · p(ck)

p(x1, · · · , xn)
=

=
∏

1≤i≤n

p(ck|xi)
p(ck)

1−n
∏

1≤i≤n p(xi)

p(x1, · · · , xn)
. (2)

If we assume that all the considered locations of interest have
equal probabilities p(ck) = 1

K ,∀k ∈ {1, · · · ,K} (with K
being the total number of classes), then Eq. (2) simplifies to:

p(ck|x1, · · · , xn) =
∏

i p(ck|xi)∑
k

∏
i p(ck|xi)

(3)

where p(c|xi) denotes the posterior probability distribution on
class c estimated by the multi-class classifier, given observa-
tion xi.

Equation (3) is used to smooth the predictions of the multi-
class classifier on multiple, contiguous frames of the input
sequence for which we assume conditional independence as
reported in Eq (1). The predicted class for the input sequence
is determined as the one which maximizes the probability
reported in Eq. (3). When the samples are positive and hence
they belong to a given class, we expect Eq. (3) to produce a
resulting posterior distribution which strongly agrees on the
identity of the considered samples. On the contrary, when the
sequence contains negative samples, we expect the resulting
posterior distribution to exhibit a high degree of uncertainty.
We propose to measure the uncertainty of the distribution
reported in Eq. (3) (i.e., entropy) to quantify the “outlierness”
of the considered samples. Given a posterior distribution p,
we measure the uncertainty as the entropy:

e(p;x1, · · · , xn) = −
∑
k

p(ck|x1, ..., xk)log
(
p(ck|x1, ..., xk)

)
.

(4)
The entropy reported in Eq. (4) can be used to discriminate
negative sequences (i.e., locations not of interest for the
user) from positive ones using a threshold te. Sequences are
classified as negative if e(p;x1, · · · , xn) > te, while they are
classified as positive if e(p;x1, · · · , xn) ≤ te. The optimal
threshold te can be selected as the one which of best separates
the training set from a small number of negatives used for
optimization purposes.

In practice, instead of measuring the uncertainty directly
from the distribution reported in Eq. (3), we log-transform the
original distribution p as follows:

p̃(ck|x1, · · · , xk) =
log(p(ck|x1, · · · , xk))∑
k log(p(ck|x1, · · · , xk))

. (5)

The proposed transformation has the effect of “inverting”

the degree of uncertainty carried by the distribution. There-
fore, negative samples will be characterized by a high
e(p;x1, · · · , xn) value and a low e(p̃;x1, · · · , xn) value. In
Section VI-B1, we show that working with the log-transformed
distribution shown in Eq. (5), allows to compute the separation
threshold te from the training/optimization-negatives set in a
more robust way.

Please note that the maximum length n of the input se-
quence in our system should be carefully selected. Indeed,
too small values would cause the rejection mechanism to fail
for lack of data, while excessively large values would break
the assumption reported in Eq. (1) and would greatly affect
the localization of the transition frame between two different
locations.

IV. WEARABLE CAMERAS AND PROPOSED DATASETS

The market proposes different wearable cameras, each
with its distinctive features. We identify three main factors
characterizing such devices: resolution, wearing modality and
Field Of View (FOV). The resolution influences the amount
of details that a given device is able to capture. While the
first generation of wearable devices was characterized by very
small resolutions (in the order of 0.1 megapixels), recent
devices tend to adhere to the HD and 4K standards. The
wearing modality influences the way in which the visual
information is actually acquired. In particular, we identify
three classes of devices characterized by different wearing
modalities: smart glasses, ear mounted cameras and chest
mounted cameras. Smart glasses are designed to substitute
the user’s glasses. Ear mounted cameras are worn similarly
to bluetooth earphones and are a little more obtrusive than
smart glasses. Both smart glasses and ear mounted devices
have the advantage to capture the environment from the user’s
point of view. Chest mounted cameras are the least obtrusive
since they are clipped to the user’s clothes rather than mounted
on his head (and easily ignored by both the wearer and the
people he interacts with). However, the FOV captured by chest
mounted cameras does not usually achieve much overlap with
the user’s FOV. The Field Of View affects the quantity of
visual information which is acquired by the device. A larger
FOV allows to acquire more information in a similar way
to the human visual system at the cost of the introduction
of radial distortion, which in some cases requires dedicated
processing techniques [34], [35].

In order to assess the influence of the aforementioned
device-specific factors for the problem of personal location
recognition, we consider four different devices: the smart
glasses Recon Jet (RJ)1, two ear-mounted Looxcie LX22, and
a wide-angular chest-mounted Looxcie LX33. The Recon Jet
and Looxcie LX3 devices produce images at the HD resolution
(1280 × 720 pixels), while the Looxcie LX2 devices have a
smaller resolution of 640× 480 pixels. The Recon Jet and the
Looxcie LX2 devices are characterized by narrow FOVs (70◦

and 65, 5◦ respectively), while the FOV of the Looxcie LX3

1http://www.reconinstruments.com/products/jet/
2http://www.looxcie.com
3http://www.looxcie.com

http://www.reconinstruments.com/products/jet/
http://www.looxcie.com
http://www.looxcie.com
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TABLE I
A SUMMARY OF THE MAIN FEATURES OF THE CONSIDERED DEVICES.

Resolution Wearing Modality Field Of View
Medium Large Glasses Ear Chest Narrow Wide

RJ X X X
LX2P X X X
LX2W X X X
LX3 X X X

is considerably larger (100◦). One of the two ear-mounted
Looxcie LX2 is equipped with a wide-angular converter in
order to achieve a large FOV (approximatively 100◦). The
wide-angular LX2 camera will be indicated with the acronym
LX2W, while the regular (perspective) LX2 camera will be
indicated as LX2P. The user is referred to Fig. 1 (a) to
assess the differences between similar scenes acquired by the
different devices. TABLE I summarizes the main features of
the cameras used to acquire the data.

We propose a dataset of egocentric videos acquired by a
user in eight different locations using the aforementioned four
devices. The dataset has been acquired over six months. The
considered personal locations arise from some possible daily
activities of a user: Car, Coffee Vending Machine (C. V. M.),
Office, Living Room (L. R.), Home Office (H. Office), Kitchen
Top (K. Top), Sink, Garage. The considered locations are
examples of a possible set of locations which the user may
choose. The proposed set of locations has been chosen in order
to be challenging and include similar looking locations (e.g.,
Office vs Home Office) and locations characterized by large
intra-class variability (e.g., Garage). Fig. 1 (a) shows some
sample frames belonging to the dataset.

Since the considered locations involve static position, we
assume that the user is free to turn his head and/or move
his body, but he does not change his position in the room.
In order to enable fair comparison between the different
devices, we built four variants of the dataset. Each variant
is an independent, yet compliant, device-specific dataset and
comprises its own training and test sets. The training sets
include short videos (≈ 10 seconds) of the personal locations
of interest. During the acquisition of the training videos, the
user turns his head (or chest, in the case of chest-mounted
devices) in order to cover the views of the environment he
wants to monitor. A single video-shot per location of interest
is included in each training set. The test sets contain medium
length videos (5 to 10 minutes) acquired by the user in the
considered locations while performing regular activities. Each
test set comprises 5 videos for each location. In order to gather
likely negative samples, we acquired several short videos not
representing any of the locations under analysis. The negative
videos comprise indoor, outdoor scenes, other desks and other
vending machines. The negative videos are divided into two
separate sets: test negatives and “optimization” negatives. The
role of the latter set of negative samples is to provide an
independent set of data useful to optimize the parameters of
the negative rejection methods. Some frames from the negative
sequences are shown in Fig. 1 (b). The overall dataset amounts

to more than 20 hours of video and more than one million
frames in total.

In order to facilitate the analysis of such a huge quantity
of collected data, we extract each frame in the training videos
and temporally subsample the testing videos. To reduce the
amount of frames to be processed, for each location in the test
sets, we extract 200 subsequences of 15 contiguous frames.
This sub-sampling still allows to consider temporal coherence.
The starting frames of the subsequences are uniformly sam-
pled from the 5 videos available for each class. The same
subsampling strategy is applied to the test negatives. We also
extract 300 frames form the optimization negative videos. This
amounts to a total of 133770 extracted frames to be used
for experimental purposes. The extracted frames are publicly
available for download at the URL http://iplab.dmi.unict.it/
PersonalLocations/, while the access to full-length videos can
be required from the same web page.

V. FEATURE REPRESENTATIONS

To benchmark the proposed method, we consider the main
feature representations used for the tasks of scene and object
classification. These can be grouped into three categories:
holistic, shallow and deep representations.

A. Holistic Feature Representations

Holistic feature representations have been widely used in
tasks related to scene understanding [30], [32]. As a popular
representative of this class, we consider the GIST descriptor
proposed in [30] and use the standard implementation and
parameters provided by the authors. According to the standard
implementation, all input images are resized to the normalized
resolution of 128×128 pixels prior to computing the descrip-
tor. In this configuration, the output GIST descriptors have
dimensionality d = 512.

B. Shallow Feature Representations

With deep feature representations and Convolutional Neural
Networks (CNNs) becoming mainstream in the computer
vision literature, classic representation schemes based on the
encoding of local features (e.g., Bag of Visual Word models)
have been recently referred to as shallow feature represen-
tations [36]. The term “shallow” is used to highlight that
features are not extracted hierarchically as in deep learning
models. Among the different Bag of Visual Word models,
we consider Improved Fisher Vectors (IFV) [37] to encode
densely-sampled SIFT features.

The IFV features are extracted following the procedures
described in [38], [36]. To make computation tractable on
a large number of frames, each input image is resized to a
normalized height of 300 pixels keeping the original aspect
ratio. This produces images of resolutions 400 × 300 pixels
and 533× 300 pixels in our dataset. Apart from the standard
SIFT descriptors, we also consider the spatially-enhanced local
descriptors discussed in [36]. Such descriptors are obtained
concatenating the coordinates of the location from which the
SIFT descriptor is extracted to the PCA-reduced SIFT features,

http://iplab.dmi.unict.it/PersonalLocations/
http://iplab.dmi.unict.it/PersonalLocations/
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obtaining a 82-dimensional vector as detailed in [36]. In our
experiments we consider Gaussian Mixture Model (GMM)
with K = 256 and K = 512 centroids. The dimensionality d
of IFV descriptors depends on the number of clusters K of
the GMM codebook and the number of dimensions D of the
local feature descriptors (i.e., SIFT) according to the formula:
d = 2KD. Using the aforementioned parameters, the number
of dimensions of our IFV representations ranges from a
minimum of 40960 to a maximum of 83968 components. The
VLFeat library [39] has been used to perform all the operations
involved in the computation of the IFV representations.

C. Deep Feature Representations

One of the main advantages of CNNs is given by their
excellent transfer learning properties. These allow to “reuse”
a feature representation learned for a given task in a slightly
different one, providing that enough new data is available.
In our experiments, we consider two transfer learning ap-
proaches: extracting the feature representation contained in the
penultimate layer of the network and reusing it in a classifier
(e.g., SVM), and fine-tuning the pre-trained network with new
data and labels. We consider two popular architectures of
convolutional neural networks: AlexNet [40] and VGG16 [41].
Such models have been pre-trained by their authors on the
ImageNet dataset [42] to discriminate among 1000 object
categories. We also consider two models proposed by Zhou
et al. [33], who train the same CNN architectures (AlexNet
and VGG16) on the Places205 dataset, which contains images
from 205 different place categories. Considering four different
models allow us to assess the influence of both the network
architectures (AlexNet and VGG16) and the original training
data (ImageNet and Places205) in our transfer learning exper-
iments.

1) Reuse of pre-trained CNNs: We obtain the deep feature
representations extracting the values contained in the penulti-
mate layer of the network when the input image, appropriately
rescaled to the dimensions of the data layer, is propagated into
the network. Such feature representation is the one contained
in the hidden layer of the multilayer perceptron in the terminal
part of the network. For all the considered CNN models, these
representations are compact 4096-dimensional vectors.

2) Fine-tuning of pre-trained CNNs: The pre-trained net-
work is fine-tuned using the data contained in the training
set. Fine-tuning is performed substituting the last layer of the
network (the one carrying the final probabilities) with a new
layer containing 8 units (one per each personal location to
be recognized) which is initialized with random weights. The
training set is divided into two parts: 85% for training and 15%
for validation. Optimization of the network is resumed starting
from the pre-trained weights. We set a larger learning rate for
the randomly initialized layer, and a smaller learning rate for
pre-learned layers. The training procedure is stopped when
a high validation accuracy is reached or when it is not able
to grow any more and the model with maximum validation
accuracy is selected. In this case the networks are not used
to explicitly extract the representation but directly to predict
posterior probabilities.
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Fig. 3. The baseline classification pipeline proposed in [6] and considered
for comparison.

VI. EXPERIMENTS

The experiments aim at assessing the performances of the
state-of-the-art representations discussed in Section V on the
considered task of personal location recognition. For all the
experiments, we consider the classification pipeline proposed
in Section III. We also consider the baseline proposed in [6],
where personal location classification is carried on single
images. The method in [6] performs negative sample rejection
using a one-class classifier learned only on positive samples
provided by the user (i.e., the locations of interest). All non-
rejected samples are then fed to a multi-class classifier which
discriminates among the considered locations. This baseline
method is illustrated in Fig. 3.

All experiments are performed considering different device-
representation combinations. The considered classification
pipelines and all related parameters are independently trained
and tested on the training/testing sets related to the different
devices. In the following, we discuss the experiments designed
to assess the performances of the considered feature repre-
sentations with respect to 1) the overall location recognition
system, 2) the negative rejection mechanism alone, and 3) the
multi-class classifier alone.

A. Overall Personal Location Recognition System

The performances of the overall system are assessed con-
sidering the two classification pipelines depicted in Fig. 2 and
Fig. 3. When the proposed method including the entropy-based
negative rejection mechanism is considered (Fig. 2), the short
sequences of 15 subsequent frames included in the dataset are
used as inputs. Posterior probabilities estimated by the multi-
class component for each of the 15 input frames are smoothed
using Eq (3). The smoothed posterior probability is used to
reject the input sequence or classify it among the different
locations.
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When the baseline classification pipeline proposed in [6]
is considered (Fig. 3), the first image of each sequence is
used as input. Input frames are whether rejected by the one-
class classifier or discriminated into the positive classes by the
multi-class classifier.

B. Rejection of Negative Samples

Rejection of negative samples is known as a hard problem
and it can be tackled in different ways. Since all our exper-
iments are performed on unbalanced datasets (the number of
positive samples is larger than the number of negative ones
– see Section IV), we don’t use the accuracy to assess the
performances of the methods under analysis. When the number
of negative samples is low with respect to the positives one, a
method with a high True Positive Rate (TPR) and a low True
Negative Rate (TNR) still retains a high accuracy. Therefore,
the performances of the proposed methods are assessed using
the average between the TPR and the TNR, which we refer to
as the True Average Rate (TAR):

TAR =
TPR+ TNR

2
. (6)

1) Entropy-Based Rejection Option: We apply the proposed
entropy-based rejection method to discriminate negative from
positive samples. For the experiments, we consider the short
sequences of 15 subsequent frames contained in the proposed
dataset. It should be noted that, given the standard rate of
30 fps, the length of each sequence is 0.5s long and hence
the conditional independence assumption reported in Eq. (1)
of Section III is satisfied. For each experiment, we choose
te as the threshold which best separates the training set from
the optimization negative samples included in the dataset. All
thresholds are computed independently for each experiment
(i.e., for each device-representation combination). Since the
training set does not comprise 15-frames sequences, no tem-
poral smoothing is performed on the training predictions and
entropy is measured on the posterior probabilities predicted
for each training sample.

In Section III we proposed to log-transform the smoothed
posterior distribution (Eq. (5)) in order to compute the entropy-
based score (Eq. (4)) used for negative rejection. To show
that the considered log-transformation helps finding threshold
te more reliably, in Fig. 4 we report the Threshold-TAR
curves for some representative experiments. The curves plot
thresholds te against the True Average Rate (TAR) scores
obtained using such thresholds. The depicted curves are used
to effectively find the best discrimination threshold te (i.e., the
x-value corresponding to the curve peak). The figure reports
the curves computed on the training sets plus optimization
negatives, as well as the ones computed on the test sets. As can
be noted, the curves computed using the log-transformation
are almost totally overlapped, while there is far less overlap
between the curves computed avoiding the log-transformation.
To assess the robustness of the estimated thresholds, we also
report the True Average Rate (TAR) results for all performed
experiments in Fig. 5. The figure compares results obtained
using the proposed method (i.e., thresholds te are computed
from the training/optimization-negatives set) to those obtained

with the optimal threshold computed directly on the test set
using the ground truth labels. The average absolute difference
between obtained and optimal results amounts to 0.06.

2) One Class Classifier: Following [6], we build a one-
class SVM classifier for the purpose of rejecting negative
samples. The optimization procedure of the one-class SVM
classifier depends on a single parameter ν which is a lower
bound on the fraction of outliers in the training set. We train
the one-class component considering all the positive samples
(the entire training set) and use the optimization negatives to
choose the value of ν which maximizes the TAR value on the
set of training samples plus optimization negatives. It should
be noted that the classifier is learned solely from positive data,
while the small amount of negatives is only used to optimize
the value of the ν hyperparameter.

C. Multiclass Discrimination

To assess the performances of the considered representations
with respect to the task of discriminating among the 8 personal
locations, we train linear SVM classifiers on the training
sets and test them on the corresponding test sets. Similarly
to [38], [36], the input feature vectors are transformed using
the Hellinger’s kernel prior to using them in the linear SVM
classifier. Differently from [38], [36], we do not apply L2 nor-
malization to the feature vectors, but instead we independently
scale each component of the vectors subtracting the minimum
and dividing by the difference between the maximum and
minimum values. Minima and maxima for each component are
computed from the training set and reported on the test set.
Using L2 norm and avoiding feature scaling led to inconsistent
results in our experiments. Such results are omitted for the
sake of brevity. It should be noted that the considered scheme
is adopted in order to obtain comparable results considering
that very different representations are used. We do not intend
to suggest that the employed normalization scheme performs
better than others in general. The optimization procedure of
the linear SVM classifier depends only on the cost parameter
C, which is chosen in order to maximize the accuracy on
the training set using cross-validation techniques [38], [36]. It
should be noted that, in the case of fine-tuning, Convolutional
Neural Networks are jointly used for feature extraction and
classification. Therefore, in such cases, we do not rely on a
SVM classifier for multi-class classification. When fine-tuned
models are employed within the baseline proposed in [6], they
are used both to extract features (on top of which the SVM
One-Class classifier can be learned) and to directly perform
multi-class classification. We would like to emphasize that in
our experiments the multi-class classifier is learned using only
positive samples.

VII. RESULTS

In this section, we report the performances of the over-
all system implemented according to the two considered
pipelines, as well as detailed performances of the discrimi-
nation and negative rejection components individually.
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Fig. 4. Threshold-TAR (True Average Rate) curves obtained without (top row) and with (bottom row) log-transformation. All plots are obtained from
posterior probabilities estimated by an SVM model trained extracting VGG-ImageNet features from data acquired using three different devices: the LX2P
camera (perspective Looxcie LX2), the LX2W camera (wideangular Looxcie LX2), and the LX3 device (chest mounted Looxcie LX3).
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Fig. 5. True Average Rate (TAR) scores obtained on the test sets considering different combinations of devices and representations. The figure reports results
obtained using thresholds computed on the training/optimization-negatives sets. Results obtained using the ground truth optimal thresholds computed on the
test set are also reported for reference. As can be noted, estimated thresholds often reach close-to-optimal results. The average absolute difference between
obtained and optimal results amounts to 0.06.

A. Overall System

TABLE II reports the accuracies of the overall system for
the proposed method and the baseline introduced in [6]. Each
row of the table corresponds to a different experiment and
is denoted by a unique identifier in brackets (e.g., [a1]). The
first column (METHOD) reports the unique identifier and the
representation method used in the experiment. The second

column (DEV.) reports the device used to acquire the data.
The third column (OPTIONS) reports the options related to
the considered representation method. Specifically, in the case
of representations based on the Improved Fisher Vectors (IFV),
the numbers 256 or 512 represent the number of centroids used
to train the GMMs, while “SE” indicates that the SIFT descrip-
tors have been Spatially Enhanced as discussed in Section V-B.
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TABLE II
PERFORMANCES OF THE OVERALL SYSTEM.

ACCURACY
METHOD DEV. OPTIONS DIM. PROPOSED [6]
[a1] GIST RJ — 512 22,44 25,67
[b1] IFV RJ 256 40960 25,11 56,39
[c1] IFV RJ 256 SE 41984 26,28 58,56
[d1] IFV RJ 512 81920 31,67 55,78
[e1] IFV RJ 512 SE 83968 31,33 56,61
[f1] CNN RJ AlexNet I 4096 58,11 58,94
[g1] CNN RJ AlexNet P 4096 67,00 62,33
[h1] CNN RJ VGG16 I 4096 71,61 43,83
[i1] CNN RJ VGG16 P 4096 61,17 60,00
[j1] CNN RJ AlexNet I FT 4096 65,94 60,00
[k1] CNN RJ AlexNet P FT 4096 76,83 76,72
[l1] CNN RJ VGG16 I FT 4096 64,11 76,89
[m1] CNN RJ VGG16 P FT 4096 75,06 70,78
[a2] GIST LX2P — 512 29,44 22,61
[b2] IFV LX2P 256 40960 17,50 51,39
[c2] IFV LX2P 256 SE 41984 12,56 55,11
[d2] IFV LX2P 512 81920 18,50 48,17
[e2] IFV LX2P 512 SE 83968 18,00 48,33
[f2] CNN LX2P AlexNet I 4096 70,06 61,28
[g2] CNN LX2P AlexNet P 4096 64,11 49,89
[h2] CNN LX2P VGG16 I 4096 67,28 52,44
[i2] CNN LX2P VGG16 P 4096 63,33 44,83
[j2] CNN LX2P AlexNet I FT 4096 74,83 63,72
[k2] CNN LX2P AlexNet P FT 4096 69,94 72,00
[l2] CNN LX2P VGG16 I FT 4096 68,28 75,89
[m2] CNN LX2P VGG16 P FT 4096 80,06 70,50
[a3] GIST LX2W — 512 39,83 23,22
[b3] IFV LX2W 256 40960 37,50 59,17
[c3] IFV LX2W 256 SE 41984 42,83 58,44
[d3] IFV LX2W 512 81920 39,50 52,06
[e3] IFV LX2W 512 SE 83968 37,06 51,50
[f3] CNN LX2W AlexNet I 4096 75,22 65,61
[g3] CNN LX2W AlexNet P 4096 73,89 55,06
[h3] CNN LX2W VGG16 I 4096 70,89 54,06
[i3] CNN LX2W VGG16 P 4096 81,67 50,06
[j3] CNN LX2W AlexNet I FT 4096 73,89 65,44
[k3] CNN LX2W AlexNet P FT 4096 76,22 73,78
[l3] CNN LX2W VGG16 I FT 4096 76,78 73,78
[m3] CNN LX2W VGG16 P FT 4096 87,28 80,11
[a4] GIST LX3 — 512 29,50 29,22
[b4] IFV LX3 256 40960 39,94 29,11
[c4] IFV LX3 256 SE 41984 40,44 37,00
[d4] IFV LX3 512 81920 39,50 27,56
[e4] IFV LX3 512 SE 83968 39,89 27,28
[f4] CNN LX3 AlexNet I 4096 65,39 51,39
[g4] CNN LX3 AlexNet P 4096 76,50 55,72
[h4] CNN LX3 VGG16 I 4096 73,22 34,17
[i4] CNN LX3 VGG16 P 4096 76,11 51,94
[j4] CNN LX3 AlexNet I FT 4096 73,06 66,94
[k4] CNN LX3 AlexNet P FT 4096 67,61 56,28
[l4] CNN LX3 VGG16 I FT 4096 61,94 60,65
[m4] CNN LX3 VGG16 P FT 4096 71,39 44,00

In the CNN-related experiments, “I” denotes that the consid-
ered model has been pre-trained on the ImageNet dataset, “P”
denotes that the considered model has been pre-trained on the
Places205 dataset, “FT” indicates that the network has been
fine-tuned, while, when no “FT” tag is reported, the pre-trained
network is only used to extract the representation vectors. The
fourth column (DIM.) reports the dimensionality of the feature
vectors. The fifth and sixth columns report the accuracies of
the model according to the two compared methods. To improve
readability, for each method, the maximum accuracies among
the experiments related to a given device are reported in bold

Fig. 6. Minimum, average and maximum accuracies of the overall system
with the different representations per device. All the statistics are higher for
the LX2W-related experiments. This suggests that the task of recognizing
personal locations is easier on images acquired using a head mounted, wide-
FOV device.

numbers, while the global maximum accuracy is reported in
boxed bold numbers .

The proposed entropy-based negative rejection method gen-
erally allows to obtain better results with respect to the
baseline method [6] when deep representations are used.
Comparable or worse performances are generally obtained
when using other representations. The holistic GIST repre-
sentation is usually unable to model the personal locations
with the appropriate level of detail (compare methods [a1],
[a2], [a3] and [a4] to others). Improved Fisher Vectors (IFV)
generally work better than GIST, but provide inconsistent
results in some cases (e.g., [b1] to [e1] and [b2] to [e2]).
Using larger codebooks allows to obtain better results in some
cases (e.g., when smart glasses Recon Jet (RJ) and narrow-
angle ear-mounted LX2P camera are used) at the cost of a
significantly larger representation (80k vs 40k dimensions).
The Spatially Enhancement option (SE) does not in general
result in significant improvements. The best performances are
given by deep representations. Fine-tuning the model often,
but not always (e.g., compare [h1] to [l1], [f3] to [j3] and [h4]
to [l4]) results in a significant performance improvement.

One important fact emerging from the analysis of the results
in TABLE II consists in the superior performances obtained
on the data acquired using the LX2W device. This observation
is supported by Fig. 6, which reports the minimum, maximum
and average accuracies of the overall system for all the
experiments related to a given device when the proposed
method is considered. All three indicators are higher in the
case of the LX2W camera, which suggest that, among the ones
being tested, such device is the most appropriate for modelling
the user’s personal location. This result is probably due to
the combination of the large FOV which allows to capture
more information and the wearing modality, which enables
the acquisition of the data from the user’s point of view.

In Fig. 7 and Fig. 8, we report confusion matrices and
some success/failure examples (true/false positive) for the best
performing methods and each device. All confusion matrices
point out how the most errors are due to the need to handle
negative samples. In fact, most false positives are due to
the misclassification of negative samples as shown in Fig. 8.
Moreover, there is usually confusion between pairs of similar
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(a) AlexNet-Places-FT/RJ ([k1])
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(b) VGG-Places-FT/LX2P ([m2])
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(c) VGG-Places-FT/LX2W ([m3])
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(d) AlexNet-Places/LX3 ([g4])

Fig. 7. Confusion matrices related to the best performing methods on each of the considered devices. Rows represent ground truth classes, while columns
represent the predicted labels. Each element of the confusion matrix is normalized by the sum of the elements in the corresponding row. Hence, values along
the principal diagonal are class-related true positive rates. Confusion matrices are related to the following methods: (a) AlexNet Convolutional Neural Network
pre-trained on the Places205 dataset and fine-tuned on data acquired using the Recon Jet (RJ) smart glasses, (b) VGG16 Convolutional Neural Network pre-
trained on the Places205 dataset and fine-tuned on data acquired using the ear-mounted perspective Looxcie LX2 camera (LX2P), (c) VGG16 Convolutional
Neural Network pre-trained on the Places205 dataset and fine-tuned on data acquired using the ear-mounted wideangular Looxcie LX2 camera (LX2W), (d)
SVM classifier trained on AlexNet Convolutional Neural Network pre-trained on the Places205 dataset with data acquired using the chest mounted Looxcie
LX3 camera. The reader is referred to TABLE II, TABLE III and TABLE IV for detailed results of all experiments.

(a) AlexNet-Places-FT/RJ ([k1]) (b) VGG-Places-FT/LX2P ([m2]) (c) VGG-Places-FT/LX2W ([m3]) (d) AlexNet-Places/LX3 ([g4])
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Fig. 8. True positive (green) and false positive (red) samples related to the best performing methods on the four considered devices. Rows represent the
ground truth labels, while the predicted label is shown in yellow in case of a failure. The shown samples are related to the the same methods considered in
Fig. 7: (a) AlexNet Convolutional Neural Network pre-trained on the Places205 dataset and fine-tuned on data acquired using the Recon Jet (RJ) smart glasses,
(b) VGG16 Convolutional Neural Network pre-trained on the Places205 dataset and fine-tuned on data acquired using the ear-mounted perspective Looxcie
LX2 camera (LX2P), (c) VGG16 Convolutional Neural Network pre-trained on the Places205 dataset and fine-tuned on data acquired using the ear-mounted
wideangular Looxcie LX2 camera (LX2W), (d) SVM classifier trained on AlexNet Convolutional Neural Network pre-trained on the Places205 dataset with
data acquired using the chest mounted Looxcie LX3 camera.
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TABLE III
RESULTS RELATED TO THE NEGATIVE REJECTION METHODS.

EB OCSVM [6]
METHOD DEV. OPTIONS TAR TPR TNR TAR TPR TNR
[a1] GIST RJ — 58,31 37,63 79,00 53,72 55,44 52,00
[c1] IFV RJ 256 SE 58,53 17,06 100,00 54,00 72,00 36,00
[h1] CNN RJ VGG16 I 67,59 73,69 61,50 48,06 46,63 49,50
[l1] CNN RJ VGG16 I FT 72,31 62,13 82,50 48,59 96,19 1,00
[a2] GIST LX2P — 50,25 63,00 37,50 59,16 34,81 83,50
[d2] IFV LX2P 512 53,94 08,38 99,50 41,94 75,38 08,50
[h2] CNN LX2P VGG16 I 71,44 67,88 75,00 54,69 59,38 50,00
[l2] CNN LX2P VGG16 I FT 76,34 68,69 84.00 52,50 96,00 9,00
[a3] GIST LX2W — 56,97 66,44 47,50 64,25 50,50 78,00
[c3] IFV LX2W 256 SE 65,66 36,31 95,00 51,63 79,25 24,00
[i3] CNN LX2W VGG16 P 76,97 84,44 69,50 59,41 50,31 68,50
[m3] CNN LX2W VGG16 P FT 67,16 97,31 37,00 59,03 91,06 27,00
[a4] GIST LX3 — 47,13 50,75 43,50 67,16 44,81 89,50
[e4] IFV LX3 512 SE 66,50 34,00 99,00 30,44 41,38 19,50
[g4] CNN LX3 AlexNet P 78,22 80,44 76,00 70,06 57,13 83,00
[k4] CNN LX3 AlexNet P FT 54,69 92,88 16,50 52,53 72,06 33,00

looking locations, e.g., Office - Home Office, Sink - Kitchen
Top, Living Room - Home Office (see Fig. 8 for some
examples). The confusion matrices shown in Fig. 7 (b) and (c)
use similar models (a fine-tuned VGG16 network pre-trained
on the ImageNet dataset) trained on data acquired using similar
devices, differing mainly in their Field Of View (FOV): a
narrow-angle Looxcie LX2 (LX2P) and a wide-angle Looxcie
LX2 (LX2W). This allows to make direct considerations on the
influence of the Field Of View (FOV) in the task of detecting
locations of interest. In particular, the use of a wide-angle
camera (Fig. 7 (b)) allows to acquire a larger portion of the
Field Of View, which is useful to reduce the confusion between
similar locations (e.g., Sink vs Kitchen Top).

B. Negative Samples Rejection

TABLE III reports the results related to the two rejection
methods considered in our analysis: the proposed Entropy
Based method (EB) and the One-Class SVM method pro-
posed in [6] (OCSVM).4 The table is organized similarly to
TABLE II, except for the performance indicators used in this
case. Columns 4 to 6 are related to the proposed Entropy-
Based method (EB), while columns 7 to 9 are related to the
baseline One-Class SVM component (OCSVM). Columns 4
and 7 report the True Average Rate (TAR). Columns {5, 8}
and {7, 9} report respectively the True Positive Rate (TPR)
and True Negative Rate (TNR) scores related to the considered
methods. The proposed entropy-based method systematically
outperforms the one-class SVM baseline, with the exception
of the GIST-related methods [a2], [a3], [a4]. Consistently with
the observations made earlier, the best performing methods are
generally the ones related to deep representations.

C. Multiclass Discrimination

TABLE IV reports the results related to the multi-class
discrimination component. It should be noted that, in these

4For sake of brevity, we report only some representative results for each
device-representation combination. For the full table containing all the results
please refer to the supplementary material available at the url http://iplab.dmi.
unict.it/PersonalLocations/thms supplementary.pdf.

experiments, negative rejection is not considered and methods
are evaluated ignoring negative samples. The structure of
TABLE IV follows the one of TABLE II, with the following
differences: column 5 reports the accuracy of the multi-class
discrimination component when negative samples are removed
from the test sets, columns 6 to 13 report the True Positive
Rates related to each of the considered classes. It should be
noted that the reported results are related to the proposed
method and hence they have been obtained using the smoothed
posterior probabilities computed as defined in Eq. (3). As
noted for TABLE II, the holistic GIST representations are
unable to model the personal locations with the appropriate
level of detail. Even if the accuracy values related to the GIST
representations are always low, in some cases they are still
able to model some classes like for instance Coffee Vending
Machine (e.g., [a1], [a2], [a3] and [a4]), Living Room (e.g.,
[a3]) and Sink (e.g., [a4]) which are characterized by distinc-
tive spatial layouts. Interestingly, the shallow representations,
albeit consistently outperformed by CNN, give remarkable
performances in some cases (e.g., [c1]). The best performances
(bold numbers) are given again by the deep representations.
While in the reported results, fine-tuned models significantly
outperform their pre-trained counterparts, please note that this
is not true for all experiments (see the supplementary material
for more details).

D. Discussion

The experimental results presented in the previous sections
show how the considered problem is a challenging one. As dis-
cussed earlier, the performances of all the considered methods
are dominated by the limits of the negative rejection module,
while the multi-class discrimination remains an “easier” sub-
task. This suggests that more efforts should be devoted to
the design of efficient and robust negative rejection methods.
The systematic emergence of deep representations as the best
performing ones, not only indicates the higher representational
power of such methods, but also suggests that the considered
problem can take great advantage of transfer learning tech-
niques. All CNN-based representations have been obtained
using models pre-trained on a large number of images, which
compensates for the scarce quantity of training data assumed
in this study. Nevertheless, such a small number of frames
can also limit the considered transfer learning techniques,
especially when fine-tuning existing models. We believe that
such problem could be mitigated by a more application-aware
data augmentation technique. In particular, considering that
the training frames belong to a given environment, they could
be used to infer a 3D model using structure from motion
techniques. Synthetic, yet realistic, samples from different
points of view could be then extracted in order to augment
the number of training samples.

As already pointed out in Section VII, the LX2W device
is the one obtaining the best performances. This suggests
that head-mounted wide-angular cameras are probably the
best option when modelling the user’s location. This is not
surprising since such configuration allows to better replicate
the user’s point of view and provides a FOV similar to the

http://iplab.dmi.unict.it/PersonalLocations/thms_supplementary.pdf
http://iplab.dmi.unict.it/PersonalLocations/thms_supplementary.pdf
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TABLE IV
RESULTS RELATED TO THE MULTI-CLASS COMPONENT.

METHOD DEV. OPTIONS DIM. ACC CAR C. V. M. OFFICE L.R. H. OFFICE K. TOP SINK GARAGE
[a1] GIST RJ — 512 37,56 62,86 98,59 48,65 0,00 32,79 48,72 25,00 29,06
[c1] IFV RJ 256 SE 41984 82,94 95,50 88,83 89,23 100,00 97,86 68,42 95,83 59,70
[h1] CNN RJ VGG16 I 4096 93,50 100,00 99,49 97,37 100,00 81,48 84,00 97,24 94,03
[l1] CNN RJ VGG16 I FT 4096 90,00 74,19 76,92 100,00 98,45 97,50 87,00 95,24 96,08
[a2] GIST LX2P — 512 42,69 42,25 99,29 17,18 65,28 44,81 37,41 83,33 24,22
[c2] IFV LX2P 256 SE 41984 74,44 64,47 100,00 36,28 100,00 60,14 72,97 100,00 86,15
[h2] CNN LX2P VGG16 I 4096 90,00 100,00 96,14 72,17 100,00 83,03 77,65 99,34 98,98
[l2] CNN LX2P VGG16 I FT 4096 88,06 96,80 77,27 100,00 92,23 98,02 62,50 93,88 100,00
[a3] GIST LX2W — 512 51,75 57,97 94,74 48,36 93,48 30,32 33,95 92,50 31,48
[c3] IFV LX2W 256 SE 41984 74,06 53,76 100,00 97,50 100,00 83,78 53,04 100,00 80,97
[i3] CNN LX2W VGG16 P 4096 95,44 99,49 99,00 85,97 100,00 96,05 89,45 100,00 95,67
[m3] CNN LX2W VGG16 P FT 4096 94,88 83,76 83,48 100,00 100,00 99,50 99,49 95,22 99,50
[a4] GIST LX3 — 512 46,31 42,41 84,07 35,56 45,60 33,33 56,05 83,52 23,26
[c4] IFV LX3 256 SE 41984 68,31 100,00 100,00 81,52 100,00 100,00 31,24 97,69 80,24
[i4] CNN LX3 VGG16 P 4096 87,63 100,00 99,48 62,26 91,28 96,77 88,21 92,93 92,02
[m4] CNN LX3 VGG16 P FT 4096 81,81 60,00 49,62 99,44 97,55 93,75 100,00 76,89 97,04

one characterizing the human visual system. Moreover, head
mounted devices are particularly helpful for understanding
the user’s activities [15], which plays an important role in
modeling the user’s context.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have studied the problem of recognizing
personal locations from egocentric videos. We have proposed a
dataset containing more than 20 hours of videos acquired by
a user in 8 different locations using four different wearable
devices. We have analyzed the performances of the main
state-of-the-art representation techniques for scene and object
classification on the considered task, emphasizing the role of
a negative rejection mechanism for building effective loca-
tion detection systems. A negative rejection option has been
proposed and compared with respect to a baseline based on
a one-class SVM classifier. The results highlight that deep
representations systematically outperform the competitors and
that the best results are achieved using the LX2W device,
which suggests that head-mounted, wide-angular devices are
the most suited to recognize the user’s personal locations.

Future works will focus on investigating contextual sensing
using action-related video features such as the ones proposed
in [43], [44], as well as motion-related features such as the
ones proposed in [21], [45], [46]. Moreover, this study could
be extended to the multi-user case to assess the generalization
ability of the investigated methods. In particular, it would
be interesting to investigate how data acquired by different
subjects can be leveraged to mitigate the lack of training
data and improve the recognition system. This is reasonable
since personal locations selected by different subjects are
likely to present some degree of overlap, e.g., different users
are likely to select similar locations, such as “Kitchen” and
“Office”. In order to make the system more valuable in real and
complex scenarios, methods to enforce temporal coherence
between neighboring predictions will be investigated. Finally,
applications related to the robotic domain will be considered
in future works.
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