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A B S T R A C T

Temporal video segmentation is useful to exploit and organize long egocentric videos. Previous work has focused
on general purpose methods designed to deal with data acquired by different users. In contrast, egocentric video
tends to be very personal and meaningful for the specific user who acquires it. We propose a method to segment
egocentric video according to the personal locations visited by the user. The method aims at providing a per-
sonalized output and allows the user to specify which locations he wants to keep track of. To account for
negative locations (i.e., locations not specified by the user), we propose a negative rejection method which does
not require any negative sample at training time. For the experiments, we collected a dataset of egocentric videos
in 10 different personal locations, plus various negative ones. Results show that the method is accurate and
compares favorably with the state of the art.

1. Introduction

Wearable devices allow people to acquire a huge quantity of data
about their behavior and activities in an automatic and continuous
fashion [1]. The practice of acquiring data of one’s own life for a variety
of purposes is commonly referred to as lifelogging. While the tech-
nology to acquire and store lifelog data coming from different sources is
already available, the real potential of such data depends on our ability
to make sense of it. Wearable cameras, in particular, can be used to
easily acquire hours of egocentric videos concerning the activities we
perform, the people we meet, and the environments in which we spend
our time. As observed in [2], egocentric video is generally difficult to
exploit due to the lack of explicit structure, e.g., in the form of scene
cuts or video chapters. Moreover, according to the considered goal, long
egocentric videos tend to contain much uninformative content like, for
instance, transiting through a corridor, walking outdoors or driving to
the office. Consequently, automated tools to enable easy access to the
information contained in such videos are necessary.

Toward this direction, researchers have already investigated
methods to produce short informative video summaries from long
egocentric videos [3–5], recognize activities performed by the camera
wearer [6–11], temporally segment the video according to detected
ego-motion patterns [2,12], and segment egocentric photo-streams
[13–15]. Past literature aimed at investigating general-purpose
methods, which are generally trained and tested on data acquired by

many users in order to ensure the generality of the algorithms. This
approach, however, risks to overlook the subjective nature of ego-
centric video, which can be leveraged to provide tailored and user-
specific services.

1.1. Personal locations

Towards the exploitation of user-specific information, in [16], we
introduced the concept of personal location as:

a fixed, distinguishable spatial environment in which the user can per-
form one or more activities which may or may not be specific to the
considered location.

Personal locations are defined at the instance level (e.g., my office,
the lab), rather than at the category level (e.g., an office, a lab) and
hence they should not be confused with the general concept of visual
scene [17]. Indeed, a given set of personal locations could include
different instances of the same scene category (e.g., office vs lab office).
Moreover, personal locations are user-specific since different users will
be naturally interested in monitoring different personal locations (e.g.,
each user will be interest in monitoring the activities performed in his
own office). Personal locations are constrained spaces (i.e., they are not
defined as a whole room but rather refer to a part of it, e.g., the “office
desk”), and hence they are naturally related to a restricted set of ac-
tivities which can be performed in the considered locations [18]. For
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instance, the “office” personal location is naturally associated with of-
fice-related activities such as “writing e-mails” and “surfing the In-
ternet”, while the “piano” personal location is generally related just to
“playing piano”. Hence, being able to recognize when the user is lo-
cated at a given personal location directly reveals information on a
broad spectrum of activities which the user may be performing. The
advantage of recognizing personal locations, rather than activities di-
rectly, is that providing supervision to recognize complex activities
requires many samples (which is not practical for user-specific appli-
cations), while providing supervision to recognize personal locations is
much more feasible, especially in egocentric settings [16].

1.2. Temporal segmentation of egocentric video

In this paper, we propose to segment egocentric videos into co-
herent segments related to personal locations specified by the user. We
assume that the user selects a number of personal locations he wants to
monitor and provides labeled training samples for them. The process of
acquiring training data should not burden the user and be as simple as
possible. Therefore, we adopt the acquisition protocol specified in
[16,19]. According to this protocol, the user acquires training data for a
specific location by turning on his wearable device and looking around
briefly to acquire a 30-s video of the environment.

At test time, the system analyzes the egocentric video acquired by
the user and segments it into coherent shots related to the specified
personal locations. Given the large variability of visual content gen-
erally acquired by wearable devices, the user cannot easily provide an
exhaustive set of personal locations he will visit. Therefore, the system
should be able to correctly identify and reject all frames not related to
any of the personal locations specified by the user. We will refer to
these frames as “negatives” in the rest of the paper. In our context,
negatives arise from two main sources: (1) the user moving from a
personal location to another (transition negatives), and (2) the user
spending time in a location which is not of interest (negative locations).
Examples of transition negatives can be a corridor or an urban street,
while examples of negatives locations might be a conference room, an
office other than the user’s office, another car, etc. Please note that,
while negative samples need to be correctly detected by the system, in
real-world applications no negative training data can be provided by
the user. Therefore, we design our method to learn solely from positive
training data.

Fig. 1 shows a scheme of the proposed temporal segmentation
system and illustrates three possible applications for it, which are dis-
cussed in the following. The output of the algorithm is a temporal
segmentation of the input video. Each segment is associated to a label
which identifies the related personal location or whether it is a negative
segment (i.e., it is not related to any user-specified personal location).
Such output can be used for different purposes. The most straightfor-
ward objective consists in producing a video index to help the user
browse the video. This way, the user can easily jump to the part of the
video he is more interested in and discard negative segments which
may not be relevant. A second possible use of the output temporal
segmentation consists in producing coherent video shots related to the
personal locations specified by the user (e.g., of egocentric videos ac-
quired over different days). Given the segmented shots and related
meta-data (e.g., time stamps), the system could answer questions such
as “show me what I was doing this morning when I first entered my
office” or “tell me how many coffees I had today” (e.g., how many times
I was at the Coffee Vending Machine personal location). Moreover,
video shots can be used as a basis for egocentric video summarization
[4,20]. A third use of the segmented video consists in estimating the
time spent by the user at each location. In this case, the system would
be able to answer questions such as “how much time did I spend driving
this week?” or “how much time did I spend in my office today?”. This
kind of estimate does not require accurate temporal segmentation but
only overall correct per-frame predictions.

1.2.1. Contributions
This paper extends our previous work [21]. In particular, we present

the proposed method in greater details and analyzes the impact of each
component and related parameters more thoroughly. We extend the
experimental analysis by defining a novel performance measure de-
signed to evaluate segmentation accuracy from a shot-retrieval point of
view. New comparisons with many state of the art methods are also
introduced. Finally, we publicly release the code implementing the
proposed method and evaluation measures.

The main contributions of this paper can be summarized as follows:
(1) It is proposed to segment egocentric videos to highlight personal
locations using minimal user-specified training data. To study the
problem we collect and release a dataset comprising more than 2 h of
labeled egocentric video covering 10 different locations plus various
negatives. (2) A method to segment egocentric videos and reject ne-
gative samples is proposed. The method can be trained using only the
available positive samples. (3) A measure to evaluate the accuracy of
temporal video segmentation methods is defined. The measure pena-
lizes methods which produce over-segmented or under-segmented re-
sults.

Experiments show that the proposed system can produce accurate
segmentations of the input video with little supervision, outperforming
baselines and existing approaches. The code related to this study, as
well as the proposed dataset and a video of our demo, can be down-
loaded at http://iplab.dmi.unict.it/PersonalLocationSegmentation/.

The remainder of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the proposed method.
Section 4 introduces the involved dataset, defines the considered eva-
luation measures and reports the experimental settings. Results are
discussed in Section 5, whereas Section 6 concludes the paper.

2. Related works

Location awareness. Our work is related to previous studies on con-
text and location awareness in wearable and mobile computing.
According to Dey et al. [22], context aware systems should be able to
“use context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task”. Visual location awareness, in
particular, has been investigated by different authors over the years.
Starner et al. [23] addressed the recognition of basic tasks and locations
related to the Patrol game from egocentric videos in order to assist the
user during the game. Aoki et al. [24] proposed to recognize personal
locations from egocentric video using the approaching trajectories ob-
served by the wearable camera. Torralba et al. [25] designed a context-
based vision system for place and scene recognition. Farinella et al.
[26,27] engineered efficient computational methods for scene re-
cognition which can be easily deployed to embedded devices. Rhinehart
et al. [18] explored the relationship between actions and locations to
improve both localization and action prediction. Furnari et al. [16]
performed a benchmark of different wearable devices and image re-
presentations for personal location recognition.

Temporal video segmentation. Temporal video segmentation methods
aim at decomposing an input video into a set of meaningful segments
which can be used as basic elements for indexing [28]. The topic has
been widely investigated in the domain of movie and broadcast video
[29–33]. In particular, Hanjalic et al. [29] proposed to consider a video
as composed by scenes and shots. Shots are elementary video units
acquired without interruption by a single camera. Scenes contain se-
mantically coherent material and are generally composed by different
temporally contiguous shots. Most state of the art algorithms achieve
temporal segmentation by first detecting shots and then merging con-
tiguous highly correlated shots to form scenes. Chasanis et al. [30]
propose to cluster shots according to their visual content and apply a
sequence alignment algorithm to obtain the final segmentation. Sidir-
opoulos et al. [31] jointly exploit low-level and high-level audiovisual
features within the Scene Transition Graph to obtain temporal

A. Furnari et al. Journal of Visual Communication and Image Representation 52 (2018) 1–12

2

http://iplab.dmi.unict.it/PersonalLocationSegmentation/


segmentation. Apostolidis and Mezaris [32] detect abrupt and gradual
transitions in videos exploiting both local and global descriptors. Bar-
aldi et al. [33] consider the problem of segmenting broadcast videos
into scenes using hierarchical clustering.

It should be noted that the discussed classic temporal video seg-
mentation methods are not directly applicable in the egocentric do-
main. In particular, the notions of shot and scene are not clearly defined
for egocentric videos, which are generally acquired without interrup-
tion and by a single camera for the entire length of the video.

Motion-based egocentric video segmentation. The problem of seg-
menting egocentric video to introduce some kind of structure has al-
ready been investigated by researchers. Among the most prominent
work is the one of Poleg et al. [2,12], who proposed to segment ego-
centric video according to motion-related long-term activities such as
“walking”, “standing” or “driving car” performed by the user. Similarly,
Lu and Grauman [4] proposed to segment egocentric video into the
three “static”, “moving the head” and “in transit” classes as a first step
for egocentric video summarization. Alletto et al. [34] proposed to in-
clude features based on accelerometer and gyroscope data to improve
motion-based segmentation. Kitani et al. [35] presented an un-
supervised method to segment egocentric video according to sports-
related actions performed by the user. Motion-based features are also
used by Su and Grauman [36] to detect engagement from egocentric
video, i.e., to identify the video segments in which the user is paying
more attention.

Visual-content-based egocentric video segmentation. While the afore-
mentioned methods aim at segmenting egocentric video according to
the perceived motion, they usually discard information strictly related
to the visual content. In this regard, Lin and Hauptmann [37] imposed
time constraints on the K-Means clustering algorithm to segment videos
acquired using a wearable camera. Doherty and Smeaton [13] proposed
a method to segment lifelog images acquired by a SensCam into events
using color and edge features. Bolaños et al. [38] used hierarchical
Agglomerative Clustering to segment egocentric photo-streams into

events. Talavera et al. [14] combined clustering with a concept drift
technique to improve segmentation results. Templeman et al. [39],
detected images of sensitive spaces for privacy purposes combining GPS
information and an image classifier. Castro et al. [40] used Convolu-
tional Neural Networks and Random Decision Forests to segment photo-
streams of egocentric images highlighting human activities. Paci et al.
[41] presented a wearable system for context change detection based
on an egocentric camera with ultra-low power consumption. Ortis et al.
[42,43] proposed an unsupervised system to automatically divide
egocentric videos into chapters with respect to the user’s context.

Past work focused on designing general-purpose methods which
usually rely on data acquired by multiple users. In contrast, we consider
a personalized scenario in which the user himself provides the training
data and sets up the system. In such settings, it is not possible to rely on
a big corpus of user-specific supervised data, since it is not feasible to
ask the user to collect and label it. Moreover, differently from related
works, we explicitly consider the problem of rejecting negative samples,
i.e., recognizing locations the user is not interested in, so to discard
irrelevant information. Given the large variability of visual data ac-
quired by wearable cameras, it is not feasible to ask the user to collect
and label a large number of representative negative samples. Therefore,
we design our system to work without requiring any negative sample at
training time.

3. Proposed method

The proposed method aims at segmenting an input egocentric video
into coherent segments. Each segment is related to one of the personal
locations specified by the user or, if none of them apply, to the negative
class. After an off-line training procedure (which relies only on positive
samples provided by the user), at test time, the system processes the
input egocentric video. For each frame, the system should be able to (1)
recognize the personal locations specified by the user, (2) reject nega-
tive samples, i.e., frames not belonging to any of the considered

Fig. 1. Scheme of the proposed temporal segmentation method. The system can be used to (a) produce a browsable temporally segmented egocentric video, (b) produce video shots
related to given personal locations, (c) estimate the amount of time spent at each location.

A. Furnari et al. Journal of Visual Communication and Image Representation 52 (2018) 1–12

3



personal locations, and (3) group contiguous frames into coherent video
segments related to the specified personal locations. The method works
in three steps, namely discrimination, negative rejection and sequential
modeling:

1. Discrimination. Each frame is classified as one of the positive loca-
tions. No negative class is taken into account at this stage.

2. Negative rejection. The system estimates the probability of each
frame to be a negative by analyzing neighboring predictions. If
predicted labels disagree, the sample is rejected by the system.

3. Sequential modeling. Labels are predicted sequentially using a Hidden
Markov Model to take into account previous observations. This step
allows to obtain a more accurate segmentation where random label
changes are discouraged.

Fig. 2 shows a scheme of the proposed method. Each of the three
steps involved in the proposed method is detailed in the following sub-
sections.

3.1. Notation

Let = …I I{ , , }N1V be the input egocentric video, i.e., a sorted col-
lection of N frames Ii. Let M be the number of personal locations spe-
cified by the user and let … M{1, , } be the set of class labels related to the
personal locations. The system should assign a label ∈ …y M{0, , }i to
each frame Ii, where =y 0i denotes the “negative class”. The final goal
of the proposed system is to produce a set of video segments

= ⩽ ⩽s{ }i i P1S (P is the number of segments). Each segment si contains a
set of contiguous frames and is denoted by the following triplet

=s s s s{ , , }i i
s

i
e

i
c , where ⩽ ⩽s N1 i

s is the index of the first (starting) frame
contained in the segment, ⩽ ⩽s N1 i

e is the index of the last (ending)
frame contained in the segment and ∈ …s M{0, , }i

c is the class label re-
lated to segment si. In practice, a given segment =s h k c( , , ) contains all
frames …+ −I I I I{ , , , , }h h k k1 1 . All labels related to the frames contained in the
segment will be equal to c, i.e., = ∀ ∈ …y c l h k{ , , }l . Moreover, the
video segments contained in S define a partition of the videoV , i.e.,
each frame inV belongs to exactly one segment in S .

3.2. Discrimination

At training time, a multi-class classifier (e.g., a Convolutional
Neural Network) is trained on the positive data specified by the user to
discriminate among the M positive locations (i.e., to assign labels

∈ …y M{1, , }i ). The negative class is not considered at this stage because
negative data is not assumed to be available for training purposes. Since
negatives are not included in the training set, the multi-class classifier
will not be suitable to estimate a posterior probability distribution over
the +M 1 classes (i.e., positive locations+ the negative class), such as
the following:

P y I( | ).i i (1)

Rather, the multi-class classifier will allow estimate a posterior
probability over the M positive classes, i.e.:

∑≠ = ≠ =
=

P y I y s t P y j I y( | , 0), . . ( | , 0) 1.i i i
j

M

i i i
1 (2)

In order to recognize positive locations and reject negative ones,
modeling the probability distribution reported in Eq. (1) is desirable.
This can be done by estimating the probability of frame Ii to be a ne-
gative =P y I( 0| )i i and combining it with the discrimination probability
reported in Eq. (2). The result is a posterior distribution over +M 1
classes comprising both positive locations and the negative class.

3.3. Negative rejection

Given the continuous nature of egocentric videos (i.e., they are ac-
quired by a single camera without interruptions), transitions among
different locations are expected to be smooth. Therefore, it is reasonable
to assume that K neighboring frames in an egocentric video will belong
to the same positive personal location or to some form of negative. This
assumption can lead to imprecise results whenever the user transits
from a personal location to another. However, such transitions are re-
latively rare in long egocentric videos and, for small enough values of K,
such assumption shall not affect much the overall performance of the
system.

Let = …−⌊ ⌋ +⌊ ⌋I I{ , , }i
K

i iK K
2 2

I be the neighborhood of size K of frame Ii

and let = …−⌊ ⌋ +⌊ ⌋y y{ , , }i
K

i iK K
2 2

Y be the corresponding set of labels pre-
dicted with the Maximum A Posteriori (MAP) criterion, i.e.,

= = ≠y P y j I yargmax ( | , 0)i j i i i after the discrimination step. According
to the assumption above, if frame Ii belongs to a positive location, the
labels associated to its neighborhood i

KY are expected to “agree”, i.e.,
the distribution of labels in i

KY should be strongly peaked. When the
frames contained in i

KI are related to the negative class (i.e., they re-
present something unseen during training), the multi-class classifier
will exhibit high uncertainty and it will likely pick a random label for

input video

Multiclass
Classifier

Training Set (user-defined set of locations)

1. Discrimination

2. Negative Rejection

3. Sequential Modelling

estimation of 

estimation of 

application of HMM

Fig. 2. A scheme of the proposed temporal segmentation method. The method works in three steps: (1) discrimination among positive locations and estimation of ≠P y I y( | , 0)i i i , (2)
negative rejection, i.e., estimation of =P y I( 0| )i i and derivation of P y I( | )i i , (3) sequential modeling through a Hidden Markov Model and estimation of the final set of labels

=∗ argmax P ( | )L L VL .
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each sample. In this case, the distribution of labels within i
KY is ex-

pected to be characterized by large uncertainty, i.e., it should not ex-
hibit a strong peak.

Following [44], we measure the model uncertainty by computing
the variation ratio of the distribution of labels i

KY . We hence define the
probability of Ii to be a negative sample as follows:

= = −
∑ =

= −⌊ ⌋
+⌊ ⌋

P y I
y mode

( 0| ) 1
[ ( )]

| |i i
k i
i

k i
K

i
K

K

K

2

2 Y

Y (3)

where [·] denotes the Iverson bracket, ∈y mode, ( )k i
K

i
KY Y is the sta-

tistical mode of i
KY and | |i

KY corresponds to the cardinality of set i
KY .

Since the events =y 0i (Ii is a negative) and ≠y 0i (Ii is not a ne-
gative) are disjoint, the probability reported in Eq. (1) can be obtained
combining the probabilities reported in Eq. (2) and Eq. (3) as follows:

= ⎧
⎨⎩

= =
≠ ≠

P y I
P y I y
P y I P y I y

( | )
( 0| ) if 0
( 0| )· ( | , 0) otherwise

.i i
i i i

i i i i i (4)

The probability distribution reported in Eq. (4) sums to one over the
+M 1 classes {0,…,M} and can be used to jointly perform dis-

crimination among the positive locations and rejection of negatives
simply using the argmax function:

= = ∈ …y P y j I j Margmax ( | ), {0, , }.i
j

i i (5)

3.4. Sequential modeling

The assumption according to which neighboring predictions shall be
coherent can be further exploited by employing a Hidden Markov
Model (HMM). Specifically, given the input video = …I I{ , , }N1V , the
globally optimal set of labels = …y y{ , , }N1L can be obtained maximizing
the posterior probability:

P ( | ).L V (6)

According to Bayes’ rule, such probability can be expressed as fol-
lows:

∝P P P( | ) ( | ) ( ).L V V L L (7)

Assuming conditional independence of the frames with respect to
each other given their class (i.e., ⊥⊥ ∀ ∈ … ≠I I y i j n i j| , , {1,2, , },i j i ), and
applying the Markovian assumption on the conditional probability
distribution of class labels ( … =− −P y y y P y y( | ) ( | )i i i i1 1 1 ), Eq. (7) is re-
written as:

∏ ∏∝
=

−
=

P P y P y y P I y( | ) ( ) ( | ) ( | ).
i

n

i i
i

n

i i1
2

1
1

L V
(8)

Term P y( )1 is assumed to be uniform over all possible classes (i.e.,
for ∈ …y M{0, , }1 ) and hence it can be ignored when Eq. (7) is maximized
with respect toV . Probability P I y( | )i i is inverted using Bayes’ law, thus
obtaining:

∝P I y P y I P I( | ) ( | ) ( ).i i i i i (9)

Term P I( )i can be ignored since Ii is observed when maximizing Eq.
(6) with respect toV and term P y I( | )i i is computed directly using Eq.
(4). Eq. (8) is finally written as follows:

∏ ∏∝
=

−
=

P P y y P y I( | ) ( | ) ( | ).
i

n

i i
i

n

i i
2

1
1

L V
(10)

The HMM state transition term −P y y( | )i i 1 represents the probability
of transiting from a given location to another (including negatives).
Transition probabilities in Hidden Markov Models can be generally
learned from data as done in [25], or defined ad-hoc to express a prior
belief as done in [39]. Since we assume that few training data should be
provided by the user and no labeled sequences are available at training
time, the HMM transition probability is defined ad hoc to encode the

prior belief that neighboring predictions are likely to belong to the same
class [39]:

= ⎧
⎨⎩

≠
−−

−P y y
ε y y

Mε
( | )

, if
1 , otherwisei i

i i
1

1

(11)

where ⩽ +ε M
1

1 is a small constant. The transition probability defined in
Eq. (11) can be seen as an “almost identity” matrix, i.e., a matrix
containing values close to 1 on the main diagonal and positive values
close to 0 anywhere else. This kind of transition matrix encourages
coherence between subsequent states and penalizes multiple random
state changes.

The set of globally optimal labels L can be finally obtained max-
imizing the probability reported in Eq. (7), which can be achieved ef-
ficiently using the Viterbi algorithm [45]:

= Pargmax ( | ).L L V
L (12)

The final segmentationS is obtained by considering the connected
components of labels in L .

4. Experimental settings

4.1. Dataset

We collected a dataset of egocentric videos in ten different personal
locations, plus various negative ones. The considered personal locations
arise from a possible daily routine: Car, Coffee Vending Machine
(CVM), Office, Lab Office (LO), Living Room (LR), Piano, Kitchen Top
(KT), Sink, Studio, Garage. The dataset has been acquired using a
Looxcie LX2 camera equipped with a wide angular converter. This
configuration is the one which performed best in the benchmark dataset
proposed in [16] and allows to acquire videos at a resolution of

×640 480 pixels and with a Field Of View of approximately 100°. The
use of a wide-angular device is justified by the ability to acquire a large
amount of scene information, albeit at the cost of radial distortion,
which in some cases requires dedicated computation [46–48]. Fig. 3
shows some sample frames from the dataset.

Since we assume that the user is required to provide only minimal
data to define his personal locations of interest, the training set consists
in 10 short videos (one per location) with an average length of 10 s per
video. The test set consists in 10 video sequences covering the con-
sidered personal locations of interest, negative frames and transitions
among locations. Each frame in the test sequences has been manually
labeled as either one of the 10 personal locations or as a negative.
Table 1 summarizes the content of the test sequences with an overview
of the related transitions. It should be noted that test sequences contain
both sources of negative samples discussed in Section 1.2, i.e., transition
negatives and negative locations.

The dataset is also provided with an independent validation set which
can be used to optimize the hyper-parameters of the compared methods.
The validation set contains 10 medium length (approximately 5–10min)
videos in which the user performs some activities in the considered loca-
tions (one video per location). Validation videos have been temporally sub-
sampled in order to extract 200 frames per location, while all frames are
considered in the case of training and test videos. We also acquired 10
medium length videos containing negative samples from which we uni-
formly extracted 300 frames for training and 200 frames for validation.
Negative training and validation samples have been acquired in order to
allow for comparisons with methods which require negative samples at
training time. Please note that the proposed method does not need to learn
from negatives and hence it discards them during training.

The proposed dataset contains 2142 positive plus 300 negative
frames for training, 2000 positive plus 200 negative frames for vali-
dation and 132234 mixed (both positive and negative) frames for
testing purposes. The dataset is available at our web page http://iplab.
dmi.unict.it/PersonalLocationSegmentation/.
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4.2. Evaluation measures

As observed in [49], evaluation measures for temporal video seg-
mentation methods can be organized in three categories: boundary-level
measures, shot-level measures and frame-level measures.

Boundary-level measures consider the segmentation problem as a
shot boundary detection task. According to these measures, a prediction
is considered correct only if the boundaries of the detected shot match
ground truth boundaries exactly. This kind of similarity measures is not
appropriate in our case since it is not clear how to define where shots/
scenes begin and terminate in an egocentric video.

Shot-level measures evaluate temporal segmentation methods ac-
cording to the overlap between predicted and ground truth segments.
Among these, the popular coverage/overflow measure proposed by
Vendrig et al. [50] evaluates if shots are correctly detected and grouped
into scenes. While an overlap-based measure is needed to assess the
accuracy of a produced segmentation, the coverage/overflow measure
cannot be used directly in our case since the definitions of shots and
scenes do not apply to egocentric videos.

Frame-level measures evaluate the fraction of frames which have
been correctly labeled regardless their organization into coherent shots.
The main drawback of such measure is that it does not explicitly pe-
nalize under-segmentation (i.e., when one or more segments are not

detected) and over-segmentation (i.e., the incorrect detection of many
small segments within a longer video segment). However, despite their
simplicity, this class of measures allows to assess how well a method
can count the number of frames belonging to a given class. This can be
useful, for example, to estimate the time spent at a given location over a
long period of time (e.g., for lifelogging applications).

Taking into account the above considerations, we define two dif-
ferent measures which consider the temporal segmentation problem as
a retrieval task and evaluate the methods in terms of F1 score.
Specifically, we consider a frame-based F1 measure and a segment-based
F1 measure. In both cases, F1 scores are computed separately for each
class. Mean F1 scores (averaged over all classes) are also reported as an
overall performance indicator for each method.

Frame-based F1 score Given a specific class ∈ …γ M{0, , }, precision and
recall values are computed in the standard way considering the number
of frames correctly predicted as belonging class γ . The class-specific
frame-based F1 score (denoted as FF γ

1
( )) is hence computed as the har-

monic mean between precision and recall:

=
+

FF
precision recall

precision recall
2·

·
.γ

1
( )

(13)

As an overall performance indicator, we also consider the mFF1

score, which is the mean of the FF γ
1
( ) scores related to all considered

classes ( ∈ …γ M{0, , }). Per-class FF γ
1
( ) scores (and related mFF1 values)

are preferred over the standard accuracy measure (i.e., percentage of
correctly classified frames) since they allow to perform unbiased eva-
luations when test samples are not evenly distributed among classes.

Segment-based F1 score Let ∈ …γ M{0, , } be the considered class, let
= = ∈ …s s t s γ{ . . }γ i i

c
i P{1, , }S be the set of the P predicted segments be-

longing to class γ , and let = = ∈ …s s t s γ{ . . }γ i i
c

i Q{1, , }S be the set of the Q
ground truth segments belonging to class γ . In order to reason about
correct and wrong predictions, each predicted segment si should be
associated to exactly one ground truth segment si. To compute such
associations, we consider a standard linear sum assignment problem
(which is solved using the Hungarian algorithm [28]) where the cost of
assigning si to sj is equal to the Jaccard distance between the two seg-
ments d s s( , )J i j . The Jaccard distance d s s( , )J i j is obtained subtracting the
Jaccard coefficient from = −d s s J s s1: ( , ) 1 ( , )J i j i j , and the Jaccard coeffi-
cient J s s( , )i j is computed as the ratio of the area of the intersection
between the segments to the area of their union:

Car CVM Office LO LR Piano KT Sink Studio Garage

(a) positive samples

(b) negative samples

Fig. 3. Some sample frames from the proposed dataset.

Table 1
A summary of the location transitions contained in the test sequences. “N” represents a
negative segment (to be rejected by the final system).

Sequence Context transitions Length

1 Car→N→Office→N→ Lab Office 00:11:27
2 Office→N→ Lab Office 00:05:55
3 Lab Office→N→Office→N→ C.V.M. 00:07:24
4 TV→N→ Piano→N→ Sink 00:11:40
5 Kitchen T.→N→ Sink→N→ Piano 00:10:41
6 Kitchen T.→N→ Sink→N→ TV 00:11:18
7 Piano→N→ Sink→N→ TV 00:04:57
8 Studio→N→ Car→N→Garage 00:06:51
9 Car→N→Garage→N→ Studio 00:05:17
10 Car→N→ Studio→N→Garage 00:06:05

Total length 01:21:35
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The solution of the linear assignment is the assignment matrix
=X x[ ]ij , where =x 1ij if si has been assigned to sj. In order to compute

precision and recall values, we consider a detected segment si as a cor-
rect prediction only if =x 1ij for some index j and the Jaccard index
between the two segments exceeds a given threshold: ⩾J s s t( , )i j . This
leads to the definition of threshold-dependent precision and recall
measures:

=
∑ ⩾

=
∑ ⩾

precision t
x J s s t

recall t
x J s s t

( )
·[ ( , ) ]

| |
, ( )

·[ ( , ) ]

| |
.γ i j ij i j

γ

γ i j ij i j

γ

( ) , ( ) ,

S S

(15)

The threshold-dependent, segment-based F1 measure is hence com-
puted as follows:

=
+

SF t
precision t recall t

precision t recall t
( ) 2·

( )· ( )
( ) ( )

.γ
γ γ

γ γ1
( )

( ) ( )

( ) ( ) (16)

The SF γ
1
( ) measure defined in Eq. (16) can be used to plot threshold-

SF1 curves in order to assess the performances of the method with re-
spect to varying tolerance levels. Given a set of thresholds

= ⩽ ⩽t s t t{ . . 0 1}T , the overall performance of a segmentation
method can be computed as the average SF1 score:

=
∑ ∈ASF

SF t( )
| |

.γ t
γ

1
( ) 1

( )

T
T

(17)

To assess the overall method performance, we also consider the
mASF1 score, which is the average of ASF γ

1
( ) scores for all considered

classes ( ∈ …γ M{0, , }).
A Python implementation of the proposed measure is included in

the code available at our web page: http://iplab.dmi.unict.it/
PersonalLocationSegmentation/.

4.3. Settings

All experiments are performed on the dataset described in Section
4.1. The multiclass classifier needed in the discrimination stage of our
method is implemented by fine-tuning on our training set the VGG16
Convolutional Neural Network (CNN) pre-trained on the ImageNet
dataset [51]. Given the small training set, the convolutional layers of
the network are locked during the fine-tuning (i.e., their related
learning rate is set to zero) to avoid overfitting. We set the neighbor-
hood size of our rejection method to =K 300 and the small constant in
the definition of the HMM transition probability (Eq. (11)) to

= −ε 2.23·10 308, which is the minimum positive normalized floating-
point number in our machine. To compute SF1 measures, we set

= …{0, 0.1, 0.2, , 0.99, 1}T . The influence of the considered parameters
on the performance of the method and the optimality of the selected
values is discussed in Section 5.1. Compared methods are trained on the
whole training set and evaluated on the test sequences. The validation
set is used to tune the hyper-parameters of the methods and to select the
best performing iteration in the case of CNNs.

5. Results

We perform experiments to (1) assess the influence of each of the
components involved in the proposed method and related parameters
and (2) compare the method with respect to the state of the art.

5.1. Performance of the proposed method

Fine-tuning large CNNs using a small training set (≈ 200 samples per
class in our settings) is not trivial and some architectural parameters
can be tuned in order to optimize performance. We perform

experiments to assess the impact of the following architectural settings:
(1) the dataset on which the network has been pre-trained (we consider
ImageNet [52] and Places365 [53]), (2) whether the convolutional
layers are “locked” (i.e., their related learning rate is set to zero) or not,
(2) whether dropout in the fully connected layers is disabled or not.

Table 2 reports the performance (in terms of mFF1 and mASF1

scores) of the proposed method on the test sequences. Each row in
Table 2 reports results for a specific experiment. For each experiment,
the Parameters column summarizes the architectural settings used to
fine-tune the CNN (see table caption for a legend), the Discrimination
column reports the performance of the CNN alone (in this case negative
samples are removed from the test set for the evaluation), the Rejection
column reports the performance of the method including the proposed
rejection mechanism but excluding the application of the HMM (all
frames from test sequences are included in the evaluation), the Se-
quential Mod. column reports the final results of the proposed method
including rejection and sequential modeling through the application of
the HMM (all frames from test sequences are included in the evalua-
tion).

It is worth observing that, discrimination (second column) is easier
to achieve than rejection (third column) for all models. However, as
discussed before, in real applications, the system needs be able to re-
liably reject negative samples. Interestingly, the gap between dis-
crimination and rejection is in general successfully recovered in the
sequential modeling component. Moreover, it should be noted how the
use of a Hidden Markov Model with a hand-designed transition matrix
is very effective to achieve consistent segmentation results. This is in-
dicated by the poor mASF1 scores in the results related to both the
discrimination and rejection steps, while sequential modeling results
are significantly higher.

The results reported in Table 2 highlight the importance of tuning
the considered architectural settings to improve accuracy. In particular,
best results are systematically achieved when convolutional layers are
locked. Disabling dropout leads to equivalent or marginally worse
discrimination results. Models pre-trained on the ImageNet
dataset allow to obtain better results over the ones pre-trained on
Places365, especially in terms of mASF1 score when the final result of
the Sequential modeling step is considered. While this finding might
seem surprising at first (the Places365 dataset contains data which is
closer to our applicative domain), many personal locations can be re-
cognized considering the presence of specific objects (e.g., the com-
puter monitor) as it is shown in Fig. 3. In sum, best results are obtained
pre-training the CNN on ImageNet and locking the convolutional layers
(second row of Table 2). This architectural configuration is the one used
in all following experiments.

Fig. 4 reports color-coded segmentation results of the proposed
method for qualitative assessment. The figure illustrates predictions

Table 2
Mean frame-based F1 scores (mFF1) and mean average segment-based F1 scores (mASF1)
for the different components involved in the proposed method (i.e., discrimination, re-
jection and sequential modeling). Architectural settings: : the CNN has been pre-trained
on the ImageNet dataset, : the CNN has been pre-trained on the Places365 dataset, :
convolutional layers are locked, : dropout is disabled.

Parameters Discrimination Rejection Sequential Mod.

mFF1 mASF1 mFF1 mASF1 mFF1 mASF1

0.92 0.05 0.87 0.02 0.92 0.82

0.94 0.05 0.87 0.02 0.95 0.89

0.91 0.06 0.87 0.02 0.92 0.81

0.94 0.04 0.87 0.01 0.93 0.86

0.92 0.05 0.84 0.02 0.89 0.79

0.94 0.03 0.87 0.02 0.92 0.85

0.91 0.02 0.83 0.01 0.91 0.80

0.94 0.03 0.87 0.02 0.92 0.83
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issued by the three components of the proposed method (Discrimination,
Rejection, Sequential Modeling). As can be noted from Fig. 4, the dis-
crimination component tends to exhibit high uncertainty in the nega-
tive segments. At the discrimination stage, this results in areas char-
acterized random label changes. The rejection component leverages the
presence of such uncertain segments to detect negatives but still retains
some of the original random label changes. The application of a HMM
in the sequential modeling stage allows to obtain a clean segmentation
which often matches the ground truth with high accuracy.

For further qualitative assessment, in Table 3 we report results re-
lated to the task of estimating the total amount of time spent by the user
at each location. Specifically, the table reports ground truth times as
well as estimates performed by the proposed method. Estimates are
obtained by counting the number of predicted frames related to each
class. As can be observed from Table 3, estimated times are very ac-
curate for many classes (error is often in the order of seconds).

The reader is also referred to the demo video available at our web
page: http://iplab.dmi.unict.it/PersonalLocationSegmentation/.

5.1.1. Sensitivity with respect to the involved parameters
We also study the sensitivity of the results with respect to the two

involved parameters, namely the size K of the neighborhood considered
for negative rejection and the small constant ε used to define the HMM
transition matrix. Fig. 5 reports the results of the proposed method on
the test sequences for varying values of the parameters K and ε. To
assess sensitivity to parameter K, in Fig. 5(a), ε is set to the optimal
value of = −ε 2.23·10 308. Similarly, in Fig. 5(b), we set =K 300.

Parameter K should be chosen in order to incorporate enough ob-
servations to perform rejection, while avoiding the noise due to ex-
cessively large neighborhoods. As can be observed in Fig. 5(a), best
segmentation results (indicated by a green star) are reached around

=K 300 (approximatively 10 s). It should be noted that the method is
robust also to other values of K.

Results reported in Fig. 5(b) suggest that the HMM works best for
very small values of ε. In this case indeed, the transition matrix related
to the probability defined in (11) is an “almost identical” matrix, which
allows to strongly enforce temporal coherence among neighboring

predictions.
As discussed in Section 4.3, we set =K 300 and = −ε 2.23·10 308.

5.2. Comparison with the state of the art

We compare our method with respect to the following baselines and
state of the art methods.

SIFT-Based Matching (SIFT). The first baseline tackles the location
recognition problem through feature matching. The system is initialized
extracting SIFT feature points from each training image and storing
them for later use. Given the current test frame, SIFT features are ex-
tracted and matched with all images in the training set. To reduce the
influence of outlier feature points, for each considered image pair, we
perform a geometric verification using the MSAC algorithm based on an
affine model [54]. Classification is hence performed selecting the class
of the training set image presenting the highest number of inliers. In
this case, the most straightforward way to perform rejection of negative
samples consists in setting a threshold on the number of inliers: if an
image is a positive, it is expected to yield a good match with some
example in the dataset, otherwise only geometrically weak matches will
be obtained. Since it is not clear how such a threshold should be arbi-
trarily set, we learn it from the data. To do so, we first normalize the
number of inliers by the number of features extracted from the current
frame. We then select the threshold which best separates the validation
set from the training negatives. To speed up computation, input images
are rescaled in order to have a standard height of 256 pixels, keeping
the original aspect ratio (a pre-processing similar to the one required by
most CNN models).

Open Set Deep Networks (OSDN). This method is based on the Open
Set Deep Networks recently proposed in [55]. We apply the OpenMax
algorithm described in [55] to the same CNN used by the proposed
method in order to obtain a model able to perform both classification
and rejection of negative samples. Similarly to the proposed method,
this method does not require any negative sample at training time. A
HMM is applied to the output of the network to allow for fair com-
parisons.

Cascade SVM Classifier (CSVM). The method proposed in [19] per-
forms negative rejection and personal location recognition using a
cascade of a One-Class and a multiclass SVM classifier. The classifiers
are trained on features extracted using the VGG16 network pre-trained
on ImageNet. Please note that this method uses training negatives to
optimize the hyper-parameters of the One-Class SVM classifier. Also in
this case, a HMM is used to enforce temporal coherence.

Entropy-Based Rejection (EBR). This is the method recently proposed
in [16], which performs rejection of negative samples by measuring the
entropy of the posterior probability over small sequences of neigh-
boring frames. The rejection method is applied to the output of the
same CNN used by the proposed method. A HMM is used to obtain the
final segmentation.

Negative-Trained Network (NTN). This baseline employs a CNN
trained to discriminate directly between locations of interest and ne-
gative samples. The network can be used directly to estimate posterior
probabilities over 11 classes. In contrast with all other compared
methods, this baseline explicitly learns from negative samples. The CNN
has been fine-tuned following the same architectural settings adopted
by our method (i.e., network pre-trained on ImageNet and locked

Fig. 4. Color-coded segmentation results for qualita-
tive assessment. The diagram illustrates predictions
made by the three components of the proposed
method, i.e., Discrimination (Disc.), Rejection (Rej.) and
Sequential Modeling (Seq.). Ground truth segmentation
is also reported for comparison. Please note that the
diagram reports results for the concatenation of all
sequences in the test set. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Ground truth times spent at each specific location by the user, along with the times es-
timated by the proposed system and the difference between the two values. All times are
related to the union of all sequences in the test set.

Time spent at location (MM:SS)

Class Ground Truth Estimated Difference

Car 04:53 06:03 +01:10
Coffee V. Machine 00:35 00:37 +00:02

Garage 04:29 04:26 −00:03
Kitchen Top 06:32 06:37 +00:05
Lab Office 07:58 07:43 −00:15
Office 03:48 03:03 −00:45
Piano 07:39 07:46 +00:05
Sink 11:40 11:37 −00:03
Studio 06:49 06:55 +00:06

Living Room 07:39 07:41 +00:02
Negative 11:20 10:54 −01:34
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convolutional layers). A HMM is applied to the output of the network to
obtain the final segmentation.

Tables 4 and 5 report the results of the compared methods in terms
of FF1 and ASF1 scores respectively. For each method, we report de-
tailed per-class scores (including the negative class), as well as the
overall mFF1 and mASF1 scores. Methods are sorted in terms of as-
cending mFF1 and mASF1 scores and best per-column scores are high-
lighted in bold. In Fig. 6 we also report the Threshold-SF1 curves related

to the compared methods. Finally, Fig. 7 reports color-coded segmen-
tation results of all compared methods for qualitative assessment.

The proposed method achieves the best performance in terms of
overall mFF1 and mASF1 scores, as well as in terms of many per-class FF1

and ASF1 scores. In particular, the proposed method scores the best
results when it comes to rejecting negative samples in terms of both FF1

and ASF1 scores. As it is shown in Fig. 6, the proposed method is the
most accurate for all considered levels of segmentation matching

(a) neighborhood size K (b) HMM constant ε

Fig. 5. Sensitivity of the proposed method with respect to the two involved parameters (a) K (size of the neighborhood for negative rejection) and (b) ε (small constant in the HMM
transition matrix).

Table 4
Per-class FF1 scores and related mFF1 measures for all compared methods.

Method mFF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

SIFT 0.27 0.03 0.08 0.00 0.83 0.04 0.13 0.81 0.10 0.14 0.47 0.33
OSDN [55] 0.60 0.41 0.93 0.81 0.00 0.52 0.08 1.00 0.60 1.00 0.83 0.42
CSVM [19] 0.79 0.41 0.87 0.80 0.94 0.97 0.84 0.84 0.90 0.80 0.94 0.32
EBR [16] 0.86 0.74 0.93 0.95 0.92 0.62 0.76 0.99 0.97 0.99 0.99 0.57
NTN 0.92 0.94 0.79 0.99 0.99 0.74 0.91 0.99 0.98 0.93 0.99 0.70
Proposed 0.95 0.89 0.97 0.98 0.99 0.98 0.85 0.99 0.97 0.99 0.99 0.83

Table 5
Per-class ASF1 scores and related mASF1 measures for all compared methods.

Method mASF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

SIFT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OSDN [55] 0.47 0.40 0.87 0.54 0.00 0.32 0.08 0.99 0.16 0.99 0.66 0.17
CSVM [19] 0.49 0.19 0.35 0.44 0.65 0.95 0.57 0.43 0.51 0.48 0.67 0.13
EBR [16] 0.58 0.36 0.86 0.62 0.54 0.07 0.30 0.84 0.68 0.98 0.97 0.22
NTN 0.84 0.91 0.93 0.98 0.99 0.49 0.79 0.99 0.89 0.83 0.98 0.49
Proposed 0.89 0.87 0.94 0.96 0.99 0.96 0.76 0.98 0.83 0.98 0.98 0.54

Fig. 6. Threshold-SF1 curves comparing the proposed method with respect to the state of the art. Reported curves are averaged over all classes.
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tolerance (i.e., for different thresholds t). Moreover, the segmentation
produced by the proposed method is the most accurate among the
others, as it is shown in Fig. 7. The baseline based on matching SIFT
features achieves the worst performance in terms of both FF1 and ASF1

scores. Decent FF1 results are reached only for some distinctive scenes
like for instance Kitchen Top and Piano. The method achieves very low

ASF1 results since it tends to over-segment the video as it is shown in
Fig. 7. Open Set Deep Networks (OSDN) [55] achieves very good results
for the Piano and Studio classes but is unable to manage other classes
(e.g., Kitchen Top and Office and Car) in terms of both the considered
scores. In particular, the method tends to reject more samples than it
should, as it is shown in Fig. 7. The method based on a cascade of SVM

Fig. 7. Color-coded segmentation results for qualitative assessment. The diagram compares the proposed method with respect to temporal video segmentation approaches. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Per-class ASF1 scores and related mASF1 measures for experiments comparing the proposed method to baselines building on different temporal video segmentation approaches.

Method mASF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

Apostolidis et al. [32] 0.71 0.87 0.63 0.77 0.85 0.75 0.76 0.70 0.58 0.81 0.71 0.39
Poleg et al. [2] 0.84 0.87 0.84 0.92 0.95 0.86 0.67 0.97 0.82 0.95 0.97 0.42
Baraldi et al. [49] 0.86 0.85 0.87 0.97 0.98 0.78 0.76 0.98 0.83 0.98 0.98 0.50
Ortis et al. [43] 0.87 0.88 0.76 0.95 0.99 0.97 0.76 0.97 0.81 0.99 0.98 0.51
Proposed 0.89 0.87 0.94 0.96 0.99 0.96 0.76 0.98 0.83 0.98 0.98 0.54

Fig. 8. Threshold-SF1 curves comparing the proposed method with respect to baselines building on different temporal video segmentation approaches. Reported curves are averaged over
all classes.

Fig. 9. Color-coded segmentation results for qualitative assessment. The diagram compares the proposed method with respect to baselines building on different temporal video seg-
mentation approaches. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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classifiers (CSVM) [19] achieves better performance but falls short in
negative sample rejection. In particular, as shown in Fig. 7, the methods
omits many of the rejections and exhibits some false rejections. The
Entropy-Based (EB) method [16] improves negative rejection by a good
margin but it is not always accurate in terms of mASF1 scores, since it
tends to over-segment the video (see Fig. 7). The proposed method also
outperforms the NTN baseline, which is designed to learn explicitly
from negative samples. It should be noted that user-specific training
negatives are hard to acquire and hence might not be available, which
makes our method (which does not rely on any negative samples at
training time) preferable in real applications.

5.2.1. Comparison with temporal video segmentation methods
As discussed in Section 2, our method is related to previous work on

temporal video segmentation. Nevertheless, a direct comparison with
those methods is not straightforward since they have been designed to
produce a different output. Specifically, while our method produces a
set of segments si characterized by a starting index si

s, an ending index
si

e and a class label si
c, classic temporal video segmentation methods are

designed to break the input video into shots which are not associated to
any specific class labels. We perform experiments to investigate whe-
ther the output of such algorithms can be used to improve personal-
location-based segmentation of egocentric videos. To this aim, we de-
signed a simple baseline which combines a classic temporal segmen-
tation method with a personal location classifierC capable of assigning
to each frame a label corresponding to one of the +M 1 personal lo-
cations (including negatives).

The baseline works as follows. Let ′ = ⩽ ⩽s{ }i i P1S be the set of video
shots produced by the considered video temporal segmentation
method. Each segment si is characterized by a starting index si

s and by
an ending index si

e. The baseline assigns class labels si
c to shots si by

performing majority voting on the labels ′ = …y y{ , , }s si
s

i
eY predicted by

the considered classifier C , i.e., = ′s mode ( )i
c Y . Adjacent shots be-

longing to the same class are merged into a single video segment.
Intuitively, if boundaries of the detected shots match the ones of ground
truth segments, the baseline should help to remove some over-seg-
mentation errors and improving overall segmentation accuracy.

We implement the proposed baseline considering four different
temporal segmentation methods. Two of them have been explicitly
designed to temporally segment egocentric videos. Specifically, the
method by Poleg et al. [2] segments egocentric video detecting long
term activities (e.g., walking, standing, running, etc.) according to the
exhibited egocentric motion, while the method by Orits et al. [43] relies
on visual content represented through CNN features to segment ego-
centric video into coherent scenes. The last two methods have been
respectively proposed by Apostolidis et al. [32] and Baraldi et al. [33]
and represent the state of the art in temporal segmentation of movies
and broadcast video. Since the proposed method is the best performing
one among all competitors, we employ it as the classifierC required by
the proposed baselines.

Table 6, Figs. 8 and 9 compare the proposed method with the
baselines related to the four considered segmentation methods. Results
suggest that the proposed method already allows to achieve accurate
segmentations and hence it does not benefit from fusion with other
temporal segmentation methods. Specifically, as it is shown in Table 6,
while the baselines obtain marginally better results for a few classes,
they do not improve over the proposed method in terms of overall
mASF1 score. In fact, temporal segmentations obtained using the base-
lines are in general less precise than the ones obtained using the pro-
posed method. This can be observed quantitatively in Fig. 8, where the
proposed method dominates the others for high thresholds (i.e., when a
more accurate segmentation is required) and qualitatively in Fig. 9.

6. Conclusion

We have proposed a method to segment egocentric video into co-
herent segments related to personal locations specified by the user. The
method works in supervised settings and requires minimal user-pro-
vided training data. Differently from previous works, our method ex-
plicitly considers the problem of rejecting negative locations and does
not require any negative sample at training time. Moreover, we show
how a simple Hidden Markov Model can be used to obtain consistent
temporal segmentation. The output of our algorithm can be used for a
number of applications related to life-logging, such as, egocentric video
indexing, detection of semantically relevant video shots for later re-
trieval or summarization, and estimation of the amount of time spent at
each specific location. The experimental analysis have highlighted that
the proposed method is accurate and compares favorably with respect
to the state of the art.

Given the unavailability of larger publicly available datasets, the
proposed experimental analysis has been carried out on a limited set of
data. Future work will be devoted to the extension of the analysis to a
larger dataset, acquired by multiple users, and to further reducing the
extent of required user-intervention by improving negative rejection
methods.
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