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A B S T R A C T

Although First Person Vision systems can sense the environment from the user’s perspective, they are generally
unable to predict his intentions and goals. Since human activities can be decomposed in terms of atomic actions
and interactions with objects, intelligent wearable systems would benefit from the ability to anticipate user-
object interactions. Even if this task is not trivial, the First Person Vision paradigm can provide important cues to
address this challenge. We propose to exploit the dynamics of the scene to recognize next-active-objects before an
object interaction begins. We train a classifier to discriminate trajectories leading to an object activation from all
others and forecast next-active-objects by analyzing fixed-length trajectory segments within a temporal sliding
window. The proposed method compares favorably with respect to several baselines on the Activity of Daily
Living (ADL) egocentric dataset comprising 10 h of videos acquired by 20 subjects while performing un-
constrained interactions with several objects.

1. Introduction and motivation

The main advantage of wearable cameras is their ability to sense the
world from the user’s perspective. This makes them ideal for building
egocentric systems able to assist the user and augment his abilities
[1–3]. Towards this direction, researchers have investigated methods to
understand the user’s environment [3–8], model his attention [9,10],
categorize his motion [11,12], summarize the acquired video [13,14],
recognize performed activities [15–18], and provide assistance [1,19].

Despite the fact First Person Vision (FPV) systems are exposed to a
huge amount of user-related information, they generally are not able to
predict the user’s intent and final goals. This makes user-assistance and
human-machine interaction limited. As claimed in previous works
[20–22], the ability to anticipate the future is an essential property that
humans exploit on a daily basis in order to communicate and interact
with each other. For instance, predicting object interactions before they
actually occur can be useful to provide guidance on object usage [1],
issue notifications [19] or assist the user [20]. Anticipated object in-
teractions can tell us something more about the user’s long term goals,
as well as the intended activities. Indeed, as observed in [17,18,23], it is
advantageous to decompose long term egocentric activities in terms of
“atomic actions” and interactions with objects to improve the final
activity recognition task. Previous works investigated anticipation and
early recognition of egocentric activities [19,24]. However, being able
to anticipate the future at the finer granularity of object interactions is
important especially for wearable intelligent systems, which need to

reactively communicate with the user in order to provide him feedback
and assistance.

Taking advantage of the First Person Vision paradigm, we introduce
the novel task of predicting which objects the user is going to interact with
next from egocentric videos. Following recent literature which explores
the importance of “active objects” for activity understanding [18,25],
we refer to our task as “next-active-object prediction”. According to [18],
active objects are those which are being manipulated by the user at the
moment. In contrast with the classic idea of active objects, we aim at
detecting active object before the manipulation actually begins.

Forecasting next-active-objects in unconstrained settings is hard
since humans interact with objects on the basis of their final goals and
the responses they get from the environment. Traditional approaches
which detect active objects on the basis of the way their appearance
changes during manipulation [18] or the presence of hands [15,26] are
not directly exploitable in this context where predictions are to be made
before the object actually becomes active. Moreover, real systems
should be able to deal with an “open world scenario” where object
categories that may appear in the field of view might not be known in
advance.

We argue that the FPV paradigm can provide important cues related
to the dynamics of the user with respect to the objects present in the
scene. Our main hypothesis is that, when a user is performing a specific
task, the way he moves and interacts with the environment is influ-
enced by his goals and intended interactions with objects. According to
this assumption, in an egocentric scenario, the relative motion of an
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object in the frame will vary depending on whether the user is planning
to interact with that object or not. For instance, the user is expected to
move towards an object before interacting with it. Fig. 1 shows three
sequences illustrating next-active-objects (in red) and passive ones (in
cyan) along with their egocentric object trajectories.1 Our hypothesis is
that the shape of trajectories, as well as the positions in which they
occur in the frame can help to predict next-active-objects discriminating
them from those that will remain passive.

We investigate the relevance of egocentric object trajectories in the
task of next-active-object prediction. Provided that an object detector/
tracker is available, we propose to analyze object trajectories observed
in a small temporal window to detect next-active-objects before the
object-interaction is actually started. We investigate what properties of
object motion are most discriminative and the temporal support with
respect to which such motion should be analyzed. The proposed method
compares favorably with respect to different baselines exploiting other
cues such as the distance of objects from the center of the frame [18],
the presence of hands [15–17,26], changes in the object appearance
[18] and the predictability of the user’s visual attention [1].

In short, our work is the first to investigate the topic of next-active-
object prediction from First Person videos. We analyze the role of
egocentric object motion in anticipating object interactions and propose
a suitable evaluation protocol.

The remainder of the paper is organized as follows. Section 2 re-
views the related work. Section 3 describes the proposed method.
Section 4 presents the experimental settings, whereas Section 5 dis-
cusses the results. Finally, Section 6 concludes the paper.

2. Related work

Our work is related to previous investigations covering different
topics. In the following, we review four main research lines: Activity
Recognition in First Person Vision (Section 2.1), Future Prediction in
Third Person Vision (Section 2.2), Future Prediction in First Person
Vision (Section 2.3) and Active Objects (Section 2.4).

2.1. Activity recognition in first person vision

Activity recognition from egocentric videos is an active area of re-
search. Through the years, many approaches have been proposed to
leverage specific egocentric cues. Spriggs et al. [27] proposed to use

Inertial Measurement Units (IMU) and a wearable camera to perform
activity classification and to segment the video into specific actions.
Kitani et al. [28] addressed the problem of discovering egocentric ac-
tion categories from first person sports videos in an unsupervised sce-
nario. Fathi et al. [15] proposed to analyze egocentric activities to
jointly infer activities, hands and objects. Fathi et al. [16] concentrated
on activities requiring eye-hand coordination and proposed to predict
graze sequences and action labels jointly. Pirsiavash and Ramanan [18]
investigated an object-centric representation for recognizing daily ac-
tivities from first person camera views. McCandless and Grauman [29]
proposed to learn the spatio-temporal partitions which were most dis-
criminative for a set of egocentric activities. Ryoo and Matthies [30]
considered videos acquired from a robot-centric perspective and pro-
posed to recognize egocentric activities performed by other subjects
while interacting with the robot. Li et al. [26] proposed a benchmark of
different egocentric cues for action recognition. The authors of [17,23]
proposed to integrate different egocentric cues to recognize activities
using deep learning. The aforementioned works assume that the ac-
tivities can be fully observed before performing the recognition process
and do not concentrate on future prediction from the observed data.

2.2. Future prediction in third person vision

Previous works have investigated the problem of early action re-
cognition and future action prediction from a standard third person
perspective. The considered application scenarios range from video
surveillance to human-robot interaction. Ryoo [31] proposed a method
to recognize ongoing activities from streaming videos. Huang et al. [32]
introduced a system which copes with the ambiguity of partial ob-
servations by sequentially discarding classes until only one class is
identified as the detected one. Hoai and De La Torre [33] exploited
Structured Output SVM to recognize partial events and enable early
recognition. Kong and Fu [34] designed compositional kernels to
hierarchically capture the relationship between partial observations.
Ma et al. [35] investigated a method to improve training of temporal
deep models to learn activity progression for activity detection and
“early” recognition tasks.

Beyond early action recognition, other methods have concentrated
on the forecasting of future actions before they actually occur. In par-
ticular, Kitani [36] modeled the effect of the physical environment on
the choice of human actions in the scenario of trajectory-based activity
analysis from visual input. Koppula et al. [20] studied how to enable
robots to anticipate human-object interactions from visual input in
order to provide adequate assistance to the user. Lan et al. [21]
exploited a hierarchical representation of human movements to infer

Fig. 1. Three sequences illustrating next-active-objects (in
red, indicated by “A”) and passive ones (in cyan, indicated
by “P”) along with their trajectories. In each sequence, the
dynamics of the scene suggest which objects are going to
become active. (For interpretation of the references to
colour in this figure legend, the reader is referred to the
web version of this article.)

1 The reader is also referred to the demo videos available at our web page
for some examples of next-active-object prediction: http://iplab.dmi.unict.it/
NextActiveObjectPrediction/.
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future actions from a still image or a short video clip. Vondrick et al.
[37] proposed to predict future image representations in order to
forecast human actions from video.

Unlike our approach, such works do not consider egocentric sce-
narios. However, the main motivation behind them is related to ours:
building systems which are able to recognize ongoing events from partial
observations and react in a timely way.

2.3. Future prediction in first person vision

Future prediction has been investigated also in the first person vi-
sion domain. The main application scenario related to such works
concerns user assistance and aiding human-machine interaction. Zhou
et al. [22] concentrated on the task of inferring temporal ordering from
egocentric videos. Singh et al. [38] and Park et al. [39] presented
methods to predict future human trajectories from egocentric images.
Soran et al. [19] proposed a system which analyzes complex activities
and notifies the user when he forgets to perform an important action. Su
and Grauman [40] proposed to predict the next object detector to run
on streaming videos to perform activity recognition. Ryoo et al. [24]
proposed a method for early detection of actions performed by humans
on a robot from a first person, robot-centric perspective. Vondrick et al.
[37] proposed to forecast the presence of objects in egocentric videos
from anticipated visual representations.

Our investigation is related to this line of works but, rather than
considering prediction at the activity level, we focus on the granularity
of user-object interaction and exploit the information provided by ob-
ject motion dynamics in egocentric videos. Object-level forecasting is
important to develop systems able to timely respond to the user beha-
vior and assist him properly.

2.4. Active objects

Our interest in next-active-object prediction has also been fostered
by the importance of active objects in tasks such as egocentric activity
recognition. In particular, Pirsiavash and Ramanan [18] proposed to
distinguish active objects from passive ones. Active objects are objects
being manipulated by the user and provide important information
about the action being performed (e.g., using the kettle to boil water).
Passive objects are non-manipulated objects and provide context in-
formation (e.g., a room with a fridge and a stove is probably a kitchen).
The primary assumption made by Pirsiavash and Ramanan [18] is that
active and passive objects can be discriminated by their appearance
(e.g., an active fridge is probably open and looks different from a
passive one) and the position in which they appear in the frame (i.e.,
active objects tend to appear near the center). Active objects have also
been considered in recent research on egocentric activity recognition.
Fathi et al. [15] suggested to pay special attention to objects manipu-
lated by hands for egocentric activity recognition. Li et al. [26] used
Improved Dense Trajectories to extract features from the objects the
user is interacting with. Ma et al. [17] designed a deep learning fra-
mework which integrates different egocentric cues including optical
flow, hand segmentation and objects of interest for egocentric activity
recognition. Zhou et al. [23] presented a cascade neural network to
collaboratively infer the hand segmentation maps and manipulated
foreground objects.

The general idea that some objects are more important than others
has been investigated also in other scenarios related to First Person
Vision. Lee and Grauman [13] designed methods to summarize ego-
centric video by predicting important objects the user interacts with
during the day. Bertasius et al. [25] designed a method for detecting
action-objects (i.e., objects associated with seeing and touching ac-
tions). Damen et al. [1] proposed an unsupervised approach to detect
task-relevant objects and provide gaze-triggered video guidance when
the user intends to interact with the object.

Differently than the aforementioned works, we investigate how

next-active-objects can be correctly recognized from egocentric video.
The prediction requirement, i.e., perform recognition of active objects
before the interaction begins, makes less effective the exploitation of
some cues such as object appearance and the presence of hands, which
have been generally used to address active object recognition in the
past.

3. Method

We propose to predict next-active-objects from egocentric videos by
analyzing egocentric object trajectories. We assume that an object de-
tector trained on a set of N object categories is available. A tracker is
used to associate detections related to the same object instance in order
to generate object tracks. At each time step, the system analyzes the
trajectories observed in recent frames in order to recognize next-active-
objects before an interaction actually takes place.

3.1. Object tracks

We consider an object track as a sequence of bounding boxes across
subsequent frames of a video. All bounding boxes are related to the
same object instance. We follow [18], where active objects are defined as
objects undergoing hand manipulations. Therefore, each bounding box is
labeled as “active” if the user manipulates it at that moment or “pas-
sive” otherwise. Bounding boxes ∈b 4R are represented by the four
coordinates of the top-left and bottom-right corners. To generalize over
different image sizes and aspect ratios, all coordinates are divided by
the frame dimensions in order to be normalized in the interval [0,1].
Coordinates are then centered around the normalized center point
(0.5,0.5).

We divide object tracks into two categories: passive and mixed. Tracks
composed only by passive bounding boxes (i.e., passive objects) are
denoted as passive tracks. Tracks containing both passive and active
bounding boxes are denoted as mixed tracks. In this case, we refer to the
point in which an object changes its status from passive to active as the
“activation point”. Fig. 2 illustrates examples of passive and mixed
tracks. Since we are interested in predicting next-active-objects, i.e.,
objects which are going to change their status from passive to active, we
discard all tracks containing only active bounding boxes.

3.2. Object trajectories

At test time, the system should be able to recognize next-active-
objects before they become active. Hence it can only rely on egocentric
object trajectories preceding the activation point. We extract object
trajectories from the considered object tracks and propose to train an
active versus passive trajectory classifier.

We define an object trajectory as a sequence of bounding boxes
= …T b b b{ , , , }i h1 2 and consider two classes of trajectories: active and pas-

sive. Active trajectories are those leading to a change of status from

Fig. 2. An example of mixed track (a) and passive track (b). The figure also illustrates how
active and passive trajectories are extracted from mixed tracks for training purposes
(Section 3.2).
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passive to active. Passive trajectories are related to passive objects that
will not become active and hence they do not lead to any status change.

While in principle we would like to predict next-active-objects ar-
bitrarily in advance, we expect that the most discriminative part of
active trajectories is the one immediately preceding the status change.
Therefore, in order to train an active vs passive trajectory classifier, we
consider fixed length trajectories of h-frames. Parameter h has to be
chosen to include enough discriminative information while avoiding
the noise due to long trajectories including data far away from the
activation point. We discuss specific settings in experimental details
below.

To compose a suitable training set, we extract passive and active
trajectories from the object tracks obtained as described in Section 3.1.
Passive trajectories are randomly sampled from all passive tracks (we
extract one trajectory per track). Active trajectories are sampled from
mixed tracks by considering the last h frames preceding each activation
point. Fig. 2 illustrates the extraction of active (red2) and passive (cyan)
trajectories from object tracks, whereas Fig. 3 illustrates some examples
of the extracted trajectories. In particular, as can be noted from Fig. 3,
discriminating next-active-objects from passive ones on the basis of
their appearance it is not easy. Some objects, indeed, do not change
their appearance when they are about to become active (e.g., pan, stove
and microwave in subfigure (a)). Others still share similar appearance
in both the passive and next-active scenarios (e.g., the fridge at bottom-
left of subfigure (a) and top left of subfigure (b)). On the contrary,
object motion dynamics (i.e., egocentric object trajectories) can provide
meaningful cues for next-active-objects detection.

3.3. Active vs passive trajectory classifier

The examples reported in Fig. 3 show that discriminating active
trajectories from passive ones is not trivial. Nonetheless, the egocentric
nature of the observations provides some useful cues. Specifically, we

expect that egocentric trajectories of next-active-objects tend to appear
at specific scales and absolute positions. For instance, people tend to get
closer to next-active-objects and bring them towards the center of their
field of view before initiating the interaction. Similarly, people are
more likely to pass by other objects avoiding to get too close and
pushing them towards the borders of their field of view.

Motivated by these observations, we propose to describe trajectories
using (1) the absolute positions in which bounding boxes appear in the
frame, (2) differential information about positions, (3) scale and dif-
ferential information about scale. The main motivation behind point (1)
is that absolute position can help discriminate active from passive ob-
jects, as observed in [18]. Point (2) is derived from the trajectory shape
descriptor used within Dense Trajectories [41]. Such descriptor re-
presents the “shape of the trajectory” as a sequence of displacement
vectors. Point (3) is inspired by [42], where the derivative of the
bounding box area is used to estimate “time to contact”. Each trajectory
Ti is hence described as follows:

= … …

… …

T xc yc xc yc s s
xc yc xc yc s s
( ) ( , , , , , , , ,

Δ ,Δ , ,Δ ,Δ ,Δ , ,Δ )
i h h h

h h h

1 1 1

2 2 2

D

(1)

where xcj and ycj are the coordinates of the centers of the bounding box
b s,j j is its area, = − = −− −xc xc xc yc yc ycΔ ( ),Δ ( )j j j j j j1 1 and = − −s s sΔ ( )j j j 1
encode differential information about position and scale. If the length of
Ti is h, the dimension of the descriptor is = −T h| ( )| 6 3iD .

3.4. Sliding window prediction

In order to predict which objects are going to become active and
which are not over time, we use a temporal sliding window approach.
At each time step, the system analyzes the last h frames of the trajec-
tories of each tracked object and predicts them as either active or
passive by exploiting the trajectory classifier. If an object has been
tracked for less than h frames, it is discarded. For each analyzed object,
the system draws a bounding box and assigns a confidence score equal
to the probability given by the classifier. This way, likely next-active-
objects will get a high confidence score, while passive objects will

Fig. 3. Examples of (a) active and (b) passive trajectories.
Starting points of trajectories are indicated by a circle.
Note that, while it is not easy to detect next-active-objects
using only appearance, object motion can provide im-
portant cues.

2 For interpretation of color in ‘Fig. 2’, the reader is referred to the web version of this
article.
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retain a lower one. Fig. 4 illustrates the proposed temporal sliding
window approach.

4. Experimental settings

In this section, we discuss the experimental settings of our experi-
ments. These include the dataset used for the evaluations, how object
detection and tracking are carried out and how trajectory classifiers are
trained.

4.1. Dataset

For our experiments, we consider the Activity of Daily Living (ADL)
dataset [18], which contains egocentric videos acquired using a chest-
mounted camera by 20 subjects performing daily activities. The dataset
contains bounding box annotations for 45 object classes. Annotations
related to the same object instance are grouped into tracks and each
annotation is labeled as passive or active. We carry out our evaluations
on the ADL dataset since it is the only publicly available dataset fea-
turing untrimmed egocentric videos of object interactions “in the wild”
(e.g., subjects move through different environments and interact with
many different objects), including annotations for both active and
passive objects.

Since objects are annotated every 30 frames, reasoning about object
trajectories is difficult. To overcome this limitation, we temporally
augment the original annotations by tracking objects in those frames
which are not annotated. To this aim, we use the short term tracker
CMT (Consensus-based Matching and Tracking) proposed by Nebehay
and Plugfelder in [43]. The tracker is always initialized using original
ground truth object annotations and tracking is carried on until the next
annotation is reached. Active/passive flags are interpolated accord-
ingly.

4.2. Object detection and tracking

At test time, our system analyzes input video to detect objects, group
detections into tracks and classify object trajectories to predict next-ac-
tive-objects. To perform object detection, we consider the state of the art
Faster R-CNN method [44] based on the VGG-16 network [45]. We start
from the original set of 26 objects proposed in [18]. Since in our work we

propose to detect next-active-objects on the basis of their trajectories and
not their appearance, we do not train our object detector to distinguish
between active and passive objects as done in [18]. Considering only
passive objects and removing classes represented by few training samples
(i.e., less than 1000), we obtain a set of 19 object classes. As in [18], we
train the object detector on images extracted from the first 6 videos,
while the remaining 14 videos are used to train/test the proposed next-
active-object prediction method. Note that, in order to train the object
detector, we consider only object annotations originally contained in the
dataset, while tracked bounding boxes are discarded at this stage. The
Faster R-CNN model is trained using the “end2end” procedure proposed
in [44]. The trained detector achieves a mean Average Precision (mAP)
of 0.2772 on the test set of 14 videos, which compares favorably with
respect to the 0.1515 mAP scored by the deformable part models em-
ployed in [18]. Please note that, as pointed out in [18], even performing
object detection on the ADL dataset is hard due to the presence of small
objects and non-iconic views.

In order to deal with object trajectories, bounding boxes detected
across different frames and related to the same object instance need to
be correctly associated. This can be done using a tracker based on a data
association algorithm such as the real-time (260 Hz) SORT tracker
proposed in [46]. Note that, since we compute detections for each
frame at test time, we only need a mechanism able to understand when
two detections performed in subsequent frames are related to the same
object instance. Hence, it is not necessary to employ a visual tracker
such as the CMT tracker used at training time to temporally augment
annotated object tracks. At test time, we run the SORT tracker on top of
the detections obtained using the Fast-RCNN object detector to obtain
object tracks. In our experiments, objects detected with a low con-
fidence score (less than 0.8) are discarded before employing the SORT
tracker. Please note that the Fast-RCNN/SORT component is run di-
rectly on the input video. Ground truth tracks are used only for training
purposes and are not exploited at test time, unless otherwise specified.

4.3. Trajectory classification

We train Random Decision Forests [47]3 to discriminate between

Fig. 4. Temporal sliding window processing of object tracks. At
each time step, the trained binary classifier is run over the tra-
jectories observed in the last h frames and a confidence score is
computed. Our aim is to predict if an object is going to become
active before it actually does, i.e., to fire towards the left of the
time plot above.

3 We set the number of trees to 25 and do not set any limit for the maximum height of
each tree.
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passive and active object trajectories. In the considered dataset, the
number of negative trajectories is usually far larger than the number of
active ones. To mitigate such imbalance, at training time, the number of
passive trajectories is randomly subsampled to match the number of
active ones, in order to obtain a balanced training set. Testing is always
performed on the original unbalanced data.

We assess the performance of the trained classifiers with respect to
different factors, including the temporal support with respect to which
trajectories are analyzed, the employed trajectory descriptor and the
generalization to unseen object classes. All results are reported in terms
of Precision-Recall curves and related Average Precision (AP) values.

5. Results

We perform all our experiments in a leave-one-person-out fashion
on the set of 14 videos which have not been used to train object de-
tectors (as done in [18]). At each leave-one-out iteration, trajectory
classifiers are learned on videos acquired by 13 subjects and tested on
data acquired by the remaining subject. We make sure that training and
testing data are always acquired by different subjects to prevent the
system from over-fitting to a single user, i.e., learning the specific way
he moves and interacts with objects. All reported results are averaged
across the 14 leave-one-out iterations.

In the rest of this section, we first discuss the performance of the
trajectory classifier component alone in Section 5.1), then analyze the
performance of the overall system and report comparative results with
respect to several baselines in Section 5.2.

5.1. Performance of the trajectory classifier

In this section, we analyze the performance of the trajectory clas-
sifier component with respect to different encoding schemes and
parameters.

5.1.1. Trajectory length and encoding
In Section 3.3, we assumed that the last part of an active trajectory

is the most discriminative for our task. Therefore, we proposed a sliding
window approach which analyzes fixed-length trajectories within a
temporal window of size h. To support that analyzing trajectories
within a fixed-length temporal window is optimal, we compared the
proposed method to a different schema which, at each time step, ana-
lyzes the whole trajectory observed up to that point. In this second
schema, in order to obtain a fixed-length descriptor, trajectories are
represented with a multiscale approach. Using a temporal pyramid with
l levels [18], each trajectory is divided into −2 1l segments. Bounding
boxes within the same segment are averaged and the results con-
catenated. This leads to fixed-length trajectories which are hence re-
presented using the descriptor introduced in Eq. (1). Note that the
maximum number of splits operated by the temporal pyramid is equal
to −2 l( 1), therefore, trajectories shorter than this number are discarded
in our experiments.

As discussed in Section 4.3, training/test trajectories are extracted
from object tracks related videos 7–20 of the ADL dataset. Since active
objects are naturally rarer than passive ones, the resulting dataset is
highly unbalanced, which active trajectories amounting to about 6% of
the dataset. Given this premise, and since our focus is on detection,
rather than classification, we report our results in terms of precision-
recall curves and AP scores.

Fig. 5 reports precision-recall curves of the classifiers learned on
trajectories extracted according to the two considered schemes. In
particular, our method scores an AP of 0.28 on more than 2 h of test
video, while the chance level is 0.09. The proposed fixed-length tra-
jectory approach has been evaluated considering different lengths

=h {15,30,45,60}. Similarly, the multiscale approach has been evaluated
considering different number of levels =l {4,5,6,7}. Please note that the
minimum trajectory lengths associated to the considered numbers of

levels are respectively {8,16,32,64}. The random baseline is obtained
performing classification with a random binary decision. It should also
be noted that the choice of the parameters related to the length of
trajectories depends on the frame-rate at which videos are acquired. In
this paper, we assume a standard frame rate of 30 fps.

As can be observed in Fig. 5, classifiers based on fixed-length tra-
jectories tend to outperform methods based on multiscale trajectories.
This suggests that the last part of active trajectories is the most dis-
criminative and that motion information too far away from the acti-
vation point introduces noise in the observations. Among the methods
based on fixed-length trajectories, the best performing scheme is the
one analyzing trajectories of length =h 30. This value will be used in all
the following experiments.

5.1.2. Analysis of trajectory descriptors
As discussed in Section 3.3, the proposed trajectory descriptor in-

troduced in Eq. (1) includes information about absolute positions and
scales, as well as differential information about position and scale. We
analyze the impact of each of these kinds of information comparing the
proposed descriptor against the following baselines:

• Motion Magnitude: we consider discriminating active trajectories
from passive ones on the basis of the amount of motion character-
izing the trajectory Ti under analysis. The amount of motion is
measured as the sum of the magnitudes of the displacement vectors:

= ∑ +
=

M T xc yc( ) Δ Δi j
h

j j2
2 2 . Classification is hence performed by

thresholding onM. The optimal threshold is selected at training time
as the one best discriminating active from passive trajectories in the
training set;

• Relative Trajectories: are the descriptors proposed by Wang et al. in
their work on Dense Trajectories [41]: =

…

∑ +=

T( )i
xc yc xc yc

xc yc

(Δ ,Δ , ,Δ ,Δ )

Δ Δ

h h

j
h

j j

2 2
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These descriptors encode only the “shape” of the trajectory and do
not include any information about absolute positions;

• Absolute Trajectories: described as the concatenation of the centers of
all bounding boxes: = …T xc yc xc yc( ) ( , , , , )i h h1 1D . Such descriptors in-
clude positional information but do not encode scale and differential
information;

• Absolute Trajectories+Differential Positions: described as the con-
catenation of positions and differential information about position:

= … …T xc yc xc yc xc yc xc yc( ) ( , , , , ,Δ ,Δ , ,Δ ,Δ )i h h h h1 1 2 2D . These descriptors
encode location and trajectory shape but do not include scale in-
formation;

• Absolute Trajectories+ Scale: described as the concatenation of po-
sitions and bounding box scales: = … …T xc yc xc yc s s( ) ( , , , , , , , )i h h1 1 1 2D .
These descriptors encode location and scale but do not include dif-
ferential information.

Fig. 6 shows precision-recall curves for the proposed method and
the compared baselines. As can be observed, relative trajectories [41]
(AP: 0.10) are less discriminative than absolute trajectories (AP: 0.12).
This confirms the observation according to which position can help
discriminate active and passive objects [18]. Combining absolute and
differential positional information improves performances marginally
(AP: 0.13). Adding scale (AP: 0.20) and above all, combining with dif-
ferential information as we propose allows to obtain the best results
(AP: 0.28). Interestingly, the motion magnitude baseline performs better
than some competitors (AP: 0.12). This reveals that discriminating be-
tween moving and static objects is already a reasonable baseline to
reject some passive objects. However, it should be noted that reasoning
about trajectories, positions and scales is essential to achieve better
results.

5.1.3. Analysis with respect to time of prediction
The proposed classifier is trained to discriminate trajectories ob-

served in the last 30 frames before an object activation from all others.
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We report experiments to assess up to what extent the learned classifier
is still able to detect next-active-objects a number of frames in advance
with respect to the activation point. Fig. 7 reports AP results when
classifiers are evaluated a given number of frames before the activation
point. As it can be expected, best results are obtained in proximity to
the activation point. However, all classifiers retain a certain amount of
predictive power up to 30 frames (1 s) before the activation point.
Moreover, it should be noted that the proposed descriptor generally
achieves best results as compared to other descriptors and still performs
significantly better than the random baseline 100 frames (about 3 s)
before the activation point.

5.1.4. Generalization to unseen object classes
We have trained a single active versus passive classifier including

data from all considered object classes. While training object-specific
trajectory classifiers might be advantageous, the limited number of
samples related to a single object class could pose a challenge.
Moreover, ideally, a real system needs to be able to handle “open-
world” situations in which objects belonging to previously unseen ca-
tegories may become active. For example, a camera wearer ought to be
able to enter a new environment where objects unavailable in training
are nonetheless important to detect as next-active at test time. We find
that next-active-object trajectory classification can generalize to pre-
viously unseen object classes up to a given extent. To assess this
property, we performed a leave-one-object-out experiment. For each
object class, we trained trajectory classifiers on data related to all other
object classes. Classifiers have been hence tested on data including only

the object class which was removed from the training set.
Table 1 reports the results for the considered object classes. Classes

missing from Table 1 are those which were not represented by any
sufficiently long trajectory (at least h frames) in the dataset. Classifiers
learned from training sets not containing the target object class (“w/o”
column) are compared to classifiers learned from training sets con-
taining also instances from the target object class (“with” column). Si-
milar performances are achieved for many object classes (e.g., door, tv,
book, mug/cup, laptop), whereas for others learning from instances of
the same object class is more beneficial. This may imply that, for some
object classes, it is crucial to learn specific motion/position/scale in-
formation. This is probably the case of “oven/stove” which, being a
fixed object, tends to appear at specific locations and scales, or “bottle”
and “kettle” which have peculiar aspect ratios and tend to appear at
smaller scales. However, it should be noted that, on average, removing
the object class from the training set implies a reasonable performance
loss of 0.11 AP.

5.2. Performance of the overall system

In this section, we discuss the performance of the overall system,
comparing it to several baselines.

5.2.1. Comparative experiments
In order to compare different methods in a common evaluation

scheme, we frame next-active-object prediction as an object detection
task. We assume that, at each time step, each method produces a series

Fig. 5. Precision-recall curves related to different trajectory descrip-
tion schemes. Elements in the legend are sorted by average precision
in descending order.

Fig. 6. Precision-recall curves related to the proposed method and
compared baselines.
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of bounding boxes around the predicted next-active-objects and assigns
a confidence score to them.

We define our ground truth starting from the object annotations of
the ADL dataset augmented by tracking as described in Section 4.1.
Since we wish to predict next-active-objects as soon as possible, all
annotations which are on the passive segments of a mixed track (see
Fig. 2) are considered as valid detections. All other annotations,
namely, the ones which are on passive tracks and the ones which are in
the active part of mixed tracks are not considered valid detections. The
performance of the investigated methods is measured computing pre-
cision-recall curves and Average Precision (AP) values. A prediction is
considered correct if there is a significant overlap (area of intersection
over union (IOU) ⩾ 0.5) with an annotation of the same object class.
Note that, since we are first to tackle the problem, no existing methods
are available for direct comparison. Therefore, we adapt known tech-
niques to our problem and propose a series of baselines with respect to
which we compare the proposed method. Considered baselines are
discussed in the following:

• Motion Magnitude: the same baseline discussed in Section 5.1.2
based on thresholding over motion magnitude;

• Relative Trajectories: the same baseline discussed in Section 5.1.2
based on the trajectory descriptors introduced by Wang et al. [41];

• Center Bias: this baseline considers the assumption made by
Pirsiavash and Ramanan [18], according to which active objects
tend to appear near the center of the frame. The baseline analyzes
the object detections produced by the Faster-RCNN detector and
takes into account the confidence score assigned to each predicted

bounding box so. For each detected object, we compute a score sc
which is inversely proportional to its distance from the center of the
frame. The final confidence score is obtained as =s s s·c o;

• Hand Bias: the presence of hands is a cue often considered for de-
tecting active objects [15–17,26]. To leverage this cue, we detect
hands from the input videos by using the models proposed in [48].
Similarly to the center bias baseline, for each object detection we
compute two scores slh and srh which are inversely proportional to
the distances of the object from the left and right hand respectively.
If one of the two hands is missing, a score equal to zero is assigned.
The final confidence score is obtained by = +s s s s·( )o lh rh , where so
is the confidence score assigned to the predicted bounding box;

• Active/Passive Objects: a method inspired by the work of [18]. Pre-
dictions are obtained using a Faster R-CNN object detector trained to
detect active and passive objects separately. The detector is hence
trained on 38 classes (19 active objects and the corresponding 19
passive ones). It should be noted that, while this baseline does not
completely fit our task (the detector is not explicitly trained to de-
tect next-active-object), it is still useful to ensure that the problem
cannot be trivially tackled by means of such a well-known technique
for active object recognition;

• Saliency-Based Models: this set of baselines is inspired by Damen
et al. [1], who propose to detect task relevant objects using a gaze
tracker, exploiting the anticipatory nature of eye gaze fixation [49].
Since we do not assume the availability of a gaze tracker, we im-
plement such baselines using saliency prediction models. The
baseline works as follows. Saliency maps are first extracted from
each frame. Starting from the Faster-RCNN detections, each pre-
dicted bounding box is assigned a score equal to the mean saliency
value within the bounding box. Given the different levels at which
saliency is defined [50], we consider the model proposed by Vig
et al. [51] for eye fixation prediction, the model proposed by Seo
et al. [52] for dynamic saliency from videos, and the model pro-
posed by Zhang et al. [53] for salient object segmentation;

• Random: starting from the Faster-RCNN detection, each bounding
box is assigned a random score in the interval [0,1].

Fig. 8 reports the precision-recall curves scored by our method and
all baselines. To reduce computational burden, the methods indicated
by the “∗” symbol have been evaluated on a subset of the data obtained
taking one frame every 30 frames. The figure also reports results of the
proposed approach when run directly on ground truth object tracks
(method “Proposed[GT]”). All other methods are run on object tracks
detected/tracked as described in Section 4.2. Among methods run on
detected tracks, the proposed one is the best performing one (AP:
0.0680), followed by the motion magnitude (AP: 0.0478) and relative
trajectory baselines [41] (AP: 0.0437). It is worth noting that the best

Fig. 7. Average precision of the considered methods when they are
evaluated a given number of frames before the activation point.
Methods retain some predictive power up to about 30 frames (1 s)
before the activation point. The proposed method generally performs
better than others and significantly better than the random baseline
100 frames (about 3 s) before the activation point.

Table 1
Average precision results related to the leave-one-object-out experiment.

Object AP

w/o With

Oven/stove 0.60 0.82
Tap 0.47 0.59
Door 0.19 0.18
Tv remote 0.58 0.73
Bottle 0.50 1.00
Pan 0.56 0.83
Tv 1.00 1.00
Fridge 0.47 0.73
Book 1.00 1.00
Microwave 0.67 0.40
Kettle 0.33 0.75
Mug/cup 0.52 0.62
Dish 0.51 0.32
Laptop 0.63 0.65
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performing methods are all based on egocentric object motion. The
method based on center bias outperforms the appearance-based base-
line derived from [18] (0.0412 vs 0.0298 AP values). Our main insight
about this behavior is that object appearance is likely to change while
the object is being manipulated (i.e., active object already observed)
rather than before (i.e., next-active-object prediction). The baseline
based on hand bias does not achieve good performance (AP: 0.0200).
This is probably due to different factors. First, detecting hands in un-
constrained egocentric videos is not trivial [48]. Second, hands are not
always visible until the object manipulation actually begins. Saliency-
based baselines perform worse than others. It should be noted that such
methods have been designed to predict current and not future visual
attention mechanisms and that they have not been specifically designed
for the egocentric scenario. Moreover, while we perform our evalua-
tions on the ADL dataset, which have been acquired using a chest-worn
camera, baselines exploiting attention mechanisms are based on ob-
servations generally applicable to the scenario of head-mounted cam-
eras [1]. In particular, attention-based methods might be unable to
leverage head-motion cues as expected.

We would like to note that all presented results are characterized by
low Average Precision. This is due to the very low number of frames
containing at least one next-active-object, which, from our analysis,
amounts to only the 5% of tested frames. Under these circumstances,
methods are likely to be affected by the presence of false positives, as it
is suggested by the observation of precision recall curves in Fig. 8,
where the maximum precision value achieved at zero recall is equal to
0.23. Moreover, results highlight how, due to the ambiguity introduced
by human discretion, the prediction of next-active-objects from ego-
centric video is a hard task. Nevertheless, the proposed analysis points
out the importance of egocentric object motion in the considered task
and does not exclude that better results could be achieved integrating
also other cues such as the way object and scene appearance changes
through time and the relationship with the activity performed at the
moment of the interaction.

5.2.2. Performance analysis of the proposed approach
To assess possible limitations introduced by the object detector/

tracker component Fig. 8 also reports results obtained running the
proposed method directly on ground truth object trajectories (method
“Proposed [GT]”). As can be expected, the method performs better
when run on ground truth trajectories. However, the relatively small
increment in AP score (0.0888 vs 0.0680), suggests that overall perfor-
mance is not substantially limited by the object detector/tracker com-
ponent.

As already discussed, the main source of error is due to the influence
of false positive predictions. Among such cases, the method should not
fire in the presence of objects which are already active. To assess

performance in this regard, we report in Table 2 the fraction of pre-
dictions mistakenly performed in the presence of active objects when
different confidence thresholds are used to obtain detections from
confidence scores. To put such numbers in context, we also report
precision and recall of the overall system for the selected confidence
threshold. Results are reported for a single iteration of the leave-one-
out-procedure, where the test is performed on video 7 and all other
videos are used for training. The proposed method tends to fire in the
presence of active objects. The fraction of wrong predictions can be
lowered by increasing the confidence threshold, but this also decreases
the overall performance of the system. While this remains a limitation
of the proposed system, it should be noted that it has not been explicitly
trained to classify active objects as not being next-active.

Fig. 9 reports some visual examples of success/failure sequences
related to the proposed method. In the examples of correct predictions
shown in Fig. 9(a), the model correctly assigns a high score (positive
prediction) to next-active-objects (e.g., the laptop in the first row and
the tap in the second row) and a low score (negative prediction) to
passive ones (e.g., the door in first row and the tv in second row). It
should be noted that next-active-objects are not always central objects
appearing at a large scale, as it is the case of the tap in the second row of
and the dish in the fourth row of Fig. 9(a). In the failure examples re-
ported in Fig. 9(b), the model fails to predict next-active-objects. For
instance, in the first row of Fig. 9(b), the model predicts oven/stove as
the next-active-object, while the actual target (dish) is not predicted at
all by the object detector/tracker. Similarly, in the fourth row, the
target next-active-object fridge is correctly detected by the detector/
tracker component, but erroneously classified as passive by the next-
active-object prediction system. A possible reason for this failure might
be the proximity of the object to the border. Videos demonstrating the
proposed method are available at our web page: http://iplab.dmi.unict.
it/NextActiveObjectPrediction/.

While implementing a real-time system is out of the scope of this
paper, it should be noted that, since the SORT tracker is highly real-
time and Random Decision Forests are fast at inference time, the
computational performance of the proposed method is dominated by
the Faster-RCNN object detection component. Using an NVIDIA Titan X

Fig. 8. Precision-recall curves of the compared methods. It should be
noted that methods based on egocentric motion analysis perform
better than those based on appearance, attention, center or hand bias.
The proposed approach is the best performing among the competitors.

Table 2
Fraction of active objects classified as next active (Frac. Act. Pred.) for given confidence
thresholds, along with precision and recall of the overall system.

Conf. threshold 0.5 0.56 0.68 0.74 0.8 0.83 0.86 0.90
Frac. act. pred. 0.92 0.89 0.79 0.67 0.48 0.32 0.24 0.11

Precision 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
Recall 0.27 0.26 0.22 0.17 0.10 0.09 0.05 0.02
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GPU, our method can process video at about 5 frames per second. Such
computational performance can be improved with the adoption of real-
time object tracking methods such as the one proposed in [54].

6. Conclusion

We introduced and investigated the problem of next-active-object
prediction from egocentric videos. Experiments highlight that (1) active
object trajectories can be discriminated from passive ones using absolute
positions, scale and differential scale and position information, (2) active
trajectory classifiers can be learned independently from object classes,
(3) egocentric cues based on object motion outperform baselines based
on other cues such as object appearance and the presence of hands. In
future work, we will extend the analysis also to data acquired using head-
mounted cameras. Moreover, we will investigate the integration of other
cues such as the way the appearance of objects and scene changes over
time. We are also interested in exploring how next-active-objects could
benefit a system for detecting first-person activities in egocentric video.
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